Jonatan Olofsson

Div. Automatic Control Dept. Electrical Engineering jonatan.olofsson@liu.se

April 24, 2019

6/47

Random Finite Sets

Definition: Random Finite Set

A Random Finite Set (RFS) X is a random variable that has realizations in the form $X = \mathcal{X} \in \mathcal{S}$ where \mathcal{S} is the set of all finite subsets of some underlying space S.

- The number of points is random.
- The points are random.
- The points have no ordering

RFS Example

- $\mathbb{S} = \mathbb{R}^{n_x}$
- $\mathcal{S} = \mathsf{All}$ finite subsets of \mathbb{R}^{n_x}
- Let $x_k^i \in \mathbb{R}^{n_x}$ for $i = 1, \ldots, \infty$. Then, some realizations \mathcal{X} of the random variable X can be ϕ , $\{x_k^1\}$, $\{x_k^1, x_k^2\}$, $\{x_k^1, x_k^2, x_k^3\}$ and so on.

Poisson Random Sets

Recall: Poisson Point Mass Function

$$Po\left(k;\lambda\right)=\frac{\lambda^{k}e^{-\lambda}}{k!}$$

Jonatan Olofsson

Poisson RFS

Let $|\mathcal{X}|$ be the cardinality of \mathcal{X} and $\langle f, g \rangle$ the inner product of functions f and g, such that $\langle f, g \rangle \triangleq \int f(\mathbf{x}) g(\mathbf{x}) dx$.

An RFS ${\mathcal X}$ is said to be Poisson with intensity function $v({\pmb x})$ if

1. for $\mathcal{B} \subseteq \mathcal{X}$, $|\mathcal{X} \cap \mathcal{B}|$ is Poisson distributed with mean $\langle v, 1_{\mathcal{B}} \rangle$.

2. for any disjoint $\mathcal{B}_1, \ldots, \mathcal{B}_i$, $|\mathcal{X} \cap \mathcal{B}_1|, \ldots, |\mathcal{X} \cap \mathcal{B}_i|$ are independent

Target Tracking Le 6: RFS tracking Poisson Random Sets Jonatan Olofsson

om Soto

The Probability Density Function (PDF) of a Poisson RFS is

 $\pi\left(\mathcal{X}\right) = e^{-\langle v,1\rangle} v^{\mathcal{X}}$

- The distribution is characterized by the intensity function v(x) (Mahler and Zajic, 2001; Mahler, 2003).
- If hyper-volume (on $\mathcal{X})$ has dimension $\kappa,$ the intensity function $v(\pmb{x})$ has the dimension κ^{-1}

• This general filter is computationally prohibitive to implement except few cases.

April 24, 2019

5/47

Jonatan Olofsson

April 24, 2019 8 / 47

Random Sets: Models

- Call the target set at time k as \mathcal{X}_k and measurement set at time k as \mathcal{Z}_k .
- Then, one can define set models

 $\mathcal{X}_k = F(\mathcal{X}_{k-1}) \cup W_k$

where W_k the finite set representing the newly appearing targets. The function $F(\cdot)$ is related to target death and modelled prediction update of targets.

$$\mathcal{Z}_k = G(\mathcal{X}_k) \cup V_k$$

where V_k is the finite set representing the clutter. The function $G(\cdot)$ is related to the detection of the targets.

Jonatan Olofsson

April 24, 2019 9 / 47

Approximative Models

Single-target moments

"Assuming Gaussian ... "

Mean:
$$\mu = \int x p(x) dx$$

Covariance: $\Pi = \int (x - \mu) (x - \mu)^T p(x) dx$

Kalman filter: $p(x) = \mathcal{N}(x|\mu, \Pi)$ Constant gain Kalman filter need only x (e.g. the α - β - γ -filter)

The mean, or the mean and covariance, describe an approximation of the true $\ensuremath{\mathtt{PDF}}$

Target Tracking Le 6: RFS tracking

Jonatan Olofsson

April 24, 2019

10 / 47

The Probability Hypothesis Density

What is the expected value (first moment) of a RFS?

