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1 INTRODUCTION

System Identification is about building mathematical models
of dynamical systems based on observed input—output data.
In case the sought model is linear, there exist well structured
theory, methodology and algorithms. For the case of non-
linear models, the situation is more complex, and perhaps
confusing. In particular, there are several intriguing tech-
niques that have been developed outside the system identi-
fication research area, mostly in the machine learning com-
munity. Concepts like Manifold learning and Gaussian pro-
cesses turn out to be valuable also for identifying nonlinear
systems.

This presentation aims at an overview of various approaches
to nonlinear system identification. This is of course not pos-
sible to do in comprehensive manner in such a brief text, but
we refer for more details to [11] and the recent articles [13],
[16] and [12].

2 BASIC PROBLEM FORMULATION

Given a (dynamical) system with input u(t) and output y(t).
A (mathematical) model of the system is a mathematical
relationship that relates the output to past inputs and out-
puts. For a system with (stochastic) disturbances only the
predicted output §(t) can obey such an exact relationship.

g)(t) = f](y(t - 1)1 u(t - l)ay(t - 2)7 u(t - 2)7 .- ) (D

The model is nonlinear if the function g is nonlinear.

So, estimation of nonlinear models is very rich topic. A sim-
plistic template formulation is to view it as an extended non-
linear regression problem: We seek a nonlinear relationship
between the system outputs y(¢) and a known regression vec-

tor o(t):
y(t) = ge(t) +e(t) ()

The regression vector is in principle a function of all inputs
u(s) and outputs y(s) prior to time ¢:

So(t) = h(y(t - 1)7 u(t - 1)7y(t - 2), u(t - 2)7 e ) (3)

It can be seen as a state for the system. In many of the con-
siderations below we will assume that (¢) is known (mea-
sured) at time ¢. So, finding g is a way to compute (predic-
tions of) future outputs. We assume that ¢ is d-dimensional:
o€ R?
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Then the knowledge we have available about the nonlinear
function g is

71, :{y(t),go(t),t:L...,NL} @
and from that information we need to find g.
There are two basic approaches for this:

e Parametric methods: g is parameterized as g(¢, 0) and
the information Zr, is used to find an estimate 0 giving
the function §(¢) = g(p,0). The parameter 0 is typi-
cally estimated by optimizing the fit y(t) — g(¢(t), )
for the measured Zp,

e Nonparametric methods: ¢ is formed from Z, without
the explicit use of parameters.

— As a special case of non-parametric methods we
may consider MOD — model on demand where the
function g is never formed explicitly, but there is
a computational scheme (using Zi,) that for any
given * computes the corresponding output y* =

a(e")

We shall give brief overviews of these basic approaches in
the next sections.

3 PARAMETRIC METHODS: A PALETTE OF
GREY SHADES

This has lead to a large, and sometimes confusing amount
of approaches, and it is not easy to give a coherent descrip-
tion of the current status. Part of the problem is the negative
definition (‘“non”-linear): it has been commented that this
area is as huge as “non-elephant zoology” (quote attributed
to mathematician/physicist Stan Ulam). In this section we
give a brief account of the dominating concepts. It is cus-
tomary in estimation to distinguish between grey-box mod-
els that are parameterizations based on physical insights, and
black-box model, that are just flexible function surfaces. To
bring some kind of order into nonlinear model structures we
follow [13] and invoke a whole palette of grey shades from
white to black. Only brief descriptions of the model classes
will be given here. We refer to [13] for more details, formu-
las and further references.



3.1 White Models

White box models are the results of diligent and extensive
physical modeling from first principles. This approach con-
sists of writing down all known relationships between rele-
vant variables and using software support to organize them
suitably. Similarly, libraries of standard components and
subsystems are frequently used. The resulting model could
be given as a collection of differential algebraic equations
(DAE?5) or in state space form as

#(t) = f(a(t), u(t), w(t)) (52)
y(t) = h(x(t), u(t)) + e(t) (5b)

Here, y,u are the output and input as before, and w is a
process noise sequence, while e is measurement noise.

3.2 Off-white Models: Parameterized Physical Models

Models with lightest shade of grey are obtained when white-
box models (5) contain some parameters that have unknown
or uncertain numerical values.

The nonlinear identification problem is to estimate such pa-
rameters from the measured Z1,. In general, this is a difficult
problem, that has not yet been treated in full generality, due
to the prediction problems when a process noise w is present.
A good reference for a deterministic setting is [22].

