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Summary: lecture 2

• Common tracking sensors: range, bearing, range-rate (Doppler shift), . . . .
Models are derived from physical relations, and assumptions about noise levels.

• Common motion target models: constant velocity, constant acceleration,
coordinated turn
Coarse approximations to allow for reasonable target maneuvers, are derived from basic physical

relations

• Mixtures are a common tool to cover several different possible behaviors
Maneuvering targets are commonly tracked using IMM filters, which approximate the complete

filter bank solution
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Presentation

Sensor

STT

Target Tracking Le 3: Single Target Tracking G. Hendeby, R. Karlsson February 1, 2019 3 / 51
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Filter Banks Revisited

Examples of algorithms

• Generalized pseudo Bayesian of depth n (GPB(n)) filter

• Interacting multiple models (IMM) filter

• Range parameterized EKF (RPEKF)

We will briefly recapture the idea, and exemplify with a bearings-only application.
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Range Parameterized EKF (RPEKF)

This is a filter bank problem, without mode transitions.

• Tracking with a bearing only sensor is difficult, as the range and hence the relative
Cartesian position is not available.

• This is solved by out-maneuvering the target; however, how should the target be
handled until enough information is gathered?

• Use filter bank to represent different possible range options, r(i), and let time
determine the actual distance.

0 rmin rmaxρi−1rmin ρirmin

r(i)

This is a complete filter bank, with a structure that limits the growth.
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Range Parameterized EKF: illustration
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Practical concerns

• Filter pruning (divergence monitoring, range interval check etc)

• Re-start
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Range Parameterized EKF: process noise tuning

For an EKF the performance is dependent on the coefficient of variation, CR.
To have comparable performance for each filter, the same value should be used
on each interval. Approx, σ(i)/r(i), i = 1, . . . , N , where r(i) and σ(i) are the
range and standard deviation for the different filters.

r(i) =
rmin

2
(ρi + ρi−1)

ρ =
(rmax

rmin

)1/N
CR =

σ(i)

r(i)
=

2(ρ− 1)√
12(ρ+ 1)

Therefore, the variance for each interval is given as σ(i) = r(i)CR. 0

rmin

rmax

ρi−1rmin

ρirmin

r(i)
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Range Parameterized EKF: filter probabilities
The RPEKF uses the likelihood from each EKF, to recursively update its probability
according to

ω
(i)
t = p(yt|i)ω(i)

t−1.

The prior distribution is assumed uniform, i.e. ω
(i)
0 = 1/N , i = 1, . . . , N . However, if

other information is available it could be used to enhance the performance.
Under a Gaussian assumption, the likelihood is given from the EKF as

p(yt|i) ∝ 1√
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Range Parameterized EKF: filter update
The measurement update for each filter is given by the Kalman filter equations.
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The combined estimate and covariance can now be expressed as:
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∑
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where P
(i)
t|t is the covariance and x̂

(i)
t|t the estimate for different filters.
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Range Parameterized EKF and PF: torpedo example (1/3)

Passive sonar measuremens (bearings-only) require maneuver for range observability.

Passive sonar data from SBUS Motala
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Range Parameterized EKF and PF: torpedo example (2/3)

Bearings-only

• True trajectory not known
(but constant course)

• PF

• RPEKF
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Range Parameterized EKF and PF: torpedo example (3/3)

Single Target Tracking

Detection Gating Association STT Track/Hypothesis logic
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Single Target Tracking: a more complete story

So far (lecture 1–2)

• Exactly one target

• Exactly one true measurement per target in each time

• No clutter and/or outliers

Additional complications
• At most one target (none or one)

⇒ Target existence must be determined!

• A measurement from the target with probability Pd

⇒ The case of no actual measurement must be considered!

• Presence of clutter and/or outliers
⇒ False alarms must be detected and rejected!

