Target Tracking Le 8: Selected topics

Gustaf Hendeby and Rickard Karlsson

Div. Automatic Control Dept. Electrical Engineering gustaf.hendeby@liu.se, rickard.g.karlsson@liu.se

- 1 Performance Evaluation
- 2 Track-to-Track Fusion
- 3 Track Before Detect
- 4 Extended Target Tracking
- 5 Group Tracking
- 6 Summary of the course

2/47

Target Tracking Le 8: Selected topics	G. Hendeby, R. Karlsson	May 24, 2019	
Summary: lecture 6–7			
-		Sensor	
	Detection - Ga	ting Association STT Track/Hy	
		Presentation	
 RFS: The Bayesia 	an integrals defined for sets.		

- PHD: First moment approx, *i.e.*, number of targets over a region can be calculated
- Labeled and un-labeled
- Labeled Multi-Bernoulli (LMB)
- Veoneer: radar, vision sensor fusion, machine learning, data association, cpu vs performance

Target Tracking Le 8: Selected topics	G. Hendeby, R. Karlsson	May 24, 2019	3 / 47
Selected Topics			
Today's lecture will focus on	several different topics.		
 Purpose is to highlight s 	ome problems/applications		
• The ambition is an overv	view with references		
• Examples: TrBD, T2T f	usion, group tracking, and ETT		
However, for some topics like	EII and group tracking there mig	t be simularities.	

May 24, 2019

8/47

Single Target Tracking: RMSE performance bound

Cramér-Rao lower bound (CRLB)

The CRLB offers a fundamental performance bound for unbiased estimators and can be found as $\label{eq:crls}$

$$\operatorname{cov}(x_t - \hat{x}_{t|t}) \succeq P_{t|t}^{\operatorname{CRLB}},$$

where $P_{t|t}^{\text{CRLB}}$ is the CRLB, given by the EKF around the true state (parametric CRLB) and inverse intrinsic accuracy replacing all noise covariances.

It is also possible to construct a posterior CRLB.

Note: The CRLB can be used when setting sensor requirements and in system design.

Target Tracking Le 8: Selected topics

May 24, 2019

9/47

Normalized Estimation Error Squared (NEES)

• NEES provides a consistency estimate of an estimator,

NEES
$$(\hat{x}_t) = \frac{1}{M} \sum_{i=1}^{M} (\hat{x}_t^{(i)} - x_t^{0(i)})^T (P_t^{(i)})^{-1} (\hat{x}_t^{(i)} - x_t^{0(i)})^{-1} (\hat{x}_t^{(i)} - x_t^{$$

G. Hendeby, R. Karlsson

• Given a Gaussian assumption and correct tuning, $\text{NEES}(\hat{x}_t) \sim \chi^2(n_x) < n_x$ conservative estimate, *i.e.*, the estimate is better than indicated with the *P*. $\approx n_x$ the estimated covariance matches what is observed.

 $>n_x\,$ optimistic estimate, i.e., the estimate is worse than indicated with the P.

Target Tracking Le 8: Selected topics	G. Hendeby, R. Karlsson	May 24, 2019	11 / 47
Multi-Target Tracking: pe	erformance criteria		
Important propertie	۶ ۲		
	-3.		
 RMSE/NEES per 	r target; how accurate are estima	ted tracks?	
 Time to start tra 	ick; how long does it take to conf	irm a new track?	
 Track consistence 	y; are the tracks kept together ov	ver time?	

Target Tracking Le 8: Selected topics

G. Hendeby, R. Karlsson

May 24, 2019 12/47

Multi-Target Tracking: OSPA (1/2)

- Optimal subpattern assignment (OSPA) is an extension of RMSE to the multi-target setting.
- Two sets of tracks $X = \{x^{(i)}\}_{i=1}^N$ (ground truth) and $\hat{X} = \{\hat{x}^{(i)}\}_{i=1}^M$ (estimated tracks).
- Is local, in the sense that is does not take label switches into consideration.
- Cardinality mismatch is penalized.

