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Multi-Target Tracking Course, Spring 2019

Aim

The aim of the course is to provide an introduction to multi-target tracking (MTT); both
theoretical and practical aspects. After the course a student should be able to explain the basic
ideas underlying MTT and feel confident to implement the fundamental methods.

Course activities:
• 8 lectures where the theoretical aspects of MTT are explained
• 1 guest lecture; Veoneer, where we hear from their tracking specialists
• Practical coding exercises, performed on your own
• Project work

Responsible:
• Gustaf Hendeby (gustaf.hendeby@liu.se)
• Rickard Karlsson (rickard.g.karlsson@liu.se)

Course homepage:
• http://www.control.isy.liu.se/student/graduate/targettracking

mailto://gustaf.hendeby@liu.se?subject=[MTT 2019]:
mailto://rickard.g.karlsson@liu.se?subject=[MTT 2019]:
http://www.control.isy.liu.se/student/graduate/targettracking
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Course Content

• Single-target tracking (STT)
• Motion and sensor models:

Common tracking models
Maneuvering targets (IMM)
Clutter

• Multi-target tracking (MTT):
Association
Track logic
Global Nearest Neighbor (GNN) Tracker
Multi-Hypotheses Tracker (MHT)

• Outlook, modern methods:
Track before detect (TrBD)
RFS/FISST: Probability hypothesis density (PHD), Multi-Bernoulli
Track-to-track fusion (T2TF)



Target Tracking Le 1: Introduction G. Hendeby, R. Karlsson January 15, 2019 5 / 44

Course Examination

Three independent parts with different focuses:

1. Basic theory and understanding: exam (2 hp)

Theory is examined in a brief written exam.

2. Implementation and practice: exercises (4 hp)

Implementation skill and practical knowhow are examined

using assignments during the course.

3. Research related work: project (3 hp)

Use course skills extensions on the topic for a larger tracking

project, preferably related to your research. Individually or in a

group of two.
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Course Prerequisites

Familiarity with:

• Basic knowledge of probability
theory
• State-space models
• Bayesian estimation methods

Kalman filter (KF)
Extended Kalman filter (EKF)
Unscented Kalman filter (UKF)
Particle filter (PF)

• Coding in MATLAB or similar
(for the exercises)

Suitable background material
• Sensor Fusion course (TSRT14):

http://www.control.isy.liu.se/student/tsrt14

• F. Gustafsson, L. Ljung, and M. Millnert. Signal
processing.
Studentlitteratur, 1. edition, 2010.

• F. Gustafsson. Statistical Sensorfusion.
Studentlitteratur, 3. edition, 2018.

• T. Kailath, A. H. Sayed, and B. Hassibi. Linear
Estimation.
Prentice-Hall, Inc, 2000.
ISBN 0-13-022464-2.

• S. M. Kay. Fundamentals of Statistical Signal
Processing: Estimation Theory, volume 1.
Prentice-Hall, Inc, 1993.
ISBN 0-13-042268-1.

http://www.control.isy.liu.se/student/tsrt14
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Lecture Schedule (preliminary)

Le Topic Date Ex
1 Introduction Jan 15 10–12
2 Models for Target tracking Jan 25 13–15
3 Single target tracking Feb 1 13–15 Ex 1
4 Multi-target tracking (1/2): GNN, JPDA Feb 27 Ex 2
5 Multi-target tracking (2/2): MHT Apr 3 Ex 3
6 Random Finite Sets: PHD, etc Apr 17
7 Guest lecture: Veoneer May (Ex 4)
8 Various topics (TrBD, T2T, ETT) May
9 Project Presentations Aug

• Lectures are in Algortimen unless otherwise stated.

• Exercises are due the Sunday before the next lecture.

• Dates are preliminary, check homepage and mails for updates.
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Course Literature

• Selected papers handed out during the course will be enough to follow the course.
• For a farily complete overview of the target tracking problem, methods, and

algorithm collected in one place, the following books are good entry points.

