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Summary: lecture 1

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

• Multi-target tracking is the problem of decide how many targets are present and
how they move, given measurements with imperfections.

• Classic MTT can be divided in several stages: gating, association, single target
tracking, track/hypothesis logic, and presentation.

• Single target tracking: Kalman type filters, particle filters
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Overview: models in target tracking

Models

• Consider a model of the target state xt with (target) input ut.

xt+1 = f(xt, ut)

yt = h(xt) + et

• The input signal, ut, is unknown (pilot maneuver, external influences, etc)

• We need to replace it with a random noise

• All models are approximations, that might be of high or low fidelity

Hence, one way to model this is to introduce process noise wt. The measurement noise
is basically given by the sensor!

Today: common models and maneuvering filters.

Measurements and
Measurement Models

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

STT
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Measurements

Measurement Sources

• Previously observed targets

• New targets

• Clutter (false alarms/detections/observations)

Kinematic measurements

• Position (pixel indices)

• Range

• Range rate (radar Doppler shift)

• Bearing

Attribute measurements

• Signal strength

• Intensity

• Aspect ratio

• Target type

We will only talk about kinematic measurements!
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Measurement Scan

In many applications data is received during some time period, a scan.
For example a scanning radar (e.g., f = 1 Hz) receives all
measurements for one revolution once the full revolution is finished.

Typically, if the targets do not move too fast, tracking can be done
assuming all the measurements in one scan are obtained at the same
time.
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False Measurements: clutter

• A false measurement (false alarm or clutter) in tracking
terminology generally refers to the concept of persistency.

• A persistent false alarm (clutter) is considered a target to be
tracked even if we are not interested in what or where it is.

• If one of our interesting targets gets in the vicinity of
uninteresting false targets, we come prepared.
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Measurement Model: targets

Target originated measurements:

yt = h(xt) + et, where et is measurement noise

Examples of models:

• Simple Cartesian

yt =

(
xt
yt

)
+ et

• Range

yt =
√

x2
t + y2

t + et

• Bearing only

yt = atan2(yt, xt) + et

• Log range (received signal strength
(RSS))

yt = P0 − α log(x2
t + y2

t ) + et

No sensor is perfect!
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Measurement Model: properties

• A measurement from a sensor gives information about:

1. the detection, Pd;
2. the measured value, yt.

• Probability of detection:

Pd < 1 in many sensors, imperfect sensors.
Detection probability Pd can be a characteristics of the sensor/algorithm as well as the
target state. Pd might depend on the specific target position and it can vary from target to

target.

It is generally difficult to find an exact formula for Pd, approximations and heuristics
are needed.

• Sensor measurement noise, et.
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Example of Sensor Model: radar (1/2)
The radar sensor is probably the most used sensor for ATC and target tracking applications.
Today, emerging is the automotive industry. A common measurement relation:

y = h(x) + e =


ϕ
θ
r
ṙ

+ e =


atan2(y/x)

atan2(z/
√

x2 + y2)√
x2 + y2 + z2
xvx+yvy+zvz√

x2+y2+y2

+ e

where ϕ is the azimuth angle, θ is the elevation, r is the range and ṙ is the range rate (derived
from the Doppler shift).

The radar equation also gives:

SNR ∝ σrcs
r4

,

where σrcs denotes the radar cross section (RCS). Different statistical assumptions

(Swerling-cases) are used to model its PDF.
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Example of Sensor Model: radar (2/2)

Radar

Radar sensor modeling, see for instance
MATLAB Sensor fusion and Tracking toolbox.

Radar modeling and techniques

• Scan rate

• Resolution (azimuth, range)

• Accuracy: azimuth often quite
accurate, but elevation not,
Doppler (velocity) is very accurate

• CFAR (constant false alarm ratio)

• Techniques: Pulse radar, FMCW

• Active or passive (RWR)
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Example Sensor Model: camera

• The relation between pixels coordinates (p frame) and normalized image coordinates
(n frame) is given by standard calibration methods. Hence, usually, y = mn = ( xn

yn ).