May 24, 2019 13/47

OSPA metric

Given two sets of tracks \hat{X} and X, a metric $d(x, \hat{x})$, and a cost for incorrect targets c,

$$\tilde{d}_p^{(c)}(X, \hat{X}) = \left(\frac{1}{N} \min_{\theta} \sum_i d^{(c)}(x^{(i)}, \hat{x}^{(\theta(i))})^p + c^p |M - N|\right)^{\frac{1}{p}},$$

where $d^{(c)}(x, \hat{x}) = \min(d(x, \hat{x}), c)$ is a version of the chosen norm that saturates at c.

May 24, 2019

16 / 47

Track-to-Track Fusion: independent estimates

Sensor Fusion Formula

Independent estimates $\{(\hat{x}^{(i)}, P^{(i)})\}_i$ we can combine these using the fusion formula:

$$\hat{x} = P \sum_{i} (P^{(i)})^{-1} \hat{x}^{(i)}$$
$$P^{-1} = \sum_{i} (P^{(i)})^{-1}.$$

This will give an over-confident estimate in case the estimates are not independent. In case of dependent estimates, more elaborate methods are needed.

May 24, 2019 17 / 47

May 24, 2019

19/47

Track-to-Track Fusion: dependent measurements (1/3)

Covariance Intersection (CI)

A conservative estimate of combined estimate of several estimates $\{(\hat{x}^{(i)}, P^{(i)})\}_i$ with unknown correlations:

$$\begin{split} \hat{x} &= P \sum_{i} \omega^{(i)} (P^{(i)})^{-1} \hat{x}^{(i)} \\ P^{-1} &= \sum_{i} \omega^{(i)} (P^{(i)})^{-1}, \end{split}$$

where $\sum_{i} \omega^{(i)} = 1$ are chosen as to minimize P under some norm, usually tr(P) or det(P).

- The two estimates are transformed to become as independent as possible.
- Extract the best information in each direction.

Inverse Covariance Intersection (ICI)

Conservative fusion method of two estimates under unknown dependencies given some (not completely known) structure.

$$\begin{aligned} \hat{x} &= P\left(\!(\!(P^{(1)})^{-1}\!-\omega P_c^{-1}\!)\hat{x}^{(1)}\!+\!(\!(P^{(2)})^{-1}\!-(1\!-\!\omega)P_c^{-1}\!)\hat{x}^{(2)}\right) \\ P^{-1} &= (P^{(1)})^{-1} + (P^{(2)})^{-1} - P_c^{-1} \\ P_c &= \omega P^{(1)} + (1-\omega)P^{(2)} \end{aligned}$$

Where ω is chosen to minimize some norm of P, e.g., tr(P) or det(P).

- The worst case common information, P_c , is estimated (mild structural assumptions).
- Fuse the estimates, taking the estimated common information into consideration.

May 24, 2019

26 / 47

 Target Tracking Le 8: Selected topics
 G. Hendeby, R. Karlsson

 Track Before Detect: Bayesian concept
 (1/2)

First study a 2D image, with position, velocity and intensity as states

$$x_t = \begin{pmatrix} X_t & Y_t & \dot{X}_t & \dot{Y}_t & I_t & m_t \end{pmatrix}^T$$

We also need to consider the mode of existance (m) of a target, with birth/death according to:

$$P_b = P(m_t = 1 | m_{t-1} = 0)$$
$$P_d = P(m_t = 0 | m_{t-1} = 1),$$

which will give a Markov transition matrix.

Basically, we now have all that is needed to write down this as a Bayesian formulation, which can be solved with for instance a PF .

