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Chapter 1

Solving the system
equations

1.1 An algorithm

Consider a nonlinear system

ẋ = f(t, x, u) (1.1)

where x is an n-vector. If we want a solution for a particular time function u(t)
we might as well include u in the time variability and study the system

ẋ = f(t, x) (1.2)

Suppose we want to solve for a certain initial condition x0. We then have

ẋ = f(t, x), x(t0) = x0 (1.3)

It turns out that it is more convenient to analyze the equivalent integral equation

x(t) = x0 +

∫ t

t0

f
(
τ, x(τ)
)
dτ (1.4)

This equation has a form that immediately suggests a method of successive
approximations to get a solution. Let xj(t) be the approximation at the j:th
iteration. Then the next iterate is defined by

xj+1(t) = x0 +

∫ t

t0

f
(
τ, xj(τ)

)
dτ (1.5)

The natural initialization of the iteration is

x0(t) = x0 (1.6)

Consider therefore t- and x-values satisfying

t0 ≤ t ≤ t1, |x− x0| ≤ b (1.7)
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Assume that for all t and x satisfying (1.7) it is true that

|f(t, x)| ≤M (1.8)

|f(t, x1)− f(t, x2)| ≤ Λ|x1 − x2| (1.9)

In (1.8) and (1.9) the vertical bars denote the Euclidian vector norm. The
inequality (1.9) is usually called a Lipschitz condition on f .

The basic existence and uniqueness facts are given by the following theorem.

Theorem 1.1 A differential equation (1.3), where f is continuous and satisfies
(1.8), (1.9) in (1.7), has a unique solution on the interval t0 ≤ t ≤ t0 + a if
a > 0 is small enough. The iteration defined by (1.5), (1.6) converges to that
solution.

Proof.

a) We show that
|xn(t)− x0| ≤ b; t0 ≤ t ≤ t0 + a

for all n, provided a is chosen small enough. Obviously this is true for n = 0.
Suppose it is known for all integers up to n. Then

|xn+1(t)− x0| ≤
∫ t

t0

|f(τ, xn(τ))|dτ ≤M

∫ t

t0

dτ ≤ aM ≤ b

provided a ≤ b/M .

b) We estimate the distance between the iterates. Having shown a) we know
that we can apply (1.8), (1.9) to all the xn. We will use the notation

||v|| = max
t0≤t≤t0+a

|v(t)| (1.10)

Consider the difference between two iterates

|xn+1(t)− xn(t)| ≤
∫ t

t0

|f(τ, xn(τ)) − f(τ, xn−1(τ))| dτ ≤

≤ Λ

∫ t

t0

|xn(τ) − xn−1(τ)| dτ ≤ aΛ||xn − xn−1|| = θ||xn − xn−1|| (1.11)

We choose a small enough to have θ = aΛ < 1.

c) We show that the iterations converge to something. Using the estimate of b)
repeatedly we get

||xn+1 − xn|| ≤ θ||xn − xn−1|| ≤ . . . ≤ θn||x1 − x0||
If m > n then

||xm−xn|| ≤ ||xm−xm−1||+· · ·+||xn+1−xn|| ≤ (θm−1+. . .+θn)||x1−x0|| ≤
≤ θn

1− θ
||x1 − x0|| (1.12)

This expression converges to zero as n goes to infinity and {xn} is thus a Cauchy
sequence. In particular, xn(t), for fixed t, is a Cauchy sequence of real numbers.
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It then has to converge to some value x(t). Since this holds for all t in the
chosen interval, we have shown that

xn(t) → x(t), t0 ≤ t ≤ t0 + a,

for some function x(t).

d) Show that x is continuous and satisfies (1.4). Since

|x(t+h)−x(t)| ≤ |x(t+h)−xn(t+h)|+ |xn(t+h)−xn(t)|+ |xn(t)−x(t)| ≤
≤ 2||x− xn||+ |xn(t+ h)− xn(t)| (1.13)

and each xn is continuous, it follows that x is a continuous function.

