Controllability. Example

Linear Systems

Lecture 3. Controllability

Torkel Glad

Reglerteknik, ISY, Linköpings Universitet

```
Torkel Glad
Linear Systems 2014, Lecture 3
```


The differential equation solution

$$
\dot{x}=f(x)
$$

Taylor expansion:

$$
x(h)=x(0)+h \dot{x}(0)+\frac{h^{2}}{2} \ddot{x}(0)+O\left(h^{3}\right)
$$

Using $\dot{x}=f, \ddot{x}=f_{x} f$

$$
x(h)=x(0)+h f(x(0))+\frac{h^{2}}{2}\left(f_{x} f\right)(x(0))+O\left(h^{3}\right)
$$

Expanding about $x_{o}=x(0)+O(h)$

$$
x(h)=x(0)+h\left(f\left(x_{0}\right)+f_{x}\left(x_{0}\right)\left(x(0)-x_{0}\right)\right)+\frac{h^{2}}{2}\left(f_{x} f\right)\left(x_{0}\right)+O\left(h^{3}\right)
$$

- Start at $x=x_{0}$.
- Solve $\dot{x}=f_{1}(x)$ for $t \in[0, h]$, then $\dot{x}=f_{2}(x)$ for $t \in[h, 2 h]$, then $\dot{x}=-f_{1}(x)$ for $t \in[2 h, 3 h]$, then $\dot{x}=-f_{2}(x)$ for $t \in[3 h, 4 h]$.
- The resulting movement is $h^{2}\left[f_{1}, f_{2}\right]\left(x_{0}\right)+O\left(h^{3}\right)$
- $\left[f_{1}, f_{2}\right]=f_{2, x} f_{1}-f_{1, x} f_{2}$ is the Lie bracket.
- By doing nested movements one can generate $\left[f_{3},\left[f_{1}, f_{2}\right]\right.$, $\left[\left[f_{1}, f_{2}\right],\left[f_{3}, f_{4}\right]\right], \ldots \ldots \ldots$.
- If the set of all possible Lie brackets spans the space, then intuitively one should have full controllability.

```
Torkel Glad
Linear Systems 2014, Lecture 3
```

```
Torkel Glad
Torkel Glad
```


Controllability, definitions

- $A_{U}\left(x_{0}\right)$: the reachable set from x_{0}, while remaining in the set U

■ The system controllable: $A_{R^{n}}(x)=R^{n}$ for any x.
Problem: If U is a small neighborhood A_{U} is often "one-sided" Often the case for systems with drift term:

$$
\dot{x}=f(x)+u_{1} g_{1}(x)+\cdots+u_{m} g_{m}(x)
$$

The natural local property is local accessibility:

- The system locally accessible at x :
- $A_{U}(x)$ has a nonempty interior for any neighborhood U of x
- i.e. $A_{U}(x)$ has full dimension.

$$
\dot{x}=f(x, u)
$$

1. form $f_{j}(x)=f\left(x, u_{j}\right)$, for all possible constant u_{j}
2. form all possible linear combinations of all possible iterated Lie brackets of the f_{j}
3. Hermann and Krener 1977: If they span the state space at x_{0} (controllability rank condition), then the system is locally accessible at x_{0}.
```
Torkel Glad
Linear Systems 2014, Lecture 3
```


To reach with minimum energy

Control from x_{0} to x_{f} with minimum energy:

$$
\begin{aligned}
\qquad \dot{x}(t) & =A(t) x(t)+B(t) u(t), \quad x\left(t_{0}\right)=x_{0}, \quad x\left(t_{f}\right)=x_{f} \\
\text { minimize } J & =\frac{1}{2} \int_{t_{0}}^{t_{1}} u^{T} u d t
\end{aligned}
$$

The control then has the form

$$
u(t)=-B^{T}(t) \Phi^{T}\left(t_{0}, t\right) W\left(t_{0}, t_{1}\right)^{-1} z, \quad z=x_{0}-\Phi\left(t_{0}, t_{1}\right) x_{f}
$$

where W is the controllability Gramian

$$
W\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \Phi\left(t_{0}, t\right) B(t) B^{T}(t) \Phi^{T}\left(t_{0}, t\right) d t
$$