• The multi-target moment is not straightforward (mean of sets is ill-defined)

$$\mathbb{E}\left[\mathcal{X}_{k}|\mathcal{Z}_{0:k}\right] = \int \mathcal{X}_{k} p(\mathcal{X}_{k}|\mathcal{Z}_{0:k}) \delta \mathcal{X}_{k}$$

• Needs an indirect first-order moment on the form

$$\mathbb{E}\left[h\left(\cdot\right)\right] = \int h\left(\mathcal{X}\right) p\left(\mathcal{X}|\mathcal{Z}\right) d\mathcal{X}$$

- Not, as one might expect, a clear set of "most likely tracks".
- The first moment of a random multitarget track-set is a density function, giving the expected number of targets at each (infinitesimal) point

Jonatan Olofsson

Cardinalized Probability Hypothesis Density (CPHD) Filter

(Mahler, 2006)

 The assumption of Poisson target cardinality makes the PHD sensitive to clutter. The Cardinalized Probability Hypothesis Density (CPHD) adds a full estimate of the cardinality distribution.

April 24, 2019

16 / 47

Target Tracking Le 6: RFS tracking

Jonatan Olofsson

April 24, 2019 18 / 47

Bernoulli Random Sets

A Bernoulli RFS is a set with 0 or 1 elements according to a Bernoulli distribution with parameter r. i.e. for a set \mathcal{X}

• With probability 1 - r, \mathcal{X} is $\{\emptyset\}$

• With probability r, \mathcal{X} is $\{x\}$

If x is described by p(x), the set is described with the Bernoulli RFS PDF

$$\pi\left(\chi\right) = \begin{cases} 1 - r, & \text{if } \chi = \emptyset, \\ r \cdot p\left(\boldsymbol{x}\right), & \text{if } \chi = \{\boldsymbol{x}\} \end{cases}$$

Bernoulli RFS Parametrization

A Bernoulli **RFS** is fully described by the parameters

 $(r, p(\boldsymbol{x}))$

Multi-Bernoulli Representation A multi-Bernoulli RFS is the result of the union of N_{mb} independently Bernoulli-distributed RFS'S $\chi^{(i)}$, given by $\chi = \bigcup_{i=1}^{N_{mb}} \chi^{(i)}$. • Multi-Bernoulli RFS $\pi(\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n\}) = \prod_{j=1}^M (1-r^{(j)}) \sum_{1 \le i_1 \ne \ldots, \ne i_n \le M} \prod \frac{r^{(i_j)} p^{(i_j)}(\boldsymbol{x}_j)}{1-r^{(i_j)}}$ $\rho(n) = \prod_{i=1}^{M} (1 - r^{(j)}) \sum_{1 \le i, \neq \dots \ne i_n \le M} \prod \frac{r^{(i_j)}}{1 - r^{(i_j)}}$

Jonatan Olofsson

Jonatan Olofssor

Kronecker delta-function, used to select summands relevant

Multi-object exponential notation, such that $h^{\mathcal{X}} \triangleq$

 $\prod_{\boldsymbol{x}\in\mathcal{X}} h(\boldsymbol{x})$ or $h^{\mathcal{X}} \triangleq \prod_{\boldsymbol{x}\in\mathcal{X}} h_{\boldsymbol{x}}$. $h^{\emptyset} = 1$ by convention

This defines the inclusion function.

to exactly the set \mathcal{Y} ; $\delta_{\mathcal{Y}}(\mathcal{X}) \triangleq \begin{cases} 1, & \text{if } \mathcal{X} = \mathcal{Y}, \\ 0, & \text{otherwise.} \end{cases}$

0. otherwise.

Bernoulli Random Sets: Mathematical Definitions

 $1_{\mathcal{Y}}(\mathcal{X}) \triangleq \begin{cases} 1, & \text{if } \mathcal{X} \subseteq Y, \end{cases}$

All subsets of set \mathcal{X}

Meaning

April 24, 2019

that

April 24, 2019

19/47

such

17 / 47

Farget Tracking Le 6: RFS tracking

Notation

 $1_{\mathcal{V}}(\mathcal{X})$

 $\delta_{\mathcal{V}}(\mathcal{X})$

 $\mathcal{F}(\mathcal{X})$

 $h^{\mathcal{X}}$

Target Tracking Le 6: RFS tracking

Jonatan Olofsson

April 24, 2019 20 / 47

April 24, 2019

22 / 47

Multi-Bernoulli Random Sets

Multi-Bernoulli RFS Parametrization

The multi-Bernoulli ${\ensuremath{{\rm RFS}}}$ can be parametrized by the set

$$\left\{\left(r^{(i)}, p^{(i)}\right)\right\}_{i=1}^{N_{mb}}$$

Labeled Multi-Bernoulli RFS Parametrization

The Labeled multi-Bernoulli ${\ensuremath{{\rm RFS}}}$ can be parametrized by the set

$$\left\{ \left(r^{\left(\ell\right)},p^{\left(\ell\right)}\left(oldsymbol{x}
ight)
ight\} _{\ell\in\mathcal{L}}$$