Gating

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Gating
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Gating

The purpose of gating is to remove measurements that are very unlikely to originate
from a given target, that is:

• Reduce problem complexity, by
minimizing the number of possible
measurements to each target

• Not remove (with low probability) valid
measurements
• Be a cheap operation

Rectangular gating
Elliptical gating • Dot: predicted measurement

• Cross: obtained observation
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Gating: rectangular gating

Measurements are gated away when they are too far away from the expected
measurement, given some distance measure often depending on the measurement and
target uncertainty.

Rectangular (1-norm) gating

|yxt − ŷxt|t−1| ≶ κσxt|t−1, |y
y
t − ŷ

y
t|t−1| ≶ κσyt|t−1

where usually κ ≥ 3, i.e., the threshold is 3 standard
deviations in each dimension.
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Gating: elliptical gating

Elliptical (Mahalanobis-norm) gating

(yt − ŷt|t−1)TS−1t (yt − ŷt|t−1) ≶ γg

where γg is the gate threshold.

γgSt

×
ŷt|t−1

St
◦
y
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t

◦
y
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t

◦
y
(3)
t
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t
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Reminder: χ2 distribution

A sum of squares of n i.i.d. N (0, 1) distributed variables is χ2-distributed with
degrees of freedom n.
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Elliptical Gating: motivation (1/2)
Assume a linear Gaussian state-space system, and using a correct Kalman filter, then

εt = yt − ŷt|t−1 ∼ N (0ny , St|t−1).

St|t−1 � 0, hence a factorization St|t−1 = UTt Ut exist, such that

εTt S
−1
t|t−1εt = εTt U

−T
t U−1t εt = ‖U−1t εt‖

2
2 = ‖ε̃t‖

2
2

where

ε̃t = U−1t εt ∼ N (0ny , Iny)

γ = ‖ε̃t‖22 =
∑

i
ε̃2i,k ∼ χ2(ny)

The probability to accept correct measurement in the gate becomes

Pg = Pr(γ ≤ γg) =
∫ γg

0
χ2(γ;ny) dγ.
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Elliptical Gating: motivation (2/2)
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Elliptical gate threshold selection

gamma_G = chi2inv(P_G, n_y) computes
the threshold γg that gives the desired Pg.

Note: for 2-DoF (ny = 2) we have

• Pg = 0.9⇒ γg ≈ 4.7.

• Pg = 0.99⇒ γg ≈ 9.2.

Track Logic
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Track Logic

We will still consider a STT, but need some track logic.

Measurements and tracks (in a scan)

• New target: a measurement can can originate from a new target

• Continuation: a measurement can originate from an existing track

• False: A measurement might be clutter

• Missing measurement: There might not be a measurement corresponding to a track

We will consider some methods for STT, (only one true target), but these can be
generalized later on for MTT.
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Track Logic

Does a target exist or not?

Given that measurements can either come from a target or be false observations, a
method to determine if a target is present or not is required.

Track status:

• Tentative: Possibly a track, not fully decided yet

• Confirmed: Considered being a track

• Deleted/Dead: A track no longer present

Track logics:

• N/M logic: Fast, but a bit ad hoc

• Track score based logic: Slower, essentially a hypothesis test
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N/M Logic

• Based on if a measurement gets gated with the measurement or not.

• A tentative track is initiated when there is no associated track.

• 2/2&2/3: A tentative track is confirmed when measurements have been associated
with the track often enough (N/M). E.g., often 2 times of the last 2 (2/2) followed
by 2 of the following 3 (2/3).

• A track is deleted if it fails to get enough gated measurements (N/M). E.g.,
missing 2 measurements the last 3 times (2/3).

