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Outline
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2. System Identification (in closed loop)

3. “Identification for Control”

4. Model validation

5. Illustration
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To Think About
. . .

give us

grace to accept with serenity the things that cannot be

. changed,

courage to change the things that should be changed,

and wisdom to distinguish the one from the other.

R. Niebuhr, 1934.
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Example

G(s) =
1

(s+1)(0.05s+1)
(Skelton)

Sample at T = 5 ms and perform an identification experi-
ment.

0 500 1000 1500 2000 2500 3000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
OUTPUT #1

0 500 1000 1500 2000 2500 3000

−0.5

0

0.5

1

INPUT #1



REGLERTEKNIK

AUTOMATIC CONTROL

LINKOPING

5

Find that a first order model will give a nice fit and pass

validation tests:
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Blue: Model output, Black: Measured output

Output # 1 Fit: 0.014379
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Construct a high gain regulator (aiming at a bandwidth of

10 Hz) and get surprised by the fact that the closed loop

system is unstable. The nice and well fitting first order

model did not predict this!

Is this a shortcoming of system identification?
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Let’s ask the model that was estimated from the data, how

it assesses its uncertainty (in an unprejudiced way):
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Respect the Uncertain!
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Outline
1. Introduction

2. System Identification (in closed loop)

3. “Identification for Control”

4. Model validation

5. Illustration



REGLERTEKNIK

AUTOMATIC CONTROL

LINKOPING

10

Identification
Possibly Closed Loop Experiments

G0
u

v

y
r

−F

• True system: y(t) = G0(q)u(t) + v(t)
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Models and Methods
• Model: ŷ(t|θ) = G(q, θ)u(t)

• Method (direct method): θ̂ = argminθ V (θ)

• V (θ) =
∑ |L(q)[y(t)− ŷ(t|θ)]|2

• V (θ) ≈ ∫ |G(eiω, θ)− ˆ̂G(eiω)|2|L(eiω)|2|UN(ω)|2dω
• ˆ̂G(eiω) = YN(ω)

UN(ω) (ETFE)

• UN, YN The DFT’s
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Smoothing the ETFE
Low order model; Firm Bode plot
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The actual weighting depends on L and U .
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Smoothing the ETFE
High order model; Malleable Bode plot

0 0.5 1 1.5 2 2.5 3 3.5
10

−1

10
0

10
1

10
2

0 0.5 1 1.5 2 2.5 3 3.5
10

−2

10
−1

10
0

10
1

10
2



REGLERTEKNIK

AUTOMATIC CONTROL

LINKOPING

14

Properties
Two error sources:

• Bias error: “Too firm Bode plot”; wrong interpolation

rules for the frequencies

• Variance error (random error): Model errors that can

be traced back to the disturbance v

As model order increases, Bias ↓ and Variance ↑ (less aver-

aging taking place).

Total error (MSE) = Bias + variance.

Objective, choose model order so that MSE is minimized.
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Bias Error Characterization
Input and disturbance spectra:

Φu = Φv
u +Φr

u, Φv(ω) = λ0|H0(e
iω)|2

Limiting model as more data is used:

G∗ = argmin
G

∫
|(G0 +B)−G|2|L|2Φu(ω)dω

|B|2 =
λ0
Φu

· Φ
v
u

Φu
· |H0 − 1/L|2
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Bias Error Notes

G∗ = argmin
G

∫
|(G0 +B)−G|2|L|2Φu(ω)dω

|B|2 =
λ0
Φu

· Φ
v
u

Φu
· |H0 − 1/L|2

• Best fit in a weighted frequency norm.

• Open loop ⇒ Φv
u = 0 ⇒ B = 0

• Prefilter Lv and input spectrum Φu interchangeable.

Can focus on special frequency ranges. (Extreme case:

Frequency analysis)

• 1/L acts like a disturbance model.
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The Variance Error
Asymptotically:

Cov Ĝ(eiω) ≈ n

N

Φv(ω)

Φr
u(ω)

• n: Model order

• N : number of observations,

• Φv: Noise spectrum.

• Φr
u = |S|2Φr: that part of the input spectrum that orig-

inates from r.

This is basically a measure of the information contents in
the data (like the Cramèr-Rao bound).

You can manipulate the bias by prefiltering but not really
the variance
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Indirect Identification of
Closed Loop Systems

Closed loop system: y(t) = Gc(q)r(t) + disturbance

Gc =
G0

1 + FG0

Choose a parameterization of the closed loop Gc(q) = Gc(q, θ),

identify the closed loop system, and solve for the open loop

dynamics, using knowledge of the regulator.