Jonatan Olofsson

Target Tracking Le 6: RFS tracking

$$\begin{split} \delta\text{-GLMB prediction update} \\ \text{Given a filtered } \delta\text{-GLMB density, the predicted } \delta\text{-GLMB is given by} \\ \pi_{+}\left(\mathcal{X}_{+}\right) &= \Delta\left(\mathcal{X}_{+}\right) \sum_{(I_{+},\xi)\in\mathcal{F}(\mathbb{L}_{+})\times\Xi} w_{+}^{(I_{+},\xi)} \delta_{I_{+}}\left(\mathcal{L}\left(\mathcal{X}_{+}\right)\right) \left[p_{+}^{(\xi)}\right]^{\mathcal{X}_{+}} \\ w_{+}^{(I_{+},\xi)} &= w_{S}^{(\xi)}\left(I_{+}\bigcap\mathbb{L}\right) w_{B}\left(I_{+}\bigcap\mathbb{B}\right) \\ w_{S}^{(\xi)}\left(L\right) &= \left[\eta_{S}^{(\xi)}\right]^{L} \sum_{I\supseteq L} \left[1 - \eta_{S}^{(\xi)}\right]^{I-L} w^{(I,\xi)} \\ \eta_{S}^{(\xi)}\left(\ell\right) &= \left\langle p_{S}\left(\cdot,\ell\right), p^{(\xi)}\left(\cdot,\ell\right) \right\rangle \\ p_{+}^{(\xi)}\left(\boldsymbol{x},\ell\right) &= 1_{\mathbb{L}}\left(\ell\right) p_{S}^{(\xi)}\left(\boldsymbol{x},\ell\right) + 1_{\mathbb{R}} p_{B}\left(\boldsymbol{x},\ell\right) \end{split}$$

$$p_{+}^{\left(\xi\right)}\left(\boldsymbol{x},\ell\right) = 1_{\mathbb{L}}\left(\ell\right)p_{S}^{\left(\xi\right)}\left(\boldsymbol{x},\ell\right) + 1_{\mathbb{B}}p_{B}\left(\boldsymbol{x},\ell\right)$$
$$p_{S}^{\left(\xi\right)}\left(\boldsymbol{x},\ell\right) = \frac{\left\langle p_{S}\left(\cdot,\ell\right)f\left(\boldsymbol{x}|\cdot,\ell\right),p^{\left(\xi\right)}\left(\cdot,\ell\right)\right\rangle}{\eta_{S}^{\left(\xi\right)}\left(\ell\right)}$$

Target Tracking Le 6: RFS tracking	Jonatan Olofsson	April 24, 2019	23 / 47
$\delta extsf{-GLMB}$ measuremen	nt update		
Given a predicted δ -GLM the subset of current as	(B), the posterior filtering density is give sociation maps with domain <i>I</i> , by:	en, with $\Theta\left(I ight)$ denoting	
$\pi\left(\mathcal{X} ight)$	$= \Delta\left(\mathcal{X}\right) \sum_{(I,\xi)\in\mathcal{F}(\mathbb{L})\times\Xi} \sum_{\theta\in\Theta(I)} w^{(I,\xi,\theta)} \delta_{I}\left(\sum_{i=1}^{N} e^{i(i,\xi,\theta)} \right)$	$\left(\mathcal{L}\left(\mathcal{X}\right)\right)\left[p^{\left(\xi,\theta\right)} ight]^{\mathcal{X}}$	
$w^{(I,\xi,\theta)}\left(\mathcal{Z} ight)$	$\propto w^{(I,\xi,\theta)} \left[\eta_{\mathcal{Z}}^{(\xi,\theta)}\right]^{I}$		
$\psi_{\mathcal{Z}}\left(oldsymbol{x},\ell; heta ight)=$	$\begin{cases} \frac{p_{D}(\boldsymbol{x},\ell)g(\boldsymbol{z}_{\theta(\ell)} \boldsymbol{x},\ell)}{\kappa(\boldsymbol{z}_{\theta(\ell)})}, & \theta\left(\ell\right) > 0, \\ 1 - p_{D}\left(\boldsymbol{x},\ell\right), & \theta\left(\ell\right) = 0, \end{cases}$		
$\eta_{\mathcal{Z}}^{\left(\xi, heta ight) }\left(\ell ight)$	$= \left\langle p^{(\ell)}, \psi_{\mathcal{Z}}\left(\cdot, \ell; \theta\right) \right\rangle$		
$p^{\left(\xi, heta ight)} \left(oldsymbol{x}, \ell \mathcal{Z} ight)$	$=\frac{p^{\left(\xi\right)}\left(\boldsymbol{x},\ell\right)\psi_{\mathcal{Z}}\left(\boldsymbol{x},\ell;\theta\right)}{\eta_{\mathcal{Z}}^{\left(\xi,\theta\right)}\left(\ell\right)}$		