Consider

|xn(t)−x0−
∫ t

t0

f
(
τ, x(τ)
)
dτ | ≤
∫ t

t0

|f(τ, xn−1(τ))−f(τ, x(τ))| dτ ≤ θ||xn−1−x||

It follows that

xn(t) → x0 +

∫ t

t0

f
(
τ, x(τ)
)
dτ

as n→ ∞. As xn → x it follows that x satisfies (1.4).

e) Show that x is a unique solution. Suppose there are two solutions x and z.
Then using the same reasoning as in step b),

||x− z|| ≤ θ||x − z||

Since θ < 1, this implies that ||x− z|| = 0 and consequently that x = z. �

Remark 1.1 If f is continuous but does not satisfy the Lipschitz condition
(1.9), then one can still prove existence but the solution is not necessarily unique,
as shown by the differential equation

ẋ =
√
x, x(0) = 0

which has the solutions

x = 0, x =
t2

4

Remark 1.2 Theorem 1.1 guarantees only local existence, since a has to be
chosen small enough. In general there is no guarantee that a solution exists
over an arbitrarily large time interval, as shown by the differential equation.

ẋ = x2, x(0) = 1

The solution is

x =
1

1− t

which only exists for t < 1.
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1.2 Writing a nonlinear system as a (bi)linear

one

There is an interesting way of representing a nonlinear system as an infinite
dimensional linear one. Consider the nonlinear system

ẋ = −x+ x2 (1.14)

The obvious linear approximation is of course

ẋ1 = −x1 (1.15)

where x1 approximates x. We can make the representation exact by writing

ẋ1 = −x1 + x2 (1.16)

where x2 = x2. Suppose we regard x2 as a new variable and compute its
derivative. We get

ẋ2 = 2xẋ = −2x2 + 2x3 = −2x2 + 2x3

where we have introduced x3 = x3. Continuing, introducing x4 = x4, x5 = x5

etc, we get

ẋ3 = 3x2ẋ = −3x3 + 3x4

ẋ4 = 4x3ẋ = −4x4 + 4x5

...

With a matrix notation this becomes the linear system

d

dt

⎡
⎢⎢⎢⎢⎢⎣
x1
x2
x3
x4
...

⎤
⎥⎥⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎢⎢⎣
−1 1 0 0 0 0 · · ·
0 −2 −2 0 0 0 · · ·
0 0 −3 3 0 0 · · ·
0 0 0 −4 4 0 · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
x1
x2
x3
x4
...

⎤
⎥⎥⎥⎥⎥⎦ (1.17)

with an infinite dimensional state vector. If (1.17) is initialized with x1(0) =
x(0), x2(0) = x(0)2, x3(0) = x(0)3 etc. we ought to get the same solution as
for the nonlinear system (1.14), provided the infinite dimensional calculations
implied by (1.17) make sense. The linear system (1.17) is called a Carleman
linearization of (1.14). Of course it is possible to look at truncated versions of
the Carleman linearization, e.g. the system

d

dt

⎡
⎣x1x2
x3

⎤
⎦ =
⎡
⎣−1 1 0

0 −2 −2
0 0 −3

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦

This system should be a better approximation of (1.14) than the straightforward
linear approximation (1.15).

Next consider the situation with a control signal present

ẋ = −x+ x2 + u (1.18)
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The straightforward linear approximation now becomes

ẋ1 = −x1 + u (1.19)

Introducing x2 = x2, x3 = x3 etc. gives

ẋ2 = 2xẋ = −2x2 + 2x3 + 2xu = −2x2 + 2x3 + 2x1u

This no longer a linear system, due to the term 2x1u. If we continue the
calculations of ẋ3, ẋ4,.. we get the infinite system

d

dt

⎡
⎢⎢⎢⎢⎢⎣
x1
x2
x3
x4
...

⎤
⎥⎥⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎢⎢⎣
−1 1 0 0 0 0 · · ·
0 −2 −2 0 0 0 · · ·
0 0 −3 3 0 0 · · ·
0 0 0 −4 4 0 · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
x1
x2
x3
x4
...

⎤
⎥⎥⎥⎥⎥⎦+

u

⎡
⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 · · ·
2 0 0 0 0 0 · · ·
0 3 0 0 0 0 · · ·
0 0 4 0 0 0 · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
x1
x2
x3
x4
...

⎤
⎥⎥⎥⎥⎥⎦+
⎡
⎢⎢⎢⎢⎢⎣
1
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎦u (1.20)

This is an infinite dimensional bilinear system, sometimes called the Carleman
bilinearization. The general form of an n-dimensional bilinear system with a
scalar input is

ẋ = Ax+ u Dx+Bu (1.21)

where x, B are n-vectors and A, D are n× n-matrices. Of course it is possible
to construct truncated versions of (1.20), e.g.

d

dt

⎡
⎣x1x2
x3

⎤
⎦ =
⎡
⎣−1 1 0

0 −2 −2
0 0 −3

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦+ u

⎡
⎣0 0 0
2 0 0
0 3 0

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦+
⎡
⎣10
0

⎤
⎦u (1.22)

To get a Carleman bilinearization of a system with more than one state
variable is in principle straightforward. If we have two states x1 and x2 we
have to consider time derivatives of x21, x1x2 and x22 to get a second order
bilinearization. For a third order bilinearization we need derivatives of x31, x

2
1x2,

x1x
2
2, x

3
2 and so on. Let us consider an example.

