
Target Tracking: exercise 1

Gustaf Hendeby
gustaf.hendeby@liu.se

Rickard Karlsson
rickard.g.karlsson@liu.se

Deadline: February 20, 2019

The purpose of this exercise is to get acquainted with the basic building
blocks used in target tracking, as well as build basic infrastructure to facilitate
the subsequent exercises. At the end of the exercise, you will have the infras-
tructure to simulate measurements from simple tracking scenarios, visualize and
benchmark the result. Furthermore, you have gained experience of the most ba-
sic single target methods, as well as, implemented an interacting multiple model
(IMM) filter to deal with maneuvering targets. All in presence of missed de-
tections and clutter. Simulated data is used to gain experience, before dealing
with a provided realistic dataset. In the last part of the exercise, different track
logics are evaluated.

As is often the case in practice, you are allowed to use the tools that you are
used to. The MATLAB Sensor Fusion and Tracking Toolbox provides a very
good starting point, and you are encouraged to make use of such tools, except
when state differently. However, you are free to use Python or similar if you so
wish.

1 Simulation Infrastructure

Task: Implement a method to simulate measurements from a target, given a state trajec-
tory, a measurement function, and noise properties. The function should handle,
measurement noise, missed detections, and clutter.

In MATLAB, we suggest the following declaration:

function Y = generatedata(X, sensor , clutter)

where X is the state trajectory one time per column, sensor is a struct compris-
ing h the measurement function, R the measurement covariance (assume white
Gaussian noise), PD the probability of detection; and clutter a struct com-
prising volume that span the tracking volume, and beta clutter rate (assume
the number of clutter to be Poisson distributed, and the clutter uniformly dis-
tributed in the volume). The output is a cell array for each time instance, with
zero of more measurements.

1

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

T
1

T
2

T
3

Radar

Figure 1: Illustration of the specified trajectories T1–T3. T4 is obtained by
connecting the segments in order.

Hint: In MATLAB it is possible to use an anonomus function for the sensor
model. The example below show how this can be used to construct a range
measurement given position coordinates in the first and second column of X:

>> sensor = struct (...

’h’, @(X) sqrt(X(1,:).^2 + X(2,:) .^2)) ,...

’R’, 100^2, ’pD’, 1);

Task: Create the following trajectories to be used in this exercise:

T1 Target travels 2000 m due east, at 100 km/h.

T2 Target traveling due east makes a 180◦ clock-wise turn following a circular
path with radius 200 m, at 50 km/h, ending up heading west.

T3 Target travels 200 m due west, at 70 km/h.

T4 Connect the three segments (T1–T2–T3) above to get a trajectory of a maneu-
vering target.

See Figure 1 for an illustration.

These trajectories will be used in the rest of this exercise. Unless other-
wise stated, assume a range-bearing radar (σr = 10 m and σφ = 0.001) with
probability of detection Pd = 0.9 to generate the measurements. Furthermore,
assume Poisson clutter with intensity βfaV = 2, uniformly distributed in the
tracking volume. The sample time can be set to T = 1.

2 Single Target Tracker

In this part of the exercise you will design three single target trackers, for
different types of targets, and add functionality to handle both missing data
and clutter.

2

2.1 EKF for a Low-Maneuvering Target

Task: Design and implement a constant velocity (CV) based extended Kalman filter (EKF)
that provides good tracking when applied to a target traveling along trajectory
segments T1 and T3.

To simplify, and not to focus on the track initialization, it is okay to initialize
the filters in roughly the right place.

Develop the tracker in steps. Begin with the simple case with perfect detec-
tions Pd and no clutter. A good way to verify your implementation is to start
out without measurement noise to see the filter behaves as expected. Then in-
troduce missed detections Pd < 1, possibly in steps. Next, set Pd = 1 again,
and add clutter. Use gating and nearest neighbor (NN) association. Finally, try
out all at the same time.