Jonatan Olofsson

April 24, 2019

24 / 47

Linear Assignment Problem (LAP)

Linear Assignment Problem

The problem can be formulated by defining a cost matrix $C \in \mathbb{R}^{n \times m}$, with matrix elements c_{ij} from row $i \in [1, ..., n]$ and column $j \in [1, ..., m]$:

$$\min \sum_{i,j} c_{ij} s_{ij}$$
$$\sum_{j} s_{ij} = 1, \quad \forall i, \quad \sum_{i} s_{ij} \le 1, \quad \forall j$$
$$s_{ij} \in \{0, 1\}$$
$$(1)$$

Jonatan Olofsson

April 24, 2019 25 / 47

LAP Example

Assigning targets to reports

Given reports $\{m{z}_1, m{z}_2\}$ and targets $\{\ell_1, \ell_2\}$ we define the $m{C}$ matrix as

 $oldsymbol{C} = egin{pmatrix} oldsymbol{z}_1 \Lambda_{\ell_1} & oldsymbol{z}_2 \Lambda_{\ell_1} & oldsymbol{n}_{\Lambda_{\ell_1}} & \infty & F \Lambda_{\ell_1} & \infty \ oldsymbol{z}_1 \Lambda_{\ell_2} & oldsymbol{z}_2 \Lambda_{\ell_2} & \infty & oldsymbol{n}_{\Lambda_{\ell_2}} & \infty & F \Lambda_{\ell_2} \end{pmatrix},$

where $z_j \Lambda_{\ell_i}$ is the cost assigned to associating target ℓ_j to report z_j . ${}^n\!\Lambda_{\ell_i}$ and ${}^F\!\Lambda_{\ell_j}$ is the cost associated with assigning the target as non-associated or false, respectively.

April 24, 2019

30 / 47

Labeled Multi-Bernoulli Filter: Prediction

Chapman-Kolmogorov equation:

$$\pi_{+}\left(\mathcal{X}_{+}\right) = \int f\left(\mathcal{X}_{+}\right) \pi\left(\mathcal{X}\right) \delta \mathcal{X},$$

Jonatan Olofsson

This gives the following set of surviving and new-born targets (Reuter et al., 2014),

$$\pi_{+} = \left\{ \left(r_{+,s}^{(\ell)}, p_{+,s}^{(\ell)} \right) \right\}_{\ell \in \mathcal{L}} \cup \left\{ \left(r_{B}^{(\ell)}, p_{B}^{(\ell)} \right) \right\}_{\ell \in \mathcal{B}}$$

where

$$\begin{split} r_{+,s}^{(\ell)} &= \eta_s\left(\ell\right) r^{(\ell)},\\ p_{+,s}^{(\ell)} &= \frac{\langle p_s\left(\cdot,\ell\right) f\left(\boldsymbol{x}|\cdot,\ell\right), p\left(\cdot|\ell\right) \rangle}{\eta_s\left(\ell\right)},\\ \eta_s\left(\ell\right) &= \langle p_s\left(\cdot,\ell\right), p\left(\cdot,\ell\right) \rangle, \end{split}$$

• We wish to form $\pi_{B,k+1} = \left\{ \left(r_B^{(\ell)}, p_B^{(\ell)} \right) \right\}_{\ell \in \mathcal{B}_k}$