• Cameras are often modeled using the simple pin-hole camera model.

• To relate the object position to the
measurement, project the point in the

world, mc =
(
xc
yc
zc

)
, onto the image plane

to get mn,

h(x) = mn =

(
xn
yn

)
=
f

zc

(
xc
yc

)
.

Pin-hole camera model

z

y
x

p

nc

mc

mn

y
x

y
x

f = 1
optical axis

optical center

principal point

image plane
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Measurement Model: clutter
Non-persistent measurements which do not originate from a target.
• Prior information is important.

Clutter maps (eg, from specification or experiments).
Sensor (processing algorithm) characteristics

– Sometimes provided by the manufacturer.
– Experiments if necessary.

• The case of minimal prior info
Number of false alarms (FA), mfa

t , in a region with volume V :
Poisson distributed with clutter rate βfa (FA intensity per scan).

Pfa(mfa
t ) =

(βfaV )m
fa
t e−βfaV

mfa
t !

Pd for the clutter is included in Pfa.
Spatial FA distribution: Uniform in the tracking volume V ,

pfa(yt) =
1

V
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Measurement Model: clutter (motivation for finite resolution sensors)
Consider a sensor with finite resolution of N cells, with probability of false alarm p in each cell:

Pfa(mfa
t ) =

(
N

mfa
t

)
pm

fa
t (1− p)N−m

fa
t .

Binomial → Poisson distribution approximation

In the limit as N → +∞ and p� 1, the binomial distribution becomes a Poisson distribution,(
N

m

)
pm(1− p)N−m → λme−λ

m!
,

where λ = Np.

In the clutter setting, with many cells, N ≫ 1, and low probability of false alarm, p� 1,

Pfa(mfa
t ) ≈ (Np)m

fa
t e−Np

mfa
t !

=
(βfaV )m

fa
t e−βfaV

mfa
t !

,

where Np and βfaV both represent the expected number of FA in the tracking volume.
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Target Motion Models: constant velocity

General state-space model

xt = f(xt−1) + wt, where wt is process noise

Examples of models

• (Nearly) constant velocity (CV) model

xt =


xt
yt
vxt
vyt

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

xt−1 +


1
2T

2 0
0 1

2T
2

T 0
0 T

 at

where at ∼ N (0, σ2
a) is white noise.

y

x

(
vx

vy

)

�

Constant velocity
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Target Motion Models: constant acceleration

• (Nearly) constant acceleration (CA) model

xt =

xt
vxt
axt

 =

1 T 1
2T

2

0 1 T
0 0 1

xt−1 +

1
2T

2

T
1

 ηt

where ηt ∼ N (0, σ2
η) is white noise.
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Target Motion Models: coordinated turn (1/2)

• (Nearly) coordinated turn (CT) model, i.e., nearly
constant speed, constant turn rate model
• State with Cartesian velocity xt =

(
xt yt vxt vyt ωt

)T
Continuous time description

ẋ = v cos(h) ẏ = v sin(h),

from which the following differential equation is obtained

ẍ =
d

dt
ẋ = −vḣ sin(h) = −ωẏ

ÿ =
d

dt
ẏ = vḣ cos(h) = ωẋ.

y

x

h, ḣ = ω

(
vx

vy

)

�

Coordinated turn
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Target Motion Models: coordinated turn (2/2)

• (Nearly) coordinated turn after exact discretization

xt =


1 0

sin(ωt−1T )

ωt−1
− 1−cos(ωt−1T )

ωt−1
0

0 1
1−cos(ωt−1T )

ωt−1

sin(ωt−1T )

ωt−1
0

0 0 cos(ωt−1T ) − sin(ωt−1T ) 0
0 0 sin(ωt−1T ) cos(ωt−1T ) 0
0 0 0 0 1

xt−1+


T 2/2 0 0

0 T 2/2 0
T 0 0
0 T 0
0 0 1

 ηt

where ηt ∼ N (0, σ2
η) is white noise.