S. S. Blackman and R. Popoli. Design and analysis of modern tracking systems.
Artech House radar library. Artech House, Inc, 1999.
ISBN 1-5853-006-0.

Y. Bar-Shalom, P. Willett, and T. Xin. Tracking and Data Fusion: A Handbook of
Algorithms.
Yaakov Bar-Shalom Publishing, 2011.
ISBN 0-9648-3-127-9.
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Multi-Target Tracking: conceptual view

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Components

1. Detections/Observations

2. Gating

3. Association

4. Single-target tracking

5. Track and hypothesis logics

6. Presentation
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Multi-Target Tracking: detection

• Considered done in this course

• Sensor level signal processing

• Heavily sensor dependent

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Detection
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Multi-Target Tracking: gating

• Determine which measurements could
come from known targets

• Reduce tracking complexity

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Gating
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Multi-Target Tracking: association

• Match observations to targets

• One or many different associations

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Association



Target Tracking Le 1: Introduction G. Hendeby, R. Karlsson January 15, 2019 14 / 44

Multi-Target Tracking: STT

• Perform for each target independently,
given associated measurements

• Standard methods: EKF, UKF, PF, . . .

• Yields state and uncertainty, given the
association hypothesis

Measurement

Measurement update

Time update

Estimate

p(yt|xt)

p(xt|Yt)p(xt|Yt−1)

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

STT
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Multi-Target Tracking: track/hypothesis logic

• Compute probability of given
track/association hypothesis

• Track management: birth, death

• Clustering for efficiency

Tentative Confirmed Dead

Track logic

Clustering independent parts

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Track/Hypothesis logic
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Multi-Target Tracking: presentation

• How to present the result?

• Not addressed in the course

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

Presentation
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Selected examples

Selected examples (single target tracking/filtering and multiple target tracking):

STT Range-only measurements

STT Positioning based on a tracking sensor

STT Multiple models for maneuvering target tracking (IMM)

STT Track before detect

MTT Nearest Neighbor CV-model

MTT MHT

MTT PHD-filtering
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STT: Range-Only Tracking

Range-Only Measurement

Performance, and performance measures for RO:
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STT: UW map-aided navigation

UW navigation
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• Underwater vessel measures its
own depth and distance to
bottom, and sea chart
provides depth h(xt).

• Video shows how a uniform
prior quickly converges to a
unimodal particle cloud. Note
how the cloud changes form
when passing the ridge.

http://youtu.be/JxUjVEn87yE
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STT: Maneuvering Target

The IMM method for two models

A radar tracking application is presented using the IMM method with two filters. One filter is
used to handle a straight flying path accurately, whereas the other is used to manage maneuvers.
Due to the non-linearities in the measurement equation an EKF is used for the estimation.
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https://youtu.be/DVkCzdku2SQ
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STT: Track-Before-Detect (TrBD)

Track without first detecting the target

SNR=13 dB
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MTT: GNN CV-model

Global nearest neighbor tracking
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• Global nearest neighbor
(GNN) tracker

• Simple constant velocity
(CV) model

• Problems handling the
mixed level of agility

https://youtu.be/WPA2z-kw1wg


Target Tracking Le 1: Introduction G. Hendeby, R. Karlsson January 15, 2019 23 / 44

MTT: GNN CV-model

Global nearest neighbor tracking

h
t
t
p
s
:
/
/
y
o
u
t
u
.
b
e
/
W
P
A
2
z
-
k
w
1
w
g

• Global nearest neighbor
(GNN) tracker

• Simple constant velocity
(CV) model

• Problems handling the
mixed level of agility

https://youtu.be/WPA2z-kw1wg


Target Tracking Le 1: Introduction G. Hendeby, R. Karlsson January 15, 2019 24 / 44

MTT: MHT IMM

Multi-hypothesis tracking

• Multi-hypothesis tracker
(MHT) resolves
measurement ambiguities

• Interacting multiple
models (IMM) better
captures the mixed level
of agility
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https://youtu.be/ke37FrXg_1M
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MTT: MHT IMM

Multi-hypothesis tracking
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MTT: PHD Filter Example

Random finite set tracking

Standard GMPHD filter
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Modified GMPHD filter
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• Probability of detection dies off as a 3rd-degree polynomial, inspired by real data

https://youtu.be/PJimgDB3X88
https://youtu.be/cAL3ynfVZAk
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Introduction to Target Tracking (TT)

Definition: Target

A target is anything whose state (x) is of interest to us.