3.3 Smoke-Grey Models: Semi-physical Modeling

By semi-physical modeling we mean finding nonlinear
transformations of the measured data, so that the trans-
formed data stand a better chance to describe the system in a
linear relationship. The basic rule for this process (to ensure
its leisurely aspect) is that only high-school physics should
be required and the work must take no more than 10 minutes.
See, e.g., [11], Examples 5.1 and pages 533 - 536 for exam-
ples of this kind.

3.4 Steel-Grey Models

All the model structures so far contained an element of phys-
ical insight. The insight can also simply be that different
models are needed depending on the operating point of the
system, or the current regime, like speed and altitude of an
aircraft.

3.4.1 Composite Local Models:

Nonlinear systems are often handled by linearization around
a working point.

The idea behind composite local models is to deal with the
nonlinearities by developing local models, which are good
approximations in different neighborhoods, and then com-
pose a global model from these. Often, the local models are
linear, so a common name for composite models is also local
linear models. See, e.g. [9], and [14]. If each local model is
defined as a linear regression we obtain a composite model

d
G(t0,m) =Y wilp(t), )T ()" 6)
k=1

here %) (t) = ' (t)6), is the predicted output if the k:th
model, and wy, is weight that assigns the relevance of the

k:th model. p(¢) is the known current value of the regime
variable (operating point). 7 is a vector that governs the par-
titioning of the global behavior into the local models, via the
weighs wy, and the regime variable p For fixed 7 is a linear
regression, since the regime variable p(¢) is measured and
known.

3.4.2 LPV Models:

So-called Linear Parameter Varying (LPV) models are
closely related to composite local models. In state space
form they are described by:

where the exogenous or regime parameter p(t) is measured
during the operation of the system. Identification of such
models has been the subject of rather intense recent interest.
See, e.g., [10], [1], [6], and [23].

3.5 Slate-Grey Models

The steel-gray models contain certain insights and knowl-
edge into what type of regime variables are useful. A still
slightly darker shade of gray is when the mechanisms of the
model shifting are not known.

3.5.1 Hybrid Models:

The model (6) is also an example of a hybrid model. It
is piecewise linear (or affine), and switches between differ-
ent modes as the “state” ¢(t) varies over the partition. The
regime variable p is then a known function of ¢. If the par-
tition has to be estimated too, the problem is considerably
more difficult, due to the discrete/logical nature of the influ-
ence of . Methods based on mixed integer and linear (or
quadratic) programming are described in [18]. See also [3]
for another approach.

3.5.2 Block-oriented Models.

A very useful idea is to build up structures from simple build-
ing blocks. This could correspond both to physical insights
and as a means for generating flexible structures.

There are two basic building blocks for block-oriented mod-
els: linear dynamic system and nonlinear static transfor-
mation. These can be combined in a number of ways.
Some combinations are known under well-known names,
like Wiener and Hammerstein models.

3.6 Black Models: Basis Function Expansion

In a black-box setting, the idea is to parameterize the func-
tion g(x, 0) in a flexible way, so that it can well approximate
any feasible true functions g(x). A typical choice is to use a
function expansion

9(x,0) = > arg(x) (7a)
k=1

with some basis functions g.



It turns out that a powerful choice of basis functions is to let
them be generated from one and the same “mother function”
k(z) and scale and translate it according to

gr(x) = £(Br(z = 7)) (7b)

(here written as if x is a scalar.) The basis functions are
thus characterized by the scale (dilation) parameters (3, and
the location (translation) parameters 7. The resulting struc-
ture (7) is very flexible and very much used. Depend-
ing on how the particular options are chosen, this contains,
for example, radial basis neural networks, one-hidden-layer
sigmoidal neural networks, neuro-fuzzy models, wavenets,
least-squares support vector machines etc. See e.g [11],
Chapter 5.

4 NON-PARAMETRIC REGRESSION
5 Nonparametric methods

According to (2), the function values are observed in addi-
tive noise. If many observations were made for the same
value of (k) it would thus be possible to estimate g(p(k))
by averaging over the corresponding y(k). This is the basic
idea behind nonparametric methods: To average over rele-
vant observations y(k) to form an estimate of the function at
a particular value ¢*. A general reference to nonparametric
regression is [8].