Task: Evaluate the performance (root mean square error, RMSE) using Monte Carlo sim-
ulations on T4,

Task: For T4, plot the true trajectory, the measurements, and the estimated trajectory.

Note: In this part of the exercise, feel free to use available EKF implementa-
tions. If you end up implementing your own filter, it is advised to implement the
filters in a class similar to the one available in the Sensor Fusion and Tracking
toolbox. Using that design will simplify life further on.

2.2 EKF for a Maneuvering Target

Task: Repeat the tasks in Sec. 2.1, this time tune the filter to behave well on T2. Perform
the RMSE evaluation on T4. Make the same plots as above.

2.3 Filter Bank for Maneuvering Targets

When doing the tasks above, you should have noticed that the best filter you can
accomplish for the straight paths in T1 and T3 cannot follow the target in the
turn in T2. At the same time, the filter that follows the target thought the turn
gives a much noisier estimate on the straight paths. You will now implement
an IMM comprising these two filters, which should give you the best of both
worlds.

Task: Implement an IMM, based on the two filters above. Evaluate and illustrate the
result the same way as above, this time performing the RMSE on T4. Furthermore,
visualize the filter probabilities as a function of time.

You might have to experiment a bit with different values for the probabilities
of jumping between the different modes before you get it right.

Note: You are expected to make your own IMM implementation, based on
the above filters. It is strongly advised to try to mimic the interfaces used in
the EKF as much as possible. This way it is easy to use the different filter
interchangeably as soon as they are properly set up.

3

2.4 Mysterious Data

In the last part of the single target tracking exercise, you should estimate the
trajectory of the target given by the measurements from a range-bearing radar
in the file ex1data.mat available as Y1. The data is formatted the same way
as the output of the simulator described above. The data is realistic, but is
constrained to 2D, containing clutter and lost detections.

Task: Design a tracker that tracks the target from the measurements in Y1 in ex1data.mat.
The radar sensor has σr = 135 m and σφ = 1.5◦. Visualize the measurements, and
the estimated trajectory in the same plot.

3 Track Logic

In the next part of the exercise, you will implement two different types of track
logic, N/M and track score based logic to help decide if target it present or not.
The function to do this should have the same interface in both cases, e.g., in
the generic case:

function state = logic(y, filter , state , opts)

where state is a method dependent struct, containing at least one field stage

indicating the status of the track (tentative, confirmed, or deleted). y is the
current measurement (or empty if none is available), filter the filter estimating
the target, and opts various options needed by the track logic.

3.1 N/M logic

Task: Implement an N/M logic, where N1/M1 and then N2/M2 is needed to confirm a
track, and track is killed after N3 consecutive missed observations.

The file ex1data.mat contains measurements in Y2 from the following system

xt =

(
1 1
0 1

)
xt−1 + wt

yt =
(
1 0

)
xt + et

with Q = 0.001
(1

4
1
2

1
2 1

)
and R = 0.01. The probability of detection is Pd = 0.9

and the clutter rate is βfa = 0.05 in the tracking region [−10, 10]. Initialize the
filters with

x0 =

(
y
0

)
P0 =

(
R 0
0 0.1

)
.

Task: Apply the track logic (2/2&2/3 for confirmation and 3/3 for termination) to the
measurements Y2 in ex1data.mat. Start a new tentative track for each obser-
vation not gated with any trajectory. Visualize the result as a horizontal line per
(tentative) target, where the x-axis indicates time, and the y-axis the track identity.
Indicate tentative tracks with a dashed line, and confirmed tracks with a solid line.
Furthermore, indicate an associated measurement with a cross.

4

3.2 Track Score Logic

Task: Implement track score based logic, use a suitable solution to avoid “integrator
windup”.

Task: Apply the score based logic to the measurements Y2 in ex1data.mat, and visualize
the result in the same way as above. Assume Pfc = 0.1 % and PTM = 1 %.

5