 $\bullet\,$ One (ad hoc) model is based on the probability of association:

$$r_{U,k}\left(\boldsymbol{z}\right) = \sum_{\left(\mathcal{I}_{+},\theta\right)\in\mathcal{F}\left(\mathcal{L}_{+}^{\left(\zeta\right)}\right)\times\Theta_{\mathcal{I}_{+}}} w^{\left(\mathcal{I}_{+},\theta\right)}\left(\mathcal{Z}^{\left(\zeta\right)}\right) \mathbf{1}_{\theta}\left(\boldsymbol{z}\right).$$

Jonatan Olofsson

April 24, 2019

31/47

Given an expected number of new targets in each scan, $\lambda_{B,k+1}$ — the existence probability of new targets — is then given by

$$r_{B,k+1}(\boldsymbol{z}) = \min\left(r_B^{\max}, \frac{(1 - r_{U,k}(\boldsymbol{z})) \cdot \lambda_{B,k+1}}{\sum_{\boldsymbol{z}' \in \mathcal{Z}_k} 1 - r_{U,k}(\boldsymbol{z}')}\right).$$

Target Tracking Le 6: RFS tracking

RFS Birth Models

April 24, 2019

April 24, 2019

34 / 47

32 / 47

Labeled Multi-Bernoulli Filter: Measurement update

The measurement updates the set $\pi_+ = \left\{ \left(r_+^{(\ell)}, p_+^{(\ell)}\right) \right\}_{\ell \in \mathcal{L}_+}$ by the following approximation, for N_{ζ} clusters:

$$\pi\left(\cdot|\mathcal{Z}\right) \approx \left\{ \left(r^{(\ell)}, p^{(\ell)}\right) \right\}_{\ell \in \mathcal{L}_+} = \bigcup_{\zeta=1}^{N_{\zeta}} \left\{ \left(r^{(\ell,\zeta)}, p^{(\ell,\zeta)}\right) \right\}_{\ell \in \mathcal{L}_+^{(\zeta)}}$$

Jonatan Olofsson

in which parameters are given by

$$r^{(\ell,\zeta)} = \sum_{(\mathcal{I}_{+},\theta)\in\mathcal{F}\left(\mathcal{L}_{+}^{(\zeta)}\right)\times\Theta_{\mathcal{I}_{+}}} w^{(\mathcal{I}_{+},\theta)}\left(\mathcal{Z}^{(\zeta)}\right) \mathbf{1}_{\mathcal{I}_{+}}\left(\ell\right),$$
$$p^{(\ell,\zeta)}\left(\boldsymbol{x}\right) = \frac{1}{r^{(\ell,\zeta)}} \sum_{(\mathcal{I}_{+},\theta)\in\mathcal{F}\left(\mathcal{L}_{+}^{(\zeta)}\right)\times\Theta_{\mathcal{I}_{+}}} w^{(\mathcal{I}_{+},\theta)}\left(\mathcal{Z}^{(\zeta)}\right) \times \mathbf{1}_{\mathcal{I}_{+}}\left(\ell\right) p^{(\theta)}\left(\boldsymbol{x},\ell|\mathcal{Z}^{(\zeta)}\right)$$