Note

N/M logic only considers if any measurement is gated to the track or not. The quality
of the track and association is disregarded. A practical trick is to delete a track when its
uncertainty becomes too large.
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N/M logic: example

1/1
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2/2&1/1

2/2&0/1

yt+1

∅t+1

2/2&2/2

2/2&1/22/2&1/2

2/2&0/2

yt+2

∅t+2

yt+2

∅t+2

2/2&2/3

2/2&1/3

yt+3

∅t+2

Tentative: level 1 Tentative: level 2 Confirmed Dead

“2/2&2/3” logic
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Track Score

Track Score

The track score Lt is the log probability ratio that the obtained measurements are all
false alarms, versus that they all come from a single target. A high value indicates the
target exists.

Consider the two hypotheses:

H0 : Yt all originate from FA

H1 : Yt originate from a single target

If no measurement is obtained at time i, yi = ∅.

The track score is the matching log probability ratio

Lt = log
Pr(H1|Yt)
Pr(H0|Yt)
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Track Score: properties
From this we get

Pr(H1|Yt) = α

Pr(H0|Yt) = 1− Pr(H1|Yt) = 1− α
Hence

eL =
α

1− α
⇒ α =

eL

1 + eL

• The probabilities of a track can be obtained from the track score

Pr(H1|Yt) =
eLt

1 + eLt
,

• The track score can be updated recursively as

Lt = Lt−1 + lt,

where lt is the contribution at time t to be derived later.
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Track Score: initialization

When starting up a new (tentative) track from an observation y0

L0 = log
p(y0|H1)P (H1)

p(y0|H0)P (H0)
= log

βnt
βfa

+ C

where βNT and βfa are new target and false alarms rates respectively. C effectively
becomes tuning parameter combining the prior of targets and false alarms.

Setting L0 = 0 is also a common in practice.
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Track Score: score update

Observation: yt 6= ∅

Lt = Lt−1 + log
p(yt|Yt−1,H1)

p(yt|Yt−1,H0)
= Lt−1 + log

PdPgp(yt|Yt−1)
βfa︸ ︷︷ ︸
lt

,

where p(yt|Yt−1) = N (yt; ŷt|t−1, St|t−1) is the KF innovation likelihood.

No observation: yt = ∅

Lt = Lt−1 + log(1− PdPg)︸ ︷︷ ︸
lt

,

where PdPg is the probability the target is detected and pass the gate.

Note: Usually the track gate is such that one can assume Pg ≈ 1.
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Track Score Logic (1/2)

Handling of tentative tracks
• Lt ≥ Lhigh: Confirm the tentative track, i.e., decide H1

• Lt ≤ Llow: Delete the tentative track, i.e., decide H0

• Llow < Lt < Lhigh: The track remains tentative, i.e., no decision possible yet
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Track Score Logic (2/2)

Handling of confirmed tracks
• Delete if Lt ≤ Ldel, but Lt tends to grow over time as old

goodness accumulates (cf. “integrator windup”)
• Several solutions exist:

Use a sliding window of length N , i.e., Lt =
∑t
τ=t−N lτ

Use a forgetting factor, i.e. Lt = λLt−1 + lt, with 0 < λ < 1
Cap the Lt to a reasonable value Lmax, i.e.,
Lt = min(Lt + lt, Lmax)
Limit how much a track may drop from its maximum, i.e.,
L′del = maxτ (Lτ )− Ldel
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Track Score Logic: tuning

• Design parameters:

Pfc The probability of confirming false tracks
Ptm The probability of rejecting (deleting) true tracks

• Thresholds

Lhigh = log
1− Ptm

Pfc
= log

Pr(Accept a true track)

Pr(Accept a false track)

Llow = log
Ptm

1− Pfc
= log

Pr(Reject a true track)

Pr(Reject a false track)

Target Tracking Le 3: Single Target Tracking G. Hendeby, R. Karlsson February 1, 2019 33 / 51

Track Management: an overview

When a scan arrives

1. Gate incoming measurements with current tracks.

2. Associate the gated measurements with the current tracks.

3. Apply the track logic to the track–measurement combinations,
and update the status accordingly.

4. Update the track filters with the measurements.

5. Create new tentative tracks from the unused measurements (a
measurement is considered used even if it happens to be
associated with a track that died).
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Track Management: initialization (1/2)

To initialize a tentative track; the initial state, x̂0|0 and covariance matrix, P0|0, must be
obtained from the measurement, y0:

One-point initialization

• y0 is informative enough to obtain (x̂0|0, P0|0) = h−1(y0, S0).