May 24, 2019 28 / 47

Track Before Detect: radar modeling (1/2)

Now consider a radar tracking stealthy targets:

- Instead of thresholding, the entire radar video signal is used, *i.e.* the received power, $P(r^{(j)}, d^{(k)}, b^{(l)}), \forall j, k, l.$
- The measurements consist of the power levels in $N_r \times N_d \times N_b$ sensor cells, where N_r , N_d , and N_b are the number of range, Doppler, and bearing cells.

For each range-Doppler-bearing cell, $(r^{(j)},d^{(k)},b^{(l)}),$ the received power in the measurement relation is given by

$$y_{P,t}^{jkl} = \left| y_{A,t}^{jkl} \right|^2 = |A_t^{jkl} \cdot h_A^{jkl}(x_t) + e_t^{jkl}|^2,$$

where $j = 1, ..., N_r, \ k = 1, ..., N_d, \ l = 1, ..., N_b.$

Target Tracking Le 8: Selected topics

May 24, 2019 29 / 47

Track Before Detect: radar modeling (2/2)

 $h_A^{jkl}(x_t) = \exp{-\frac{(r^{(j)} - r_t)^2}{2R}\lambda_r} - \frac{(d^{(k)} - d_t)^2}{2D}\lambda_d - \frac{(b^{(l)} - b_t)^2}{2B}\lambda_b.$

G. Hendeby, R. Karlsson

The constants R, D, and B are related to the size of the range cell, the Doppler cell, and the bearing cell. Losses are represented by the constants λ_r , λ_d , and λ_b . The noise is defined by

$$e_t^{jkl} = e_{\scriptscriptstyle I,t}^{jkl} + \imath \cdot e_{\scriptscriptstyle Q,t}^{jkl}$$

which is complex Gaussian, where $e_{I,t}^{jkl}$ and $e_{Q,t}^{jkl}$ are independent, zero-mean white Gaussian with variance σ_e^2 , for the in-phase and quadrature-phase, respectively.

It is possible to derive a rather complicated likelihood function.

Target Tracking Le 8: Selected topics G. Hendeby, R. Karlsson Track Before Detect: tracking filter (1/2)

ר)

May 24, 2019

30 / 47

Estimation model

$$x_{t+1} = f(x_t, m_t, w_t)$$
$$y_t = h(x_t, m_t) + e_t,$$

where $m_t \mbox{ is target precense or not. Typically, given by a Markov probability for birth/death events.$

This has the impact on the measurement model:

$$y_t = \begin{cases} e_t, & \text{if } m_t = 0\\ h(x_t) + e_t, & \text{if } m_t = 1 \end{cases}$$

Target Tracking Le 8: Selected topicsG. Hendeby, R. KarlssonMay 24, 201931/47Track Before Detect: tracking filter(2/2)For the radar model we have $y = h(x) + e = \begin{pmatrix} \varphi \\ \theta \\ r \\ \dot{r} \end{pmatrix} + e = \begin{pmatrix} atan2(y/x) \\ atan2(z/\sqrt{x^2 + y^2} + z^2) \\ \sqrt{x^2 + y^2 + z^2} \\ \frac{xv^x + yv^y + zv^z}{\sqrt{x^2 + y^2 + y^2}} \end{pmatrix} + e$ Now possible to use a particle filter. For a specific problem, one has to calculate relevant

likelihoods etc.

May 24, 2019 32 / 47

Track Before Detect: extended targets (1/2)

A spatial distribution model for extended objects is assumed, $p(\tilde{x}_t|x_t)$, which can be interpreted as a generator of a point source \tilde{x}_t from an extended target with its center and orientation given by the state vector x_t .

