For a system (not necessarily in state space form)

Dynamic Systems
Ex =Ax+Bu, y=~Cx

Lecture 6. Polynomial Matrix Descriptions
with n variables, m inputs, and p outputs, the transfer function
G(s) =C(sE—A)"'B

is a p X m matrix whose elements are rational functions.

Torkel Glad
A closer analogy to the SISO case is the matrix fraction description

Reglerteknik, ISY, Linkdpings Universitet
G(s) = Nx(s)Dx'(s) o G(s) = Dy (s)NL(s)

where Ny, Dg, N1, Dy are polynomial matrices.
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Left and right MFDs, example State space and descriptor systems

A state space description where all state variables are regarded as

5+L1 L) outputs ‘
X=Ax+Bu, y=x
Left MFD G(s) = s+ 3) s+3 2(s+1
(5) K zE )4 ( )) is directly represented as a left MFD:
L N
1 G(s) = (s —A)"'B
Right MFD  G(s) = (1 2) (S +1 0 )
—— 0 s+3 This is true also for a descriptor or DAE representation
N ——
Ng pf
_ _ Ex =Ax+Bu, y=x
Note that the dimensions of D; and Dy are not the same. Also note
that with
detDy(s) = detDg(s) = (s+1)(s+ 3) G(s)=(sE—A)"'B
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Common factors

N(s) = N(s)R(s), D(s) = D(s)R(s)

m The polynomial matrix R is said to be a common right divisor.

m N(s)D~!(s) = N(s)D1(s)

m If R can be written as R = RS for every common right divisor S,
then R is a greatest common right divisor (gcrd).

m A polynomial matrix whose inverse is also polynomial is a trivial

Unimodular matrices

Fact P(s) unimodular < det P(s) = const. (# 0)
Examples of unimodular matrices.

010 1 a(s) 0 50 0
100 0 1 0 010
001 0 0 1 00 1

When multiplying a matrix from the left they correspond to
o an exchange of the first two rows

o an addition of a(s) x (second row) to the first row

o multiplication of first row by 5

Elementary row operations thus correspond to multiplication by
unimodular matrices from the left.

common factor. Such a matrix is called unimodular.

m If a gcrd of N and D is unimodular then N and R are said to be
right coprime.

m Common left divisor, gcld, and left coprime are defined
analogously for left MFDs.
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For a polynomial matrix P(s) with independent columns it is possible
to find a unimodular matrix U(s) so that

Multiplication from the right: corresponding column operations

X X X Both Mathematica and Maple have packages for polynomiaol
0 x X matrices that compute the Hermite form.
0 0

U(s)P(s) = X For a matrix with independent rows, an analogous triangular form
00 ... 0 can be obtained by multiplying from the right with a unimodular
Do : matrix.
0O 0 ... 0

where the diagonal elements are nonzero monic polynomials of
higher degree than the elements above. This is called Hermite form.
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Finding a gcrd

A gerd for Ng, Dg in G(s) = Ng(s)Dg(s):
Use e.g. Hermite transformation to get

Uni(s) Uiz(s)\ (Dr(s)\ _ (R(s)
() ume) (o) = (55)
with the U-matrix unimodular.
With V = U~

() = G v20) ()
1. Ris a gcrd of N and Dg.

2. V11 nonsing., det V11 = const. - det Uy,.
3. G(s) = V1 (s)V11(s) ! coprime
4. G(s) = —Uxn(s) Uy (s) coprime

AUTOMATIC CONTROL
Torkel Glad REGLERTEKNIK
Dynamic Systems 2014, Lecture 6 LINKOPINGS UNIVERSITET

=) @W :[s+2 1 Hsz+3s+2 . 0 ]‘1
GO GG s 25+1 0 §°+3s+2
Hermite transformation gives
s> +3s+2 0 1 1
0 §% 43542 [0 s+1
s+2 1 0 0
S 2541 0 O
s24+3+2 —s—2 0 s+1
_ 0 s+2 1 0
1_y_
u-=v= s+2 -1 0 1
S 1 0 1
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A technical result

Lemma Let P(s) be ap x r pol. matrix and Q(s) a nonsingular r x r
pol. matrix. The following are equivalent.

1. P and Q are right coprime.

2. There exist pol. matrices X(s) (r x p) and Y(s) (r x r) such that
the following Bezout identity is satisfied:

X(s)P(s) + Y(s)Q(s) = I

rank (%((SS)) =r

An analogous lemma holds for left coprime matrices.
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Example cont’d.

3. For every complex s:

A right coprime MFD:
s+2 =1\ [((s+1)(s+2) —s—2 !
s 1 0 s+2
Ni Dr

Using Uy1 and Uy, gives the left coprime MFD:

+1)(s+2) 0 \ '[s+2 1
282 +55+2 —s—2 2s+2 0

-/ - -

Dy, N

Note that

detDg(s) = —detDy(s) = (s +1)(s +2)2
detNg(s) = —detNp(s) =25 +2
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Almost uniqueness of coprime MFDs

Theorem If
G(s) = Ni(s)D; ' (s) = Na(s)D; ' (s)

with both MFDs being right coprime,
then there is a unimodular matrix U such that

Ni(s) = Na(s)U(s), Di(s) = Da(s)U(s)

An analogous result holds for left coprime MFDs.
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Strictly proper systems

We have shown:
Theorem G(s) has time-invariant finite-dimensional realization <
each element is a strictly proper rational function

Is

3542 1] [s242s s+1] "
2s+3 1 245 s+1

strictly proper?
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Comparing left and right MFDs

Theorem If
G(s) = Nr(s)Dg'(s) = D; ()N (s)

with both MFDs being coprime,
then there is a constant k # 0 such that

det DR(S) = kdet DL (S)
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Row and column degrees

G(s) = Nr(s)Dr(s) ™
Definitions:
m k;: highest degree, i:th column of Dg(s).
m G(s) proper: lim;_, G(s) finite
m G(s) strictly proper: lims_,o G(s) = 0
Easy results:
m G strictly proper = each k; > degree of corresponding column
in NR
m G proper = each k; > degree of corresponding column in N
m degdet Dg(s) < Y k;
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Column and row reduced systems Getting column reduced descriptions

m D,.: matrix of columnwise highest degree coefficients.

m Dy is said to be column reduced if Itis possiple to perform column operationg, or equivalently. tq multiply
degdetDg(s) = Y_k; < Dy, is nonsingular. from the right by a unimodular U, so that in the new description

Theorem Let Dy be column reduced. Then G = NRDIQ1 is strictly

proper (proper) if and only if, for each i, column i of Ny has a
maximum degree < k; (< k).

Nr = NxU, Dgr = DrU
Dg is column reduced.

An analogous statement holds for left MFDs (row reduced)
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