• The CT motion can also be defined using a polar velocity
representation, which is sometimes a more convenient to
work with.

y

x

h, ḣ = ω

(
vx

vy

)

�

Coordinated turn
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Continuous to Discrete Time Models (1/2)
Linear time-invariant (LTI) state-space model:

Continuous time

ẋ = Ax+Bu

y = Cx+Du

Discrete time

xt+1 = Fxt +Gut

yt = Hxt + Jut
u is either input or process noise (then J denotes cross-correlated noise!).

Zero-order hold (ZOH) sampling

Assuming the input is piece-wise constant (ZOH):

x(t+ T ) = eATx(t) +

∫ T

0
eAτBu(t+ T − τ) dτ

= eAT︸︷︷︸
F

x(t) +

∫ T

0
eAτ dτ︸ ︷︷ ︸
G

Bu(t).
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Continuous to Discrete Time Models (2/2)
Nonlinear state-space model (two options):

Continuous time

ẋ = a(x, u)

y = c(x, u)

Discrete time

xt+1 = f(xt, ut)

yt = h(xt, ut)

1. Discretized linearization (general):
a. Linearize:

A = ∇x a(x, u) B = ∇u a(x, u) C = ∇x c(x, u) D = ∇u c(x, u)

b. Discretize (sample): F = eAT , G =
∫ T
0
eAτ dτ B, H = C, and J = D

2. Linearized discretization (best, if possible!):
a. Discretize (sample nonlinear):

x(t+ T ) = f
(
x(t), u(t)

)
= x(t) +

∫ t+T

t

a
(
x(τ), u(τ)

)
dτ

b. Linearize: F = ∇x f(xt, ut) and G = ∇u f(xt, ut)
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Singer Acceleration Model
Consider position, velocity and acceleration as states.

d

dt
Ẍ(t) = −αẌ(t) + w(t),

where w(t) is the driving white noise.

ẋ(t) =

0 1 0
0 0 1
0 0 −α


︸ ︷︷ ︸

A

x(t) +

0
0
1

w(t).

Discretizing the system matrix assuming sample time T yields,

F = eAT =

1 T 1
α2 (e−αT − 1 + αT )

0 1 1
α (1− e−αT )

0 0 e−αT

→
1 T T 2

2
0 1 T
0 0 1

 ,whenαT → 0,

which is the constant acceleration model.
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Process Noise Modeling
There are many ways to model discrete process noise given a continous model. See
SF-course for more examples. Here we focus on:

ẋ(t) = a
(
x(t)

)
+ w(t), cov(w(t)) = Q̃,

xt+T = f(xt) + wt, cov(wt) = Q.

Let fx = ∇xf(x)|x=x̂.
These methods correspond to more or less ad hoc assumptions on the process noise:
• w(t) is white noise whose total influence during one sample interval,

Q = TQ̃.

• w(t) is a discrete white noise sequence with variance TQ̃. All maneuvers occur
immediately after a sample time, xt+1 = f(xt + wt),

Q = TfxQ̃f
T
x .
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Models Combining with Several Behaviors

Jump Markov State-Space Model (JMSSM)

xt = f(xt−1, δt) + wt(δt)

yt = h(xt, δt) + et(δt)

δt|δt−1 ∼ p(δt|δt−1)

where δt is a discrete valued Markov process,
typically given by the transition matrix Π
(Πδt−1δt = Pr(δt|δt−1)), to indicate the current mode
of the model/target.