Receiving a measurement from a source \tilde{x}_t somewhere on the target leads to a likelihood conditioned on a specific source $\Lambda(x_t) = p(y_t | \tilde{x}_t)$. Using this model the total likelihood is obtained as

$$p(y_t|x_t) = \int p(y_t|\tilde{x}_t) p(\tilde{x}_t|x_t) \, d\tilde{x}_t$$

$$p(y_t|x_t) = \int p(y_t|\tilde{x}_t) p(\tilde{x}_t|x_t) \, d\tilde{x}_t.$$

33 / 47

- Point Target:
- Point Sources:

$$p(\tilde{x}_t|x_t) = \sum_{i=1}^{M} \Lambda(x_t^{(i)}) \delta(\tilde{x}_t - x_t^{(i)}).$$

 $p(\tilde{x}_t | x_t) = \delta(\tilde{x}_t - x_t).$

• Extended Target:

$$p(y_t|x_t) \approx \frac{1}{\tilde{M}} \sum_{i=1}^{M} p(y_t|\tilde{x}_t^{(i)}),$$

with $\tilde{x}^{(i)}$, independently drawn according to $p(\tilde{x}_t|x_t)$ for $i = 1, \dots, \tilde{M}$.

Target Tracking Le 8: Selected topics	G. Hendeby, R. Karlsson	May 24, 2019	38 / 47	
Extended Target Tracking:	extension modeling			
 Geometry: Need rectangular, ellipse 	to specify a model for the extendec oidal, star convex etc.	l object:		Group Tracking
 Dynamics: Each for instance coord ETT handles mult the need to cluste association and a 	extended object must have some m linated turn about its pivot. tiple detections per object and sense er detections, at the cost of more ad more complex model.	otion model, or without vanced		Sensor + Detection + Gating + Association + STT + Track/Hypothesis logic + + Detection + For the sense of t

May 24, 2019 40 / 47

Group Tracking

Standard tracking:

- A target is a "single point"
- $\bullet\,$ We receive at most one measurement for each target

Group tracking:

- Tracking a group of targets that moves in a similar way
- An extended target could be seen as a similar problem

 $\ensuremath{\textbf{Note:}}$ extended target tracking and group tracking could be the same sometimes.

Target Tracking Le 8: Selected topics

May 24, 2019 41 / 47

Group Tracking: dynamic model

Consider the bulk model (B) and the individual targets x, according to:

$$B_{t+1} = f^B(B_t, w_t)$$
$$x_{t+1}^{(i)} = f^{(i)}(x_t^{(i)}, w_t^{(i)}),$$

where we assume $i = 1, \ldots, N_{tg}$. Usually $f^{(i)} = f$.

Note: The bulk is the center or the mean position, orientation etc. Everything can be implemented by extending the state vector.

Target Tracking Le 8: Selected topics G. Hendeby, R. Karlsson May 24, 2019 42 / 47 Group Tracking: observation model Summary Target Tracking Course The observation cannot originate from multiple sources. Each measurement is from a target or clutter $y_{t}^{(j)} = h(\Psi(x_{t}^{(i)}, B_{t})) + e_{t},$ Sensor STT Track/Hypothesis logic Gating → Association → Detection where Ψ be a nonlinear transformation. Now proceed with association etc. Presentation | LINKÖPING

Target Tracking Le 8: Selected topics	G. Hendeby, R. Karlsson	May 24, 2019	46 / 47	Target Tracking Le 8: Selected topics	G. Hendeby, R. Karlsson	May 24, 2019	47 / 47
Summary Multi-Target Tra	cking Course: multi-targe	et tacking		Summary Multi-Target 7	racking Course: extensions	;	
Multi-target tracking • Classic methods (• Differ in the as • Track logic for • Random finite set • Probability hyp • Labeled Multi-I	GNN, JPDA, MHT): sociation method used. initiation and termination. (RFS) methods othesis filter (PHD) Bernoulli (LMB)			 Track Before D detection and t Performance m Root mean Normalized Cramér-Rac Optimal sul Extended targe Various example industry 	etect: raw observations are used for racking in poor SNR . easures square error (RMSE) estimation error square (NEES) to lower bound (CRLB) boattern association (OSPA): multi-ta t and group tracking es of tracking applications from res	or simulataneous rget search and	