• y0 is not informative enough, but nominal values can be used to fill in the
blanks.

E.g., the target position is obtained from the measurement and the velocity
is assumed to be 0 with large uncertainty.
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Track Management: initialization (2/2)

To initialize a tentative track; the initial state, x̂0|0 and covariance matrix, P0|0, must be
obtained from the measurement, y0:

Two-point initialization

Two measurements are collected before the track is properly initialized. The
first gate should then be based on how much the measurement can reasonably
move between two samples.

E.g., the measurement is position, and the gate is then equal to how much the
target can reasonably move between measurements. Based on two consecutive
measurements, position and velocity can be computed to initialize the state.
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Data Association

STT: We need to associate measurement to a track:

• Hard decision
An explicit decision is made how to match tracks and
measurements, and only those associations are considered
further. (Sometimes several possibilities are considered in
parallel though.)
E.g., nearest neighbor (NN) association.

• Soft decision
Instead of a matching a single measurement to a track,
several measurements are associated to the track and all
contribute to the end result.

E.g., probabilistic data association (PDA).
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Nearest Neighbor (NN) Association

Pick the measurement is closes to the predicted measurement. Either Euclidian distance
or probabilistic, the gating calculations can be reused.

NN is a hard decision mechanism for which measurement to use for a track.
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Probabilistic Data Association (PDA)
A soft association alternative is to use all of the measurements in the gate, weighted

with how well fit the prediction. Measurements in the gate are shown as Yt = {y(i)t }
mt
i=1.

We have the following hypotheses about these measurements

H(0) = {All of Yt is FA, i.e., no target originated measurement in the gate.}

H(i) = {Measurement y
(i)
t belongs to target, all the rest are FA.}

for i = 1, . . . ,mt. Then, the estimated density p(xt|Yt) can be
calculated using total probability theorem as

p(xt|Yt) =
mt∑
i=0

p(xt|H(i),Yt) p(H(i)|Yt)︸ ︷︷ ︸
ω
(i)
t

γgSt

×
ŷt|t−1

St
◦
y
(1)
t

◦
y
(2)
t

◦
y
(3)
t

◦
y
(4)
t

◦
y
(5)
t
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Probabilistic Data Association: KF algorithm (1/2)

p(xt|H(i),Yt) =

{
p(xt|Yt−1), i = 0

p(xt|Yt−1, y(i)t ), otherwise

In the special case of a Kalman filter

x̂
(i)
t|t =

{
x̂t|t−1 i = 0

x̂t|t−1 +Kt(y
(i)
t − ŷt|t−1), otherwise

P
(i)
t|t =

{
Pt|t−1 i = 0

Pt|t−1 −KtSt|t−1K
T
t , otherwise

Note that the quantities P
(i)
t|t and Kt, are the same for i = 1, . . . ,mt.
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Probabilistic Data Association: KF algorithm (2/2)
In the special case of a KF, the overall state estimate x̂t|t can be calculated as

x̂t|t =

mt∑
i=0

ω
(i)
t x̂

(i)
t|t = x̂t|t−1 +

mt∑
i=1

ω
(i)
t Kt(y

(i)
t − ŷt|t−1)

= x̂t|t−1 +Kt

(
ω
(0)
t ŷt|t−1 +

mt∑
i=1

ω
(i)
t yit︸ ︷︷ ︸

=yeqt

−ŷt|t−1

)

where yeqt is an equivalent measurement.