• The state can change over time with a dynamics which is itself unknown.

• Measurement/detections/observations (yi) comes from uncertain origin.

• There are false observations, Pfa > 0.

• Some measurements are missing, Pd < 1.

• Generally have no initial guess or estimate of the target state.

Definition: Target tracking

Target tracking, in its most general and abstract form, is a special case of dynamic
estimation theory.
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Targets and Tracks

Definition: Track

A track is a sequence of measurements that has been decided or hypothesized by the
tracker to come from a single source.

• Usually, instead of the list of actual measurements, sufficient statistics is held e.g.,
mean and covariance in the case of a KF, particles in the case of a PF.

• Generally each arriving measurement must start a track. Hence tracks must be
classified, but must not be treated equally.
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Target Types

Point target A target that can result in at most a single measurement.

• This means its magnitude is comparable to sensor resolution.
• However, an extended target can also be treated as a point target by

tracking its centroid or corners.

Extended target A target that can result in multiple measurements in a single scan.

Unresolved targets This denotes a group of close targets that can collectively result in
a single measurement in the sensor.

Dim target This is a target whose magnitude is below sensor resolution. These can be
tracked much better with track before detect (TrBD) type approaches.
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Bayesian Problem Formulation and Solution

• The state xt of interest

• Given measurements/observations
Yt = {y1, . . . , yt}
• System model:

xt = f(xt−1, wt−1) ←→ p(xt|xt−1)
yt = h(xt) + et ←→ p(yt|xt)

where wt−1 and et are stochastic
processes

• Bayesian solution

p(xt|Yt) =

∫
p(yt|xt)p(xt|xt−1)p(xt−1|Yt−1)

p(yt|Yt−1)
dxt−1
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Bayesian Framework for Estimation

• Bayesian solution
p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1) dxt−1 (TU)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
(MU)

• Two stage procedure:
Time update (TU): Predict the future
Measurement update (MU): Correct prediction based on observations

• Only a few analytic solutions:
Linear Gaussian model ⇒ Kalman filter (KF)
Hidden Markov model (HMM)

• In most cases approximations are needed:
Analytic
Stochastic
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Filtering

Common filters used for tracking:

• Kalman filter (KF)

• Extended Kalman filter (EKF)

• Unscented Kalman filter (UKF)

• Particle filter (PF)

• Filter banks, e.g., interacting multiple models (IMM)

We will assume basic knowledge of first and only give a brief introduction here.
Next lecture will deal with models used in tracking, and filter banks.
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Kalman Filter (KF)

• Probably the most used filter in practice.

• Applies to linear state-space models:

xt+1 = Ftxt +Gtwt, cov(wt) = Qt

yt = Htxt + et, cov(et) = Rt

• Shown to be optimal if the noise is Gaussian, otherwise the best
linear unbiased estimator (blue).

• Can be implemented efficiently.
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Kalman Filter: illustration
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Extended Kalman Filter (EKF)

Standard Algorithm

• Initialization: x̂0|0 = x0 and P0|0 = Π0.
• Time update:

x̂t|t−1 = f(x̂t−1|t−1)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 +Gt−1Qt−1G

T
t−1

• Measurement update:

x̂t|t = x̂t|t−1 +Kt

(
yt − h(x̂t|t−1)

)
Pt|t = Pt|t−1 −KtHtPt|t−1,

where

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t +Rt

)−1
fTt = ∇xfT (x)

∣∣
x=x̂t|t

, HT
t = ∇xhT (x)

∣∣
x=x̂t|t−1
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Unscented Kalman Filter (UKF)
Fundamental idea:
Use the unscented transform (UT) to transform stochastic variables when needed.