(The indirect model error = ec(t) = y(t) − G
1+FG

r. Use the model

dependent prefilter L = 1+FG. Then L(q)ec(t) = y+FGy−Gr = y−Gu.

So direct identification = indirect identification with L = 1+ FG.)
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Parameterizations for Indirect Identification
• Gc(q, θ)

• Gc(q, θ) = G(q,θ)
1+F (q)G(q,θ)

• Dual Youla

Gc(q, θ) = L(q)Y (q)(N(q) + S(q, θ)Y (q))

G(q, θ) =
N(q) + Y (q)S(q, θ)

D(q)−X(q)S(q, θ)

• All the same theory
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Indirect Identification: Bias

G∗ = argmin
G

∫ ∣∣∣∣∣
G

1+ FG
− G0

1 + FG0

∣∣∣∣∣
2

|L|2Φrdω

= argmin
G

∫ ∣∣∣∣G0 −G

1+ FG

∣∣∣∣
2
|L|2Φr

u(ω)dω

= argmin
G

∫
|G0 −G| |L|2|S(G)|2|S0|2Φrdω

Beware: Requires exact knowledge of regulator!
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Asymptotic variance
Same as for direct identification:

Cov ĜN ≈ n

N

Φv(ω)

Φr
u(ω)
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Outline
1. Introduction

2. System Identification (in closed loop)

3. “Identification for Control”

4. Model validation

5. Illustration
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Control
Feedback is:

• Forgiving . . .

• Demanding . . .

Models may be bad, but need to be reliable in certain fre-

quency regions
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Experiment Design for Control

G0
u

v

y
r

−F

We affect the model quality by the experiment design:

• Open/closed loop

• Regulator F , Spectrum of r (u)

• Prefilter L

“Identification for control” often also means that the model
structure used is quite simple.
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A Design Problem
Look for a model Ĝ that minimizes the weighted distance

to the true system within a certain model structure

J(D) =
∫

E|Ĝ−G0|2W (ω)dω

for a given weighting function W .

The constraint is Eu2(t) ≤ C
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The Solution
Then the solution is

• Open loop, F = 0

• Input spectrum Φu ∼ √
WΦv

• Prefilter |L|2 ∼
√

W
Φv
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Identification for Control
OK, so what W to choose? What frequency regions to

emphasize?

If Gd is the desired closed loop, the typical weighting func-

tion is W = |Gd/G0|2, i.e. emphasize the frequency range

where a gain increase is required.

Not Known!(?)

Iterative approach?
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Iterative Approaches to
Identification for Control

Variants on the theme:

1. Fix a low order model structure

2. Make an identification experiment and fit a model

3. Compute a regulator for this model and try it out

4. If result not satisfactory, design a new experiment and

go to step 2.

Leading idea: New experiment = closed loop with current

controller
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Why New Experiment =
= Current Closed Loop?

The bias expressions for closed loop experiments have Φu

(Φr
u) as weighting functions. The input power will be large

where a gain increase is achieved in closed loop.

The fit will be made for inputs that should resemble the

ones to be used in the desired controller.

lim
Expmnt length→0

Iterative design = Adaptive Control
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Need for Iterative Experiments?
Bias considerations: Want the weighting (prefilter) |Gd/G0|2.
G0 unknown. Iterate:

1. Infer knowledge about G0 from measured data

2. Change prefilter accordingly

No need for new experiments, just new prefilters

MSE: Bias and variance considerations: Optimal solution

requires a new experiment; new input spectrum, not just a

new prefilter.

Iterative experiments required only if variance aspects taken

into account!

But why throw away old experiments??
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Is There a Need for
Closed Loop Experiments?

• If output power constrained

– Note that

Φy = |G0|2Φr
u + |S0|2Φv

Φopen
y = |G0|2Φu +Φv

• If regulator uses both Ĝ and Ĥ.

• Weighting (prefilter) with S0 (input power contains S0)

“for free”.Well, . . .
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Iterations well posed?
Trying to obtain a certain closed loop system Gd: Regulator

F(G) determined from model so that F (G)G
1+F (G)G = Gd.