• A target has well-defined modes.
• A target exhibit different types of behavior; e.g., mixing no and agile maneuvers.
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Mode Notation: comparison with tracking literature

In the tracking litterature the following notation is common for the Markovian transition
model:

Pr(Mt = M j |Mt−1 = M i) = Pr(M j
t |M i

t−1), i, j = 1, . . . , N.

where the mode probability and the transition probabilities are

ω
(j)
t = Pr(M j

t |Yt)
Πij = Pr(M j

t |M i
t−1)

We will use δt and δt−1 to represent the modes, as this puts more emphasis on the
associated time. Note that δt = 1, . . . , N etc. if N modes are assumed.

Filter Banks

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

STT
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Filter Bank

• With JMSSM, both the state xt and the mode
δt must be considered.
• Conditioned on the mode sequence

δ1:t = (δ1, δ2, . . . , δt),

the estimate is given by an STT.
• A filter bank is an estimator with an STT for

each “interesting” mode sequence, with

matching probability, ω
(δ1:t)
t|t .

• The resulting posterior is a weighted sum of all
filters in the filter bank.

1

2

N

1

2

N

1
2

N
1
2

N

1
2

N

Branching

Timet t+ 1 Timet t+ 1 t+ 2

A A

B
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Filter Bank: details

• Equations to update the filter probabilities/weights

ω
(δ1:t)
t|t−1 = p(δt|δt−1)ω

(δ1:t−1)
t−1|t−1

ω
(δ1:t)
t|t =

p(yt|δ1:t,Yt−1)ω
(δ1:t)
t|t−1∑

δ1:t
p(yt|δ1:t,Yt−1)ω

(δ1:t)
t|t−1

• Resulting posterior distribution

p(xt|Yt) =
∑

δ1:t
ω
(δ1:t)
t|t p(xt|Yt, δ1:t)

• The MMSE given STT estimates with mean and covariance (x̂(δ), P (δ)) becomes:

x̂ =
∑

δ
ω(δ)x̂(δ)

P =
∑

δ
ω(δ)

(
P (δ) + (x̂(δ) − x̂)(x̂(δ) − x̂)T︸ ︷︷ ︸

Spread of the mean

)
.
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Filter Bank: problem

• Filter banks grows with combinatorial complexity, hence it quickly becomes
unmanageable.

• Common approximations:

Pruning: Drop unlikely branches,
Merging: Combine branches with recent common heritage.

1

2

N

2Pruning

Timet− L t− L+ 1 t Timet− L t− L+ 1 t

Pruning

1

2

N

{1, . . . , N}

Merging

Timet− L t− L+ 1 t Timet− L t− L+ 1 t

Merging
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Filter Bank Approximation: pruning

1

2

N

2Pruning

Timet− L t− L+ 1 t Timet− L t− L+ 1 t

• Prune branches with low probability:

Mode sequences with too low
probability.
“Trees” with too low accumulated
probability since L steps back.

• After reducing the filter bank to
suitable size, re-normalize the
remaining weights, δ ∈ ∆, such that∑

δ∈∆

ω(δ) = 1.
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Filter Bank Approximation: merging

• Reduce the filter bank by combining
mode sequences that have recently
been similar.

• The weight of the merged mode
sequences, δ ∈ ∆, are add up to the
weight of the merged branch, δ′,

ω(δ′) =
∑

δ∈∆
ω(δ).

• The mean and covariance becomes

x̂(δ′) = 1
ω(δ′)

∑
δ∈∆

ω(δ)x̂(δ)

P (δ′) = 1
ω(δ′)

∑
δ∈∆

ω(δ)
(
P (δ) + (x̂(δ) − x̂)(x̂(δ) − x̂)T

)
.