Example 1.1 Consider a very simplified model for velocity control of an air-
craft. If the velocity is x1 and the mass normalized to 1, then

ẋ1 = x2 − f(x1) (1.23)

where x2 is the engine thrust and f(x1) is the aerodynamic drag. A simplified
engine model is just a time constant from pilot command u to engine thrust:

ẋ2 = −x2 + u (1.24)
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Together (1.23) and (1.24) form a model of the aircraft velocity control. Now
assume that x1 and x2 are deviations from a nominal velocity and thrust, and
approximate f with f(x1) = x1 + x21, giving the model

ẋ1 = −x1 − x21 + x2

ẋ2 = −x2 + u
(1.25)

Introducing z1 = x1, z2 = x2, z3 = x21, z4 = x1x2 and z5 = x22 we have

ż3 = 2x1ẋ1 = −2x21 − 2x31 + 2x1x2 = −2z3 + 2z4 − 2x31

ż4 = ẋ1x2 + x1ẋ2 = −2x1x2 − x21x2 + x22 + x1u = −2z4 + z5 + z1u− x21x2

ż5 = −2x22 + 2x2u = −2z5 + 2z2u

Neglecting third order terms we get the following truncated Carleman bilin-
earization.

ż =

⎡
⎢⎢⎢⎢⎣
−1 1 −1 0 0
0 −1 0 0 0
0 0 −2 2 0
0 0 0 −2 1
0 0 0 0 −2

⎤
⎥⎥⎥⎥⎦ z + u

⎡
⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 2 0 0 0

⎤
⎥⎥⎥⎥⎦x+

⎡
⎢⎢⎢⎢⎣
0
1
0
0
0

⎤
⎥⎥⎥⎥⎦u

�

The generalization of Carleman bilinearizations to nonlinear systems of the
form

ẋ = f(x) + g(x)u, y = h(x)

is straightforward. Let x(j) denote the vector of all homogeneous degree j
monomials in x, i. e.

x(1) = x

x(2) = (x21 x1x2 . . . x1xn x22 x2x3 . . . x
2
n)

T

x(3) = (x31 x21x2 x21x3 . . . x32 x
2
2x3 . . . x3n)

T

...

Proposition 1.1 Consider a system

ẋ = f(x) + u g(x), y = h(x) (1.26)

where u and y are scalars. Assume that f(0) = 0 and h(0) = 0, i. e. the origin
is an equilibrium corresponding to u = 0 and y = 0. Also assume that f and g
are analytic, i. e. they can be expanded into convergent power series:

f(x) = F1x+ F2x(2) + F3x(3) + · · ·
g(x) = g(0) +G1x+G2x(2) +G3x(3) + · · ·
h(x) = H1x+H2x(2) +H3x(3) + · · ·
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where the Fi, Gi and Hi are matrices of suitable dimensions. Then the Carleman
bilinearization of the system has the form

ż =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 . . .
0 A21 A23 . . .
0 0 A33 . . .

0 0 0
. . .

...
...

0 0 0 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
z +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1 G2 G3 . . .
B20 B21 B22 . . .
0 B30 B31 . . .
0 0 B40 . . .
...

...
...

. . .

0 0 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
z u+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(0)
0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u (1.27)

where the elements of the j:th block row are obtained by differentiating x(j). The
output equation is

y =
[
H1 H2 H3 . . .

]
z (1.28)

where z represents the vector

z =
[
xT xT(2) xT(3) · · ·

]T
(1.29)

Proof. The expression for y follows immediately from the series expansion of
h. Likewise the first row of (1.27) follows from the expansions of f and h. Now
consider the time derivative of a degree k monomial

d

dt

(
xj11 · · ·xjnn

)
= j1x

j1−1
1 · · ·xjnn ẋ1 + · · ·+ jnx

j1
1 · · ·xjn−1

n ẋn

The right hand side of this expression is a sum of degree k − 1 monomials
multiplied by rows of f(x) + ug(x). Terms not containing u will then be of
degree k or higher while terms containing u will be of degree k− 1 or higher. �

1.3 Exercises

1.1 Apply the iteration (1.5) to the differential equation

ẋ = 1 + x2, x(0) = 0

What do the iterations converge to?