Target Tracking Le 6: RFS tracking

April 24, 2019

33 / 47

Labeled Multi-Bernoulli Filter: Measurement update

$$\begin{split} w^{(\mathcal{I}_{+},\theta)}\left(\mathcal{Z}^{(\zeta)}\right) \propto w^{(\mathcal{I}_{+})}_{+,\zeta} \left[\eta^{(\theta)}_{\mathcal{Z}^{(\zeta)}}\right]^{\mathcal{I}_{+}} \\ w^{(\mathcal{I}_{+})}_{+,\zeta} &= \prod_{\ell \in \mathcal{L}_{+}^{(\zeta)} - \mathcal{I}_{+}} \left(1 - r^{(\ell)}_{+}\right) \prod_{\ell' \in \mathcal{I}_{+}} r^{(\ell)}_{+}, \\ \eta^{(\theta)}_{\mathcal{Z}^{(\zeta)}}\left(\ell\right) &= \left\langle p^{(\ell,\zeta)}_{+}\left(\mathbf{x}\right), \psi_{\mathcal{Z}^{(\zeta)}}\left(\cdot,\ell;\theta\right) \right\rangle \\ \psi_{\mathcal{Z}^{(\zeta)}}\left(\mathbf{x},\ell;\theta\right) &= \begin{cases} \frac{p_{D}(\mathbf{x},\ell)p_{G}g(\mathbf{z}_{\theta(\ell)}|\mathbf{x},\ell)}{\kappa(\mathbf{z}_{\theta(\ell)})}, & \theta\left(\ell\right) \neq \mathbf{z}_{\emptyset}, \\ q_{D,G}\left(\mathbf{x},\ell\right), & \theta\left(\ell\right) = \mathbf{z}_{\emptyset}, \end{cases} \\ q_{D,G}\left(\mathbf{x},\ell\right) &= 1 - p_{D}\left(\mathbf{x},\ell\right)p_{G}, \\ p^{(\theta)}\left(\mathbf{x},\ell|\mathcal{Z}^{(\zeta)}\right) &= \frac{p^{(\ell,\zeta)}_{+}\left(\mathbf{x}\right)\psi_{\mathcal{Z}^{(\zeta)}}\left(\mathbf{x},\ell;\theta\right)}{\eta^{(\theta)}_{\mathcal{Z}^{(\zeta)}}\left(\ell\right)} \end{split}$$

Jonatan Olofsson

Target Tracking Le 6: RFS tracking

Jonatan Olofsson

LMB Implementation

We make the distinction between associated and non-associated targets:

$$\begin{split} \mathcal{I}^a_+ &= \{\ell: \quad \theta\left(\ell\right) \neq \boldsymbol{z}_{\emptyset}\}_{\ell \in \mathcal{I}_+} \,, \\ \mathcal{I}^a_+ &= \{\ell: \quad \theta\left(\ell\right) = \boldsymbol{z}_{\emptyset}\}_{\ell \in \mathcal{I}_+} \,, \end{split}$$

(implying $\mathcal{I}_+ = \mathcal{I}^a_+ \cup \mathcal{I}^n_+$ and $\mathcal{I}^a_+ \cap \mathcal{I}^n_+ = \emptyset$). We can then rewrite the measurement update

$$\begin{split} w^{(\mathcal{I}_{+},\theta)}\left(\mathcal{Z}^{(\zeta)}\right) \propto & w^{(\mathcal{I}_{+})}_{+,\zeta} \left[\eta^{(\theta)}_{\mathcal{Z}^{(\zeta)}}\right]^{\mathcal{I}_{+}} \\ &= \prod_{\ell \in \mathcal{L}^{(\zeta)}_{+} - \mathcal{I}_{+}} \left(1 - r^{(\ell)}_{+}\right) \\ &\times \prod_{\ell' \in \mathcal{I}^{a}_{+}} r^{(\ell')}_{+} \eta^{(\theta)}_{\mathcal{Z}^{(\zeta)}}\left(\ell'\right) \prod_{\ell'' \in \mathcal{I}^{a}_{+}} r^{(\ell'')}_{+} \eta^{(\theta)}_{\mathcal{Z}^{(\zeta)}}\left(\ell''\right), \end{split}$$

Target Tracking Le 6: RFS tracking	Jonatan Olofsson		April 24, 2019	35 / 47
LMB Implementation				
This product can be efficier	ntly expressed using (ℓ)	the Negative Log Likelih	oods (NLLs),	Λ_ℓ ;
$e^{-\Lambda_\ell}$	$ {}^{\ell} = \begin{cases} 1 - r_{+}^{(\ell)}, \\ r_{+}^{(\ell)} \eta_{\mathcal{Z}(\zeta)}^{(\theta,a)}(\ell), \\ r_{+}^{(\ell)} \eta_{\mathcal{Z}(\zeta)}^{(\theta,n)}(\ell), \end{cases} $	$ \begin{array}{l} \text{if } \ell \in \mathcal{L}_{+}^{(\varsigma)} - \mathcal{I}_{+}, \\ \text{if } \ell \in \mathcal{I}_{+}^{a}, \\ \text{if } \ell \in \mathcal{I}_{+}^{n}, \end{array} \end{array} $		

yielding

$$w^{(\mathcal{I}_+,\theta)}\left(\mathcal{Z}^{(\zeta)}\right) \propto \exp\left(-\sum_{\ell \in \mathcal{L}_+^{(\zeta)}} \Lambda_\ell\right).$$