1

2

N

{1, . . . , N}

Merging

Timet− L t− L+ 1 t Timet− L t− L+ 1 t
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Filter Banks in Target Tracking

• Use different models to capture mixed behaviors, with different modes to bring out
the most of the measurements.
• Maneuvers can be quickly detected (or can be ignored), hence a shallow tree is

enough.
• Common tracking modes:

No maneuver (CV model)
Medium maneuvers (CA model)
Turns (CT model)

Examples of algorithms

• Generalized pseudo Bayesian of depth n (GPB(n)) filter

• Interacting multiple models (IMM) filter

• Range parameterized EKF (RPEKF)
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Preliminaries: probability theory

Reminder

• Marginal probability: Pr(A|B) = Pr(A,B)
Pr(B)

• Note that we can condition: Pr(A|B,C) = Pr(A,B|C)
Pr(B|C)

• Bayes’ rule: Pr(A|B) = Pr(B|A) Pr(A)
Pr(B)

• Note: Common quantities for A,B and C: xt and Yt = {yt,Yt−1}
• Total probability theorem: Pr(A) =

∑
δ Pr(A|δ) Pr(δ)

Example: A = xt, B = yt, and C = Yt−1

p(xt|Yt) = p(xt|yt,Yt−1) =
p(yt|xt,Yt−1)p(xt|Yt−1)

p(yt|Yt−1)
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GPB Filtering: illustration

Generalized Psuedo Bayesian (GPB(1)) filtering

KF-filter bank hypotheses are merged to a single mode after each measurement
update.

x̂t−1|t−1

x̂
(1)
t|t

x̂
(2)
t|t

δt = 1

δt = 2

Merge x̂t|t

x̂
(1)
t+1|t+1

x̂
(2)
t+1|t+1

δt+1 = 1

δt+1 = 2

Merge x̂t+1|t+1

GPB(1) with 2 models
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Multiple Models: GPB(1) derivation (1/2)
Assume the following prior:

p(xt−1|Yt−1) = N (xt−1; x̂t−1|t−1, Pt−1|t−1)

Then the posterior can be computed according to

p(xt|Yt) =
∑
δt

p(xt|δt,Yt) Pr(δt|Yt)

=
∑
δt

ω
(δt)
t p(xt|δt, yt, x̂t−1|t−1, Pt−1|t−1)

≈
∑
δt

ω
(δt)
t N (xt; x̂

(δt)
t|t , P

(δt)
t|t )

≈ N (xt; x̂t|t, Pt|t)
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Multiple Models: GPB(1) derivation (2/2)
Mode likelihood computation:

Each mode contribute x̂
(δt)
t|t and P

(δt)
t|t to the final estimate x̂t|t based on their likelihood,

ω
(δt)
t = Pr(δt|Yt) = Pr(δt|yt,Yt−1) ∝ p(yt|δt,Yt−1) Pr(δt|Yt−1)

= p(yt|δt,Yt−1) Pr(δt) = p(yt|δt,Yt−1)Πδt ,

where Πδt is the probability to end up in mode δt at time t, which is a simplified form of
the transition matrix Π given that we have marginalized away the complete mode history.

Mode reduction using merging:

x̂t|t =
∑
δt

ω(δt)x̂
(δt)
t|t , and Pt|t =

∑
δt

ω(δt)(P
(δt)
t|t + (x̂

(δt)
t|t − x̂t|t)(x̂

(δt)
t|t − x̂t|t)

T )
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GPB Filtering: illustration

Generalized Psuedo Bayesian (GPB(2)) filtering

KF-filter bank hypotheses merged to a depth after each measurement update.

x̂
(1)
t−1|t−1

x̂
(2)
t−1|t−1

x̂
(11)
t|t

x̂
(21)
t|t

x̂
(12)
t|t

x̂
(22)
t|t

δt = 1

δt = 2

δt = 1

δt = 2

Merge

Merge

x̂
(1)
t|t

x̂
(2)
t|t

x̂
(11)
t+1|t+1

x̂
(21)
t+1|t+1

x̂
(12)
t+1|t+1

x̂
(22)
t+1|t+1

δt+1 = 1

δt+1 = 2

δt+1 = 1

δt+1 = 2

Merge

Merge

x̂
(1)
t+1|t+1

x̂
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GPB(2) with 2 models
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Multiple Models: GPB(2) derivation (1/3)

