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Recent Advances

• Renewed interest for aerospace
applications
• L1 adaptive control (?)
• Machine learning approaches
• Multivariable adaptive control
• Adaptive nonlinear control
• New nonlinear filtering methods

Survey paper (Automatica
2014)
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1: Adaptive Control for Aerospace Applications

Some key topics:
• Robust baseline controllers
• Augmentation structures with adaptive

controllers
• Model reference adaptive control
• Reconfigurable flight control
• Several adaptive controllers used in real

flight tests

(Springer 2012)
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1: Adaptive Control for Aerospace Applications

• On Nov 15, 1967, there was a fatal crash
with the NASA X-15-3 test vehicle, partly
due to problems with the adaptive flight
control system.
• This crash has been discussed and

analyzed recently, and most of the
anomalous behavior leading up to the
crash has been reconstructed in
simulations.
• Furthermore, it has been shown in

simulations that the accident might have
been avoided if a modern adaptive
controller would have been used instead
of the original one. (IEEE CSM 2010)
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2: L1 Adaptive Control

MRAC + stable strictly proper filter at
the input

Reported key properties:
• Fast adaptation
• Robust adaptation
• Very high adaptive gains
• L1 bounds on various signals

(IEEE CSM 2011,
SIAM 2010)
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2: L1 Adaptive Control. . .

System:

ẋ = Amx + bθ∗T x + bu,

y = cT x ,

where Am has all eigenvalues in the LHP. Let

˙̂x = Amx̂ + bθT x + bu, x̂(0) = x0,

θ̇ = Γx(x − x̂)T Pb, θ(0) = θ0,

where AT
mP + PAm = −Q and Γ > 0 is a scalar. Lyapunov analysis⇒

θ̃ = θ − θ∗ and x̃ = x − x̂ bounded. Sufficiently rich and bounded u ⇒
θ̃ and x̃ converge to zero.
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2: L1 Adaptive Control. . .

MRAC control law:
u = −θT x + k0r

This control law will make x follow the reference model

˙̂x = Amx̂ + bmr , bm = k0b

L1 adaptive control law:

u = C(p)(−θT x + k0r)

where C(p) is a stable strictly proper transfer function with C(0) = 1
and k0 = −1/(cT A−1

m b)
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2: L1 Adaptive Control: Recent Criticism

The additional filter gives
• worse tracking performance compared to

standard MRAC
• smaller stability margins compared to

standard MRAC
The high adaptive gain may give
• a stiff adaptive law
• worse robustness concerning unmodeled

dynamics

(IEEE TAC 2014)
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3: Reinforcement Learning

Basic idea: If an action is followed by
some kind of reward or improvement, then
there is a tendency to repeat this action (cf.
Pavlov’s dogs).

• Markov decision processes (MDPs):
Select action u when the system is in
state x . Based on x and u, the system
randomly switches to a new state x ′ that
corresponds to a particular cost (or
reward).
• Gives a framework for adaptive optimal

control (IEEE CSM 2012)
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3: Reinforcement Learning. . .

One approach: Q-learning
• Define a Q function such that it represents the expected return for

taking the action u in state x and thereafter following an optimal
policy. (Q = quality, but the function could also represent a cost.)

• The Q function contains information about control actions in every
state, such that the optimal action can be selected knowing only
Q.

• The Q function can be estimated online in real time directly form
data without knowing the system dynamics.
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3: Reinforcement Learning: LQR Example

Example: Online solution of discrete-time LQR using Q-learning
(without knowing A and B)

Q function:

Q̃(xk ,uk ) =
1
2

(xT
k Qxk + uT

k Ruk ) + V (xk+1),

where V (x) = xT Px/2 and P is the solution of the Riccati equation.

Alternative form:

Q̃(xk ,uk ) =
1
2

(
xk
uk

)T (
AT PA + Q AT PB

BT PA BT PB + R

)(
xk
uk

)

Let S denote the kernel matrix in Q̃ such that

Q̃(xk ,uk ) =
1
2

(
xk
uk

)T

S
(

xk
uk

)
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3: Reinforcement Learning: LQR Example. . .

Control action that minimizes Q̃(xk ,uk ) given xk :

uk = −S−1
uu Suxxk = −(BT PB + R)−1BT PAxk

Main idea: Estimate S online from measured data.

Q̃ can be written as

Q̃(x ,u) = Q̃(z) = W Tφ(z),

where z = (xT , uT )T and W contains the elements of S. Now we get:

W T (φ(zk )− φ(zk+1)) =
1
2

(xT
k Qxk + uT

k Ruk ) (∗)

(A parameter estimation problem!)
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3: Reinforcement Learning: LQR Example. . .

Q-learning of LQR:
1. Apply uk = −Lkxk at time k (Lk is the current feedback gain).

Measure xk+1 and compute uk+1 = −Lkxk+1. Compute φ(zk ),
φ(zk+1) and the updated estimate Ŵk+1 using (∗) and RLS.

2. Unpack the vector Ŵk+1 into the kernel matrix Ŝk+1. Define the
new feedback gain as

Lk+1 = Ŝ−1
uu,k+1Ŝux ,k+1

This algorithm solves the Riccati equation online without using any
knowledge or estimates of A and B. (N.B. Make sure that there is
enough excitation.)
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Project Ideas

Ideas for the one-week (2hp) project (optional):
• Make a more complex simulation study of some method for

adaptive control and or recursive system identification
• Test some method on a real process (or, in the recursive system

identification case, on real data)
• Make a more detailed investigation of the L1 adaptive control

framework.
• Study some theoretical aspect.
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