Jonatan Olofsson

April 24, 2019 3

LAP Recap

• LAP formulation:

$$\min \sum_{i,j} c_{ij} s_{ij}$$

$$\sum_{j} s_{ij} = 1, \quad \forall i, \quad \sum_{i} s_{ij} \leq 1, \quad \forall j$$

$$s_{ij} \in \{0, 1\}$$

$$C = \begin{pmatrix} z_{1}\Lambda_{\ell_{1}} & z_{2}\Lambda_{\ell_{1}} & n\Lambda_{\ell_{1}} & \infty & F\Lambda_{\ell_{1}} & \infty \\ z_{1}\Lambda_{\ell_{2}} & z_{2}\Lambda_{\ell_{2}} & \infty & n\Lambda_{\ell_{2}} & \infty & F\Lambda_{\ell_{2}} \end{pmatrix},$$
(2)

• Each hypothesis describes a combination of elements which can be summed!

Target Tracking Le 6: RFS trackingJonatan OlofssonApril 24, 201938/47LMB Measurement Update Reformulation• Abbreviating $w^{\theta} = w^{(\mathcal{I}_+,\theta)} \left(\mathcal{Z}^{(\zeta)} \right)$ and denoting the inner sums as ${}^{z}w_{\ell}$: $r^{(\ell)} = \sum_{z \in \mathcal{Z}^{\dagger}} \left[\sum_{(\mathcal{I}_+,\theta) \in \mathcal{F}(\mathcal{L}_+) \times \Theta_{\mathcal{I}_+}} w^{\theta} A^{\theta}_{z \leftrightarrow \ell} \right]$ $= \sum_{z \in \mathcal{Z}^{\dagger}} {}^{z}w_{\ell}$ $p^{(\ell)}(x) = \frac{1}{r^{(\ell)}} \sum_{z \in \mathcal{Z}^{\dagger}} \left[\sum_{(\mathcal{I}_+,\theta) \in \mathcal{F}(\mathcal{L}_+) \times \Theta_{\mathcal{I}_+}} w^{\theta} A^{\theta}_{z \leftrightarrow \ell} \right] p^{(\ell)}(x|z)$ $= \frac{1}{r^{(\ell)}} \sum_{z \in \mathcal{Z}^{\dagger}} {}^{z}w_{\ell} p^{(\ell)}(x|z)$ We see that ${}^{z}w_{\ell}$ is the sum of weights of all hypotheses that assign report z to label ℓ .

Target Tracking Le 6: RFS tracking	Jonatan Olofsson	April 24, 2019	39 / 47
Birth Model Reformula	tion		
Further, the birth model of	may be rewritten		
	г		
$r_{U,k}$ (z	$(x) = \sum \left[\sum w^{\theta} A^{\theta}_{\boldsymbol{z} \leftrightarrow \ell} \right]$		(3)
	$\ell \in \mathcal{L}_{+}^{(\zeta)} \left[(\mathcal{I}_{+}, \theta) \in \mathcal{F} \left(\mathcal{L}_{+}^{(\zeta)} \right) \times \Theta_{\mathcal{I}_{+}} \right]$		
	$=\sum_{i} z_{w_{i}}$		(4)
	$\ell \in \mathcal{L}^{(\zeta)}_{\ell}$		
	+		
UNIVERSITY			

Jonatan Olofsson

April 24, 2019 40 / 47

LMB Implementation: Efficient Algorithm

To exploit this reformulation, consider a cluster of $N_{\mathcal{X}}$ targets and $N_{\mathcal{Z}}$ reports, and a matrix $\boldsymbol{W} \in \mathbb{R}^{N_{\mathcal{X}} \times (N_{\mathcal{Z}}+2)}$. Further, consider a hypothesis assignment mapping $R_{\theta}(i)$ to be used for mapping each row index of \boldsymbol{W} (corresponding to a target) to a column index (corresponding to an assignment).

Assignment mapping

For all known targets (rows), $R_{\theta}(i)$

- 1. maps associated targets to its report's integer position in an ordered enumeration of the reports;
- 2. maps missed targets to the integer index $N_{\mathcal{Z}} + 1$; and
- 3. maps false targets to the integer index $N_{\mathcal{Z}} + 2$.