1.2 Compute the second order Carleman bilinearization of the system

ẋ1 = x2

ẋ2 = −x2 + x22 + u

1.3 Compute the second order Carleman bilinearization of the system

ẋ1 = x22

ẋ2 = u
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Chapter 2

Observability

In dynamical systems there are often physical variables that are not directly
measured. In many situations it is important to know if their values can be
computed from the measurements. Consider for example the system

ẋ1 = x22, ẋ2 = 1, y = x1 (2.1)

The variable x1 is directly measured. By differentiating we get

ẏ = x22

This does not completely determine x2 unless we know its sign a priori. However,
by differentiating once more we get

ÿ = 2x2

which determines x2 precisely. The example illustrates the standard method of
analyzing observability of nonlinear systems — compute enough derivatives of
the output and try to determine the state from them. Note that this method
only determines whether it is possible to compute the state in principle. To do
the computation in practice, when the output is always to some extent corrupted
by noise, might require different methods. To proceed it is necessary to define
observability more precisely.

2.1 Definition of observability.

Let the system description be

ẋ = f(x, u), y = h(x) (2.2)

where x is an n-vector, u an m-vector, y a p-vector and where f and h are
infinitely differentiable functions. Let the solution of the differential equation
with the initial state x0 and the input u be denoted π(t;x0, u). Two points in
the state space, x1 and x2, are said to be indistinguishable if they give rise to
the same output, i.e.

h
(
π(t;x1, u)

)
= h
(
π(t;x2, u)

)
for all t ≥ 0 and for all inputs u. The set of all points that are indistinguishable
from x is denoted I(x). The following definition of observability is now natural.

11



12 CHAPTER 2. OBSERVABILITY

Definition 2.1 The system (2.2) is observable at x0 if I(x0) = {x0}. It is
called observable if this is true for all points x0.

The disadvantage with this definition is shown by the following example.

Example 2.1 Consider the scalar system

ẋ = 1, y =

{
0 if x ≤ 0

x2 if x > 0

The points x1 = −1010 and x2 = −1− 1010 are clearly distinguishable, because,
for t > 1010 the outputs will be different. Up to that time, however, they will
be exactly the same. �

To avoid situations like this one, where it is necessary to wait for a very long
time to distinguish different states, a more demanding concept of observability
is introduced.

Definition 2.2 Let U be an open set. Two points x1 and x2 which both belong
to U are said to be U-indistinguishable if they give the same outputs in all cases
where both trajectories lie entirely in U , i.e.

h
(
π(t;x1, u)

)
= h
(
π(t;x2, u)

)
, t ∈ [t0, t1]

as soon as

π(t;x1, u) ∈ U, π(t;x2, u) ∈ U, t ∈ [t0, t1]

The set of all points that are U -indistinguishable from x0 is denoted IU (x0).
The system (2.2) is locally observable at x0 if IU (x0) = {x0} for every open
neighborhood U of x0. If this is true at every point x0, the system is said to be
locally observable.

Note that local observability is a tougher requirement than just observability.
Essentially local observability implies that it is possible to determine x from y
instantaneously, which is what one wants in observers and filters. In one way
local observability might be an unnecessarily strict condition however. In many
cases x is approximately known before measurements are made, and then it
is only necessary to use y to distinguish between states that are close to each
other. This leads to one further definition.

Definition 2.3 The system (2.2) is locally weakly observable at x0 if there
exists an open neighborhood U of x0 such that for every neighborhood V of x0
with V ⊂ U , IV (x0) = {x0}. If this is true for all points x0, the system is
locally weakly observable.

The physical interpretation of local weak observability is that the state x can be
instantaneously distinguished from other nearby states by a look at the output
y. It turns out that this is the most useful concept for nonlinear systems. One
reason for this is that there exist simple tests, as we will see.
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2.2 Testing observability.

Consider the system (2.2) and differentiate the output. This gives

ẏ = hx(x)ẋ = hx(x)f(x, u)

where hx denotes the derivative:

hx =
[

∂h
∂x1

, . . . , ∂h
∂xn

]
Define the function h(1)(x, u) = hx(x)f(x, u) and differentiate once more

ÿ = h(1)x (x, u)f(x, u) + h(1)u (x, u)u̇

Defining h(2)(x, u, u̇) = h
(1)
x (x, u)f(x, u) + h

(1)
u (x, u)u̇ and again differentiating

gives

y3) = h(2)x (x, u, u̇)f(x, u) + h(2)u (x, u, u̇)u̇ + h
(2)
u̇ (x, u, u̇)ü

Proceeding in this fashion gives a system of equations.