Iterations. Fix regulator F . Estimate

G(F) = argmin
G

∫ ∣∣∣∣∣
FG

1+GF
− FG0

1 +G0F

∣∣∣∣∣
2

Φrdω

︸ ︷︷ ︸
J(F,G)

If this converges to G∗ we must have

J ′
G(F(G∗), G∗) = 0

(This is also the right hand side of the ODE associated

with the corresponding adaptive control scheme)
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Iterations Well Posed? cont’d
Is this the right point? The distance of interest is

J(F(G), G) =
∫ ∣∣∣∣∣

F(G)G

1+ F(G)G
− F(G)G0

1 + F(G)G0

∣∣∣∣∣
2

Φrdω

=
∫ ∣∣∣∣∣Gd −

F(G)G0

1 + F(G)G0

∣∣∣∣∣
2

Φrdω

Best model: argminG J(F(G), G)

Min at J ′
F (F(G∗), G∗)F ′

G(G
∗) + J ′

G(F(G∗), G∗) = 0

The iterative/adaptive schemes have a fixpoint at
J ′
G(F(G∗), G∗) = 0

OK iff J ′
F = 0. (⇔ G0 = G)

That is Model has to be good for the iterations to be mean-
ingful.
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Outline
1. Introduction

2. System Identification (in closed loop)

3. “Identification for Control”

4. Model validation

5. Illustration
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Model Validation

Not sufficient to know that you have done your best, it

must be good enough too!

Identification: Find the best model, in a given class and

according to a given criterion.

Model validation: Find out if this model is good enough

(for control design).
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Residual analysis
The residuals:

ε(t) = y(t)− Ĝ(q)u(t)

εF (t) = L(q)ε(t)

Questions:

• Are the residuals unpredictable (white)?

• Are there clear traces of the input in the residuals?

Residual analysis: Variants on the theme of checking cross

correlation between u and εF .
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Typical Residual Analysis
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Form P =sum of squares of red values. Increase model

order until P ≤ P0 for some given level P0.
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Assessing the MSE
(abridged edition)

Ĝ any model, Data subject to y = G0u+v. P as on previous

slide. Then∫ ∣∣∣Ĝ−G0

∣∣∣2 |UN |2|L|2dω
≤ P︸︷︷︸

Known

+ corr2(u, v) · ‖v‖2︸ ︷︷ ︸
if “independent” ∼ 1/N︸ ︷︷ ︸

max |v|2else

+ impulse response tail︸ ︷︷ ︸
Prior smoothness

Quite general.
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Conventional Presentation
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Control Oriented Presentation

• Model G’s Bode Plot

with uncertainty region.

• The Model Error Model:

High order ARX model

from u to y − Gu, pre-

sented as Bode plot with

uncertainty.

Example: IDDATA1

G=arx(z1,[1 1 1])
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Model Not Falsified When Model Error
Confidence Bound Contains Zero

“Model and Sidekick”

IDDATA1, G=arx(z1,[2 2 1])
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Model Not Falsified
IDDATA1, G=armax(z1,[2 2 2 1])
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Outline
1. Introduction

2. System Identification (in closed loop)

3. “Identification for Control”

4. Model validation

5. Illustration
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Illustration (Schrama)

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Bode plot

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8
OUTPUT #1

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

INPUT #1

Simulated data with

additive white noise

(standard deviation

= 0.01)



REGLERTEKNIK

AUTOMATIC CONTROL

LINKOPING

46

Information Contents
Unprejudiced CR-bounds marked
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Theoretical uncertainty region for noise level 0.01 (as in

data shown)
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ARMAX models
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2nd order model.
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4th order model.



REGLERTEKNIK

AUTOMATIC CONTROL

LINKOPING

48

First Unfalsified Model
9th order ARMAX
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Filter Out a Band
(Inside Reasonable Region, around second peak)

First validated model (using filtered data) 4th order ARMAX
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Statements
Rather Sweeping and Rather True

• The first model that passes the model validation mini-

mizes the mean square error.

• For this model the bias error is dominated by the vari-

ance error.

• The variance error can be estimated from the observed

data for a validated model

• You cannot improve the mean square error by prefilter-

ing – you “just” get a good fit over a smaller frequency

range by a lower order model.
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The Know’s and No-Know’s
You don’t know:

• Frequency details finer than the uncertainty principle

(No hard bounds without prior knowledge)

• Anything outside the excited frequency range. Need to

invoke the unprejudiced variance bound.

You do know

• A reasonable frequency domain error bound in excited

regions
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Conclusions
• Whenever possible, no reason to be without a validated

model.

• No reason not to use all collected data, even if extra

experiments turn out to be necessary. (Unless essential

time-variation in system)

• Even when full validation is not desired (adaptive con-

trol/automated design), there should be important work

for the model’s sidekick, the model error model.
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Conclusions, cont’d
• Perfectly OK to use simple model for control design.

The simple model can be a reduced order version of the

validated one, or estimated with constrained frequency

prefilter/experiment. Validated model then helps in the

control design by suggesting necessary robustness and

sensitivity.

• You can manipulate bias by prefiltering, but not really

variance. This is the reason why iterative experiments

may be necessary.
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Respect the Uncertain!