Generate 2nx + 1 sigma points, transform these, and fit a Gaussian distribution:

x(0) = x̂

x(±i) = x̂±
√
nx + λP

1/2
:,i , i = 1, 2, . . . , nx

z(i) = g(x(i))

E(z) ≈
∑nx

i=−nx
ω(i)z(i) cov(z) ≈

∑nx

i=−nx
ω
(i)
c

(
z(i) − E(z)

)(
z(i) − E(z)

)T
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Unscented Kalman Filter Algorithm (1/2)

Algorithm: time update

x̂t|t−1 =

N∑
i=0

ω
(i)
t x

(i)
t|t−1

Pt+1|t =

N∑
i=0

ω
(i)
c,t

(
x
(i)
t|t−1 − x̂t|t−1

)(
x
(i)
t|t−1 − x̂t|t−1

)T
x
(i)
t|t−1 = f(x

(i)
t−1|t−1, w

(i)
t )

ω(0) =
λ

nx + λ
ω(0)
c = ω(0) + (1− α2 + β)

ω(±i) =
1

2(nx + λ)
ω(±i)
c = ω(±i)
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Unscented Kalman Filter Algorithm (2/2)

Algorithm: measurement update

x̂t|t = x̂t|t−1 + P xyt|t−1P
−yy
t|t−1(yt − ŷt)

Pt|t = Pt|t−1 − P
xy
t|t−1P

−yy
t|t−1P

xyT
t|t−1

y
(i)
t = h(x

(i)
t|t−1, e

(i)
t )

ŷt =
∑N

i=0
ω
(i)
t y

(i)
t

P yyt|t−1 =
∑N

i=0
ω
(i)
c,t

(
y
(i)
t − ŷt

)(
y
(i)
t − ŷt

)T
P xyt|t−1 =

∑N

i=0
ω
(i)
c,t

(
x
(i)
t|t−1 − x̂t|t−1

)(
y
(i)
t − ŷt

)T
.
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Unscented Kalman Filter: design parameters

• λ is defined by λ = α2(nx + κ)− nx.

• α controls the spread of the sigma points and is suggested to be chosen around
10−3.

• β compensates for the distribution, and should be chosen to β = 2 for Gaussian
distributions.

• κ is usually chosen to zero.

Note

• nx + λ = α2nx when κ = 0.

• The weights sum to one for the mean, but sum to 2− α2 + β ≈ 4 for the
covariance. Note also that the weights are not necessarily in [0, 1].

• The mean has a large negative weight!
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Particle Filter (PF)

Postulate a discrete approximation of the posterior. For the predictive density, we have

p̂(xt|Yt) =

N∑
i=1

w
(i)
t|t−1δ(xt − x

(i)
t ).

Simulate each particle (sample) independently, and compare how well they match the
obtained measurements. Use the law of large numbers.
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Particle Filter: illustration
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Particle Filter: algorithm

Sampling Importance Resampling (SIR) Algorithm

• Initialize: Generate N samples {x(i)0|0}
N
i=1 from px0(x0).

• Time update: Simulate new particles, i.e. x
(i)
t|t−1 = f(x

(i)
t−1|t−1, w

(i)
t−1),

i = 1, . . . , N , where w
(i)
t−1 ∼ pw(wt−1),

• Measurement update: Compute the weights ω
(i)
t ∝ p(yt|x

(i)
t|t−1) and normalize so

they sum to one,
∑

i ω
(i)
t = 1.

• Resample: Generate a new set {x(i)t|t}
N
i=1 by resampling with replacement N times

from {x(j)t|t−1}
N
j=1, where Pr(x

(i)
t|t = x

(j)
t|t−1) = ω

(j)
t .



Summary
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Summary

Detection Gating Association STT Track/Hypothesis logic

Presentation

Sensor

• Multi-target tracking is the problem of decide how many targets are present and
how they move, given measurements with imperfections.
• Classic MTT can be divided in several stages: gating, association, single target

tracking, track/hypothesis logic, and presentation.
• Single target tracking: Kalman type filters, particle filters

Decide what your ambitions are for the course!
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