Assume the following prior:

p(xt−1|Yt−1) =
∑
δt−1

ω
(δt−1)
t−1 N (xt−1; x̂

(δt−1)
t−1|t−1, P

(δt−1)
t−1|t−1)

Then the posterior can be computed according to

p(xt|Yt) =
∑
δt,δt−1

p(xt|δt, δt−1,Yt)p(δt−1|δt,Yt)p(δt|Yt)

Where the first term is the filter estimate assuming the mode sequence δt−1δt:

p(xt|δt, δt−1,Yt) = N (xt; x̂
(δt−1δt)
t|t , P

(δt−1δt)
t|t )
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Multiple Models: GPB(2) derivation (2/3)

The two remaining terms are:

p(δt−1|δt,Yt) =
p(yt|δt−1, δt,Yt−1)p(δt−1|δt,Yt−1)

p(yt|δt,Yt−1)

=
p(yt|δt−1, δt,Yt−1)p(δt|δt−1,Yt−1)p(δt−1|Yt−1)

p(yt|δt,Yt−1)p(δt|Yt−1)

=
p(yt|δt−1, δt,Yt−1)Πδt−1δtω

(δt−1)
t−1

p(yt, δt|Yt−1)

p(δt|Yt) =
p(yt, δt|Yt−1)

p(yt|Yt−1)

Note the two terms canceling when the two terms are multiplied.
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Multiple Models: GPB(2) derivation (3/3)
Putting it all together

p(xt|Yt) ∝
∑
δt−1,δt

p(yt|δt−1, δt,Yt−1)Πδt−1δtω
(δt−1)
t−1︸ ︷︷ ︸

∝ω(δt−1δt)

t ,
∑
ω
(δt−1δt)

t =1

N (xt; x̂
(δt−1δt)
t|t , P

(δt−1δt)
t|t )

p(xt|Yt) ≈
∑
δt

ω
(δt)
t N (xt; x̂

(δt)
t|t , P

(δt)
t|t )

ω
(δt)
t =

∑
δt−1

ω
(δt−1δt)
t

x̂
(δt)
t|t =

1

ω
(δt)
t

∑
δt−1

ω
(δt−1δt)
t x̂

(δt−1δt)
t|t

P
(δt)
t|t =

1

ω
(δt)
t

∑
δt−1

ω(δt−1δt)(P
(δt−1δt)
t|t + (x̂

(δt−1δt)
t|t − x̂(δt)

t|t )(x̂
(δt−1δt)
t|t − x̂(δt)

t|t )T )
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IMM Filtering

Interacting multiple models (IMM) filtering

IMM is an alternative implementation of the GPB(2), which achieves lower
computational complexity using a clever reordering of the computations. It has
become a standard solution.

x̂
(1)
t−1|t−1

x̂
(2)
t−1|t−1

Merge

Merge

δt = 1

δt = 2

δt = 1

δt = 2

x̂
(1)
t|t

x̂
(2)
t|t

Merge

Merge

δt+1 = 1

δt+1 = 2

δt+1 = 1

δt+1 = 2

x̂
(1)
t+1|t+1

x̂
(2)
t+1|t+1

IMM filter with 2 models
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Multiple Models: derivations IMM (1/2)

Total probability theorem:

p(xt|Yt) =
∑
δt

p(xt|δt,Yt)p(δt|Yt) =
∑
δt

p(xt|δt, yt,Yt−1)ω
(δt)
t

Baye’s rule:

p(xt|δt, yt,Yt−1) =
p(yt|δt, xt)p(xt|δt,Yt−1)

p(yt|δt,Yt−1)
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Multiple Models: derivations IMM (2/2)
Total probability theorem now gives:

p(xt|δt,Yt−1) =
∑
δt−1

p(xt|δt−1, δt,Yt−1) p(δt−1|δt,Yt−1)︸ ︷︷ ︸
µ
δt−1|δt
t−1

≈
∑
δt−1

µ
δt−1|δt
t−1 p(xt|δt, δt−1, x̂

(δt−1)
t−1|t−1, P

(δt−1)
t−1|t−1)