5.1 Kernel Methods

The averaging or smoothing of observations takes the basic
form

N
an(e*) =Y wry(k) (8a)
k=1
N
Zwk =1 (Sb)
k=1

The weights wy, will depend both on the target point (* and
the observation point ¢(k):

wy, = C(¢™, ¢(k)) (9a)

Typically, they depend only on the distance between the two
points:

Clp*,p(k)) = 9b
W o e o)

Kn(p*) = K(¢*/h) (9¢)

where h is a parameter that scales the function K. This is an
example of a kernel method, more precisely the Nadaraya-
Watson estimator, [15]. Typical choices of the kernel func-
tion K are

1 i
K%)= ——¢~%/2 (Gaussian)

10
K(z) = % max{1 — #2,0} (Epanechnikov) (10b)

If the kernel is (essentially) zero for |Z| > 1, observations
that are further away than A (the bandwidth) from the target
point ¢* in (8) will not be used in the function estimate.

It is obvious that the bandwidth parameter in this case is
what controls the bias-variance trade-off: A small bandwidth
gives few data to average over and hence a large variance. A
large bandwidth means that the averaging takes place over a
large area, where the true function may change quite a bit,
thus leading to large bias.

5.2 Local Polynomial Methods

In a kernel estimator, the function value is estimated as
a mean over a local neighborhood. A more sophisticated
approach would be to compute a more advanced estimate
within the neighborhood. For example, the function could be
approximated as a polynomial within the chosen neighbor-
hood. The coefficients of the polynomial are computed using
a weighted least squares fit, the weights typically chosen as a
kernel K, (u), (9¢)-(10), giving more weight to the observa-
tions close to the target value ¢*. The estimate §(¢*) would
then be this polynomial’s value at ¢*. This is the local poly-
nomial method, see, e.g. [5]. Clearly, the Nadaraya-Watson
estimator corresponds to a local polynomial approach with
polynomials of zero order. It also follows that the local poly-
nomial method is closely related to local composite models,
(Section 3.4.1), often used in control applications.

5.3 Direct Weight Optimization

A very direct approach to determine the weights wy, in a non-
parametric estimator (8) would be to choose them so that the
mean square error (MSE) between the model output and the
true output at the target point (*, is minimized w.r.t. wy. Let
M denote the MSE:

My (") = Elg(¢") — gn (")
This value depends on g and the weights (and the probability
distribution of e in (2)). To carry out the minimization, the
true function g(¢*) needs to be known. To handle that, first

a maximization of the MSE is carried out w.r.t. a function
family G that g is assumed to belong to:

N
§=> wiy(k) (11a)
k=1
N
Zwk =1 (11b)
k=1
wy, = argmin max My (¢*) (11¢)

wr go€G

This method is described in [19]. The result depends, of
course, on the function family G. If the family consists of
Lipschitz continuous functions

G2(L) = {g; lg(w1) — g(a2)| < Llzy — 22|} (12)

the resulting estimate (11) is a kernel type estimator, typi-
cally with the Epanechnikov kernel, and a bandwidth that is
automatically selected from L, the assumed noise level, and
the available observations. See also [21]. This method is
an example of “model on demanad” (see Section 2): To find
§(¢*) the optimization problem (11) must be solved for each
desired *.

6 SEMI-SUPERVISED REGRESSION: WDMR

See [16] for a more comprehensive account of the concept
and algorithm discussed in this section.



6.1 The concept of semi-supervised regression

We now introduce a new element into the discussion that
brings the topic closer to machine learning and manifold
learning. Suppose that in addition to the measurements (4)
we have also measured Ny regression vector values without
corresponding y (“unlabeled regressors”):

ZU = {@(t)v

Estimating g from Zy, and Zy is called a semi-supervised
regression problem: Zp, are “supervised” observations (the
“labels” y(t) are known and Zy are unsupervised data.
Clearly, there is information of any value in Zy only if the
regressors are confined to some a priori unknown region,
like a manifold of R¢

Since we in the following will make no difference between
the unlabeled regressor ¢* and {p(¢) i\gﬁj\fl, we simply
include ¢* in the set of unlabeled regressors to make the
notation a bit less cluttered. We introduce the simplified no-
tation

t:NL+1,...NL+NU} (13)

e ~ g((t)) (14)

for the estimates of g(p(t)). In the following we will also
need to introduce kernels

k(@l, 302)

as distance measure in the regressor space. To simplify the
notation, we will use K;; to denote a kernel k(- -) evaluated
at the regressor pair (©(i), ¢(7))i.e.,

K;j £ k(p(i), 0(4))
. A popular choice of kernel is the Gaussian kernel

Kij = o le@—e@)?/20% (15)