The covariance Pt|t corresponding to x̂t|t is given by (x̂
(0)
t|t = x̂t|t−1, P

(0)
t|t = Pt|t−1)

Pt|t =
∑mt

i=0
ω
(i)
t

(
P

(i)
t|t + (x̂

(i)
t|t − x̂t|t)(x̂

(i)
t|t − x̂t|t)

T
)

It remains to compute ω
(i)
t .
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PDA: brief derivation of association weights (1/3)
Given mt measurements

ω
(i)
t = Pr(H(i)

t |Yt) = Pr(H(i)
t |y

(i)
t ,mt,Yt−1), i = 0, 1, . . . ,mt.

Applying Bayes’ rule yields

ω
(i)
t ∝ p(y

(i)
t |H

(i)
t ,mt,Yt−1)Pr(H(i)

t ,mt|Yt−1)

The probability density for correct measurement is given by

p(y
(i)
t |Yt−1) = P−1g N (ε

(i)
t ; 0, St).

Hence, the first factor is

p(y
(i)
t |H

(i)
t ,mt,Yt−1) =

{
V−(mt−1)t P−1g N (ε

(i)
t ; 0, St), i = 1, . . . ,mt

V−mtt , i = 0,

where Vt is the volume of the validation region (the gate).
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PDA: brief derivation of association weights (2/3)

The second factor is calculated as

Pr(H(i)
t |mt,Yt−1) = Pr(H(i)

t |mt)

=


PdPgPfa(mt − 1)/mt

PdPgPfa(mt − 1) + (1− PdPg)Pfa(mt)
, i = 1, . . . ,mt

(1− PdPg)Pfa(mt)

PdPgPfa(mt − 1) + (1− PdPg)Pfa(mt)
, i = 0,

where Pfa(mt) is the probability of obtaining mt false measurements.
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PDA: brief derivation of association weights (3/3)

Two common assumptions are considered for Pfa(mt) namely a
parametric model with a Poisson density with parameter βfaVt or a
non-parametric model using a diffuse prior.

1. Poisson density

Pfa(mt) =
(βfaVt)

mte−βfaVt

mt!
, mt = 0, 1, . . .

2. Diffuse prior

Pfa(mt) =
1

M
, mt = 0, 1, . . . ,M − 1,

where M is as large as needed.

Summary
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Summary

• Gate to improve complexity in presence of clutter

Rectangular: cheap but crude
Ellipsoidal: more correct

• Track logic determines if there is an object present of not

State-machine for confirming target, based on gated measurements
Score based logic, based on a hypothesis test

• Different association strategies exist (so far for STT)

Nearest neighbor (NN) association
A hard decision to use the “closest” measurement.

Probabilistic data association (PDA)
A soft decision where all measurements in the gate are combined.

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Gating Association Track/Hypothesis logic

Exercises
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About the Exercises

Purpose

• Provide hands on experience of common tools used in multi-target tracking.

• Help build a small toolbox of methods to get started with target tracking problem.

• You can write your solutions in the language of your choice, reference solutions will
be in Matlab.
• Feel free to use available packages, unless otherwise stated.
• The exercises are individual, but it is okay to discuss the among each other.
• Hand in a all produced code, and a short report, outlining what you have done and

your results.
• The exercises will incrementally lead up to a simplified MTT solution. Results from

the earlier exercises will be reused in later exercises.
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Exercise 1: part 1

Make a small simulator for the state trajectory:

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

T
1

T
2

T
3

Radar

• Simulate trajectory
• Generate measurement:

Pd

Pfa

clutter

• Set up methods for visualization and
performance evaluation
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Exercise 1: part 2

Get the hang of single target tracking (STT):
• Data:

Simulated data
Provided realistic data

• Filters:

EKF with CV model for different agility
IMM for varied agility

• NN-association and gating to handle false alarms

• Monte Carlo RMSE evaluation of performance
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Exercise 1: part 3

Implement different track logics

• N/M logic

• Track score logic

• Evaluate on provided measurements
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