=
∑
δt−1

µ
δt−1|δt
t−1 N (xt; E(xt|δt, x̂(δt−1)

t−1|t−1), cov(xt|δt, x̂(δt−1)
t−1|t−1))

≈ N (xt;
∑
δt−1

µ
δt−1|δt
t−1 E(xt|δt, x̂(δt−1)

t−1|t−1), cov(?))

= N (xt; E(xt|δt,
∑
δt−1

µ
δt−1|δt
t−1 x̂

(δt−1)
t−1|t−1), cov(?))
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Multiple Models: IMM algorithm (1/2)

• Calculate mixing probabilities:

µ
δt−1|δt
t−1 ∝ Πδt−1δtω

(δt−1)
t−1 ,

∑
δt−1

µ
δt−1|δt
t−1 = 1

• Mixing: Start with x̂
(δt−1)
t−1|t−1 and P

(δt−1)
t−1|t−1.

x̂
(0δt)
t−1|t−1 =

∑
δt−1

µ
δt−1|δt
t−1 x̂

(δt−1)
t−1|t−1

P
(0δt)
t−1|t−1 =

∑
δt−1

µ
δt−1|δt
t−1 (P

(δt−1)
t−1|t−1 + (x̂

(δt−1)
t−1|t−1 − x̂

(0δt)
t−1|t−1)(x̂

(δt−1)
t−1|t−1 − x̂

(0δt)
t−1|t−1)T )
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Multiple Models: IMM algorithm (2/2)

• Mode-matched filtering:

Λ
(δt)
t = p(yt|δt, x̂(0δt)

t−1|t−1, P
(0δt)
t−1|t−1).

Update (x̂
(0δt)
t−1|t−1, P

(0δt)
t−1|t−1) with the measurement yt to obtain the new filter modes

(x̂
(δt)
t−1|t−1, P

(δt)
t−1|t−1).

• Mode probability update:

ω
(δt)
t ∝ Λ

(δt)
t

∑
δt−1

Πδt−1δtω
(δt−1)
t−1
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IMM Filter Illustration I

A radar tracking application is presented using a two filter IMM filter. One filter is used
to handle a straight paths, whereas the other is used to manage maneuvers. Due to the
nonlinearities in the measurement equation an EKF is used for the estimation.
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https://youtu.be/DVkCzdku2SQ
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IMM Filter Illustration II (1/3)

• Simulated trajectory with CV, CT, and
CA segments

• Position measurements
• Compared filters:

KF with CV low process noise
KF with CV high process noise
IMM filter with CV, CT, and CA
models
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Example taken from MATLAB Sensor Fusion and Tracking toolbox.
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IMM Filter Illustration II (2/3)
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• The low process noise KF clearly

cannot keep up.

• The high process noise KF, keeps up
better but is slightly noisier than the
IMM filter.

• Differences not very visible in this plot.

• The predominant models in the IMM
matches the simulated trajectory well.
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IMM Filter Illustration II (3/3)
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Range Parameterized EKF (RPEKF)

• Tracking with a bearing only sensor is difficult, as the range and hence the relative
Cartesian position is not available.

• This is solved by out-maneuvering the target; however, how should the target be
handled until enough information is gathered?

• Use filter bank to represent different possible range options, r(i), and let time
determine the actual distance.