Since we will consider regressors constrained to certain re-
gions of the regressor space (often manifolds), kernels con-
structed from manifold learning techniques, see Sect. 6.3,
will be of particular interest. Notice however that we will
allow us to use a kernel like

1 if p(j) is one of the K closest
Ki; =< K’ neighbors of (i), (16)
0, otherwise,
and K;; will therefore not necessarily be equal to K;;. We
will also always use the convention that K;; = 0if i = j.
We shall use the semi-supervised (or manifold) smoothness
assumption: the function g is smooth (on the manifold)
where the ¢ live. This means that we would like the es-
timates belonging to two regressors which are close in this
region to have similar values. Using a kernel, we can express
this as

N1,+Ny
G~ Z Ky, t=1...N,+Ny (17
=1

where K3; is a kernel giving a measure of distance between
©(t) and p(7), relevant to the assumed region.

6.2 The WDMR Method

So the sought estimates §; should be such that they are
smooth over the region. At the same time, for regressors
in Z1, with measured y:s, the estimates should be close to
those, meaning that

> wt) - a)? (18)

should be small. The two requirements (17) and (18) can be
combined into a criterion

NL+Nuy Np+Ny Np
A>T @i— Y, Kiyg) (=0 () — @)
i=1 j=1 t=1
(19)
to be minimized with respect to g¢, t = 1,..., N1, + Ny.

The scalar A decides how trustworthy our labels are and is
seen as a design parameter.

The criterion (19) can be given a Bayesian interpretation as
a way to estimate ¢ in (18) with a “smoothness prior” (17),
with A reflecting the confidence in the prior.

Note that (19) is quadratic in g; so the minimization is
straightforward.

When the kernel K is chosen by local linear embedding (see
next section 6.3, K;; = (ij in (20)), we call the estimation
method (19) Weight Determination by Manifold Regulariza-
tion (WDMR, [17]). It is clearly another example od Model
on Demand: Each new ¢™ it has to be included in Zy and
the problem (19) re-solved. In this case the unlabeled regres-
sors are used to get a better knowledge for what parts of the
regressor space that the function g varies smoothly in.
Similar methods to the one presented here has also been dis-
cussed in [7, 25, 4, 2, 24].

6.3 LLE: A Way of Selecting the Kernel in WDMR

Local Linear Embedding, LLE, [20] is a technique to find
lower dimensional manifolds to which an observed collec-
tion of regressors belong. A brief description of it is as fol-
lows:

Let {p(i),i = 1,...,N} belong to U C R where U is
an unknown manifold of dimension n,. A coordinatization
z(i), (2(i1) € R™=) of U is then obtained by first minimizing
the cost function

N N
e() = |le(@) = > Lijeli) (20a)
i=1 j=1
under the constraints
N
{ 2= big =1, . . (20b)
Lij =0 if |p(i) — ()| > Ci(K) orif i = j.

Here, C;(K) is chosen so that only K weights /;; become
nonzero for every ¢. K is a design variable. It is also com-
mon to add a regularization to (20a) not to get degenerate
solutions.

Then for the determined /;; find z(¢) by minimizing

(21a)



wrt z(4) € R"= under the constraint

1SN
sz(l)z(z) = In, xn.

i=1

21b)

z(i) will then be the coordinate for (4) in the lower dimen-
sional manifold.

The link between WDMR and LLE is now clear: If we pick
the kernel £;; in (19) as [;; from (20) and have no labeled
regressors (N, = 0) and add the constraint on §; correspond-
ing to (21b) minimization of the WDMR criterion (19) will
yield g; as the LLE coordinates z(3).

In WDMR with labeled regressors, the addition of the crite-
rion (18) in (19) will replace the constraint corresponding to
(21b) as an anchor to prevent a trivial zero solution. Thus
WDMR is a natural semi-supervised version of LLE, [17].
See [16] for more details and experimental tests of the sug-
gested approach.

7 CONCLUDING REMARKS

The major approaches to nonlinear system identification
can be divided into parametric and nonparametric meth-
ods. We have given a quick and superficial account of the
most common parametric models used. These correspond to
the main thrust of the control community’s activities in the
area. The nonparametric approaches (Section 4) may cor-
respond to interests in the statistical community in the past
two decades. The manifold learning and semi-supervised
techniques, where we gave most technical details correspond
to active and current interests in the machine learning com-
munity. Not much of that has spread into the conventional
system identification literature. It is an exciting question for
the future to see how many methods of practical relevance
for our control area will come out of this.
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