Controllability, time invariant case

Discrete time

Iterating the state equation gives

$$
R\left(t_{0}, t_{1}\right) U=z
$$

where

$$
\begin{aligned}
& U=\left[u^{T}\left(t_{1}-1\right) \ldots u^{T}\left(t_{0}\right)\right]^{T} \\
& z=x\left(t_{1}\right)-A\left(t_{1}-1\right) \cdots A\left(t_{0}\right) x\left(t_{0}\right) \\
& R\left(t_{0}, t_{1}\right)=\left[B\left(t_{1}-1\right) A\left(t_{1}-1\right) B\left(t_{1}-2\right) \ldots\right. \\
& \left.\quad \ldots \quad A\left(t_{1}-1\right) \cdots A\left(t_{0}+1\right) B\left(t_{0}\right)\right]
\end{aligned}
$$

It is possible to move from $x\left(t_{0}\right)$ to $x\left(t_{1}\right)$ in the time interval $\left[t_{0}, t_{1}\right]$ if and only if z is in the range space of $R\left(t_{0}, t_{1}\right)$.
The minimum value of $U^{T} U$ is $z^{T}\left(R R^{T}\right)^{-1} z . R R^{T}$ thus corresponds to the continuous time controllability Gramian.

```
Torkel Glad
Tinear Systems 2014, Lecture 3

\section*{Change of state variables}
\[
\dot{x}=A x+B u, \quad y=C x, \quad x=T \bar{x}, \quad T \text { nonsingular }
\]
gives
\[
\begin{aligned}
\dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u, & y=\bar{C} x \\
& \bar{A}=T^{-1} A T, \bar{B}=T^{-1} B, \bar{C}=C T, \overline{\mathrm{C}}=T^{-1} \mathbb{C}
\end{aligned}
\]

Controllability is thus preserved under this similarity transformation.
Theorem Let the rank of \(\mathcal{C}\) be \(r\). Then \(T\) can be chosen so that
\[
\bar{A}=\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
0 & \bar{A}_{22}
\end{array}\right), \quad \bar{B}=\binom{\bar{B}_{11}}{0}
\]
where \(\bar{A}_{11}\) is \(r \times r, \bar{B}_{11}\) is \(r \times m\) and \(\bar{A}_{11}, \bar{B}_{11}\) controllable.
Note: The partition of eigenvalues between \(\bar{A}_{11}\) and \(\bar{A}_{22}\) is unique: "controllable" and "uncontrollable" eigenvalues
```

Torkel Glad

```

Linear Systems 2014, Lecture 3

\section*{The Kalman decomposition theorem}

\section*{PBH tests}
\(R\) range space of controllability matrix; \(N\) null space of observability matrix
\[
T=\left[\begin{array}{llll}
T_{1} & T_{2} & T_{3} & T_{4}
\end{array}\right]
\]
where \(T_{2}\) basis for \(R \cap N,\left[T_{2}, T_{4}\right]\) basis for \(N,\left[T_{1}, T_{2}\right]\) basis for \(R\). Then
\[
\begin{aligned}
& \dot{z}=\left[\begin{array}{cccc}
\tilde{A}_{11} & 0 & \tilde{A}_{13} & 0 \\
\tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24} \\
0 & 0 & \tilde{A}_{33} & 0 \\
0 & 0 & \tilde{A}_{43} & \tilde{A}_{44}
\end{array}\right] z+\left[\begin{array}{c}
\tilde{B}_{1} \\
\tilde{B}_{2} \\
0 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{cccc}
\tilde{C}_{1} & 0 & \tilde{C}_{3} & 0
\end{array}\right]
\end{aligned}
\]
i.e. system decomposed into controllable-observable, controllable-unobservable, uncontrollable-observable and uncontrollable-unobservable parts.
```

Torkel Glad
Linear Systems 2014, Lecture 3

```

AUTOMATC CONTROL
REGLERTEKNIK
\begin{tabular}{l} 
AUTOMATIC CONTROL \\
REGLERTEKNIK \\
\hline
\end{tabular}
Torkel Glad

Linear Systems 2014, Lecture 3

\section*{Nonlinear stabilizability}
\[
\dot{x}=f(x, u), \quad f\left(x_{0}, u_{0}\right)=0
\]

Is it possible to find a feedback that gives asymptotic stability at \(x_{0}\) ?
■ Linearization around \(x_{0}, u_{0}\) has all "uncontrollable" eigenvalues strictly in left half plane \(\Rightarrow\) possible.

■ Linearization around \(x_{0}, u_{0}\) has an "uncontrollable" eigenvalue strictly in right half plane \(\Rightarrow\) impossible.
■ Difficult case: "uncontrolable" eigenvalues on imaginary axis.

\footnotetext{
Torkel Glad
Linear Systems 2014, Lecture 3
}```