0 rmin rmaxρi−1rmin ρirmin

r(i)
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Range Parameterized EKF: illustration
      

. . .. . .EKF(1)

x̂
(1)

t|t−1
P

(1)

t|t−1 ω
(1)
t−1

yt

x̂
(1)

t|t P
(1)

t|t ω
(1)
t

EKF(2)

x̂
(2)

t|t−1
P

(2)

t|t−1 ω
(2)
t−1

yt

x̂
(2)

t|t P
(2)

t|t ω
(2)
t

EKF(NF)

x̂
(NF)

t|t−1
P

(NF)

t|t−1 ω
(NF)

t−1
yt

x̂
(NF)

t|t P
(NF)

t|t ω
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t

Combine

x̂t|t−1, Pt|t−1

Practical concerns

• Filter pruning (divergence monitoring, range interval check etc)

• Re-start
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Range Parameterized EKF: process noise tuning

For an EKF the performance is dependent on the coefficient of variation, CR.
To have comparable performance for each filter, the same value should be used
on each interval. Approx, σ(i)/r(i), i = 1, . . . , N , where r(i) and σ(i) are the
range and standard deviation for the different filters.

r(i) =
rmin

2
(ρi + ρi−1)

ρ =
(rmax

rmin

)1/N

CR =
σ(i)

r(i)
=

2(ρ− 1)√
12(ρ+ 1)

Therefore, the variance for each interval is given as σ(i) = r(i)CR. 0

rmin

rmax

ρi−1rmin

ρirmin

r(i)
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Range Parameterized EKF: filter probabilities
The RPEKF uses the likelihood from each EKF, to recursively update its probability
according to

ω
(i)
t = p(yt|i)ω(i)

t−1.

The prior distribution is assumed uniform, i.e. ω
(i)
0 = 1/N , i = 1, . . . , N . However, if

other information is available it could be used to enhance the performance.
Under a Gaussian assumption, the likelihood is given from the EKF as

p(yt|i) ∝ 1√
det(S

(i)
t )

exp
(
−1

2(ε
(i)
t )T (S

(i)
t )−1ε

(i)
t

)
S

(i)
t = H

(i)
t P

(i)
t|t−1(H

(i)
t )T +Rt

ε
(i)
t = yt − h(x̂

(i)
t|t−1)

(H
(i)
t )T = ∇xhT (x)

∣∣
x=x̂

(i)
t|t−1
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Range Parameterized EKF: filter update
The measurement update for each filter is given by the Kalman filter equations.

x̂
(i)
t|t = x̂

(i)
t|t−1 +K

(i)
t ε

(i)
t

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t S

(i)
t (K

(i)
t )T

K
(i)
t = P

(i)
t|t−1(H

(i)
t )T (S

(i)
t )−1

The combined estimate and covariance can now be expressed as:

x̂t|t =
∑

i
ω

(i)
t x̂

(i)
t|t

Pt|t =
∑

i
ω

(i)
t

(
P

(i)
t|t + (x̂

(i)
t|t − x̂t|t)(x̂

(i)
t|t − x̂t|t)

T
)

where P
(i)
t|t is the covariance and x̂

(i)
t|t the estimate for different filters.
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Range Parameterized EKF and PF: torpedo example (1/3)

Passive sonar measuremens (bearings-only) require maneuver for range observability.

Passive sonar data from SBUS Motala
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Range Parameterized EKF and PF: torpedo example (2/3)

Bearings-only

• True trajectory not known
(but constant course)

• PF

• RPEKF
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Range Parameterized EKF and PF: torpedo example (3/3)

Summary
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Summary

• Common tracking sensors: range, bearing, range-rate (Doppler shift), . . . .
Models are derived from physical relations, and assumptions about noise levels.

• Common motion target models: constant velocity, constant acceleration,
coordinated turn
Coarse approximations to allow for reasonable target maneuvers, are derived from basic physical

relations

• Mixtures are a common tool to cover several different possible behaviors
Maneuvering targets are commonly tracked using IMM filters, which approximate the complete

filter bank solution

• Specialized filter bank solutions can be useful, e.g. RPEKF

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

STT
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