ẏ = h(x)

ẏ = h(1)(x, u)

ÿ = h(2)(x, u, u̇)

...

y(N) = h(N)(x, u, u̇, . . . , u(N−1))

(2.3)

where the h(i) are recursively defined by

h(i+1) = h(i)x f + h(i)u u̇+ · · ·+ h
(i)

u(i−1)u
(i), h(0) = h (2.4)

In principle (2.3 ) gives a test for observability: If it is possible to find an N
such that (2.3 ) can be solved for x (with u, y and their derivatives regarded as
known) then the system is locally observable. If we can show that (2.3) can be
solved locally, then we get local weak observability.

Since it is difficult to analyze nonlinear systems of equations, one often looks
at the linearized version of (2.3), i.e. at the Jacobian

J(x, u, . . . , u(N−1)) =

⎡
⎢⎢⎢⎣

hx(x)

h
(2)
x (x, u, u̇)

...

h
(N)
x (x, u, u̇, . . . , u(N−1))

⎤
⎥⎥⎥⎦ (2.5)

This gives a basic observability test.

Theorem 2.1 Suppose there is a choice of N and u such that J(x0, u, . . . , , u
(N−1))

has full rank. Then the system is locally weakly observable at x0.
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Proof. Consider definition 2.3. If there is some point x̄ which is indistinguish-
able from x0, then we must have

y = h(x0) = h(x̄)

ẏ = h(1)(x0, u) = h(1)(x̄, u)

...

y(N) = h(N)(x0, u, u̇, . . . , u
(N−1)) = h(N)(x̄, u, u̇, . . . , u(N−1))

since the same output function y(t) is generated from both points. The nonlinear
system of equations, whose Jacobian is J , thus has two solutions. Since J has
full rank, the implicit function theorem shows that this is impossible if the set
U of definition 2.3 is chosen small enough. �

Example 2.2 Consider the system

ẋ1 = x2, ẋ2 = 0, y = x21

We get

h(0) = x21, h(1) = 2x1x2, h(2) = 2x22,

and note that

h(k) = 0, k > 2

There is thus no point in computing J for N greater than 2. For N = 2 we get

J =

⎡
⎣2x1 0
2x2 2x1
0 4x2

⎤
⎦

This matrix has full rank except for x1 = x2 = 0. The system is thus locally
weakly observable at every point except possibly the origin. In general it would
not be possible to draw any further conclusion. In this particular case the
system is in fact not locally weakly observable at the origin. We can verify this
by actually solving the differential equation for the initial condition x1(0) = x10,
x2(0) = x20, getting

y(t) = (x10 + x20t)
2

We see that every point x10, x20 is indistinguishable from its mirror point
−x10,−x20 (reflection in the origin). Since every neighborhood of the origin
contains pairs of points that are indistinguishable in this way, the system is
not locally weakly observable at the origin. We also see that the system is not
globally observable. �

2.3 Testing observability using Lie derivatives.

There is a variation of the observability test represented by Theorem 2.1 which
uses Lie derivatives. The Lie derivative of the scalar function φ(x) in the direc-
tion given by the n-vector f(x) is defined by

(Lfφ)(x) = φx(x)f(x)
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Now consider the system (2.2), let the control be constant, u = u1 and define
f1(x) = f(x, u1). Let x(0) = x0. Then the time derivatives of the output can
be written in terms of the Lie derivative:

ẏ = hxẋ = hxf1 = Lf1h

ÿ = (Lf1h)xf1 = L2
f1h

...

y(k) = (Lk
f1h)

(2.6)

If the control is changed between different constant values, a slightly more
involved formula is the result.

Proposition 2.1 If the system is initialized at x0 and the control signal is u1
for t1 units of time, u2 for t2 units of time,...,uk for tk units of time, then(

∂k

∂t1 · · ·∂tk y(t1 + t2 + · · ·+ tk)

)∣∣∣∣
t1=···=tk=0

= (Lf1Lf2 . . . Lfkh) (x0)

Proof. If k = 1 this is the first row of (2.6). Let k = 2. For a general
differentiable function of two variables, φ(t1, t2) it follows from definitions that

∂2φ

∂t1∂t2

∣∣∣∣
t1=t2=0

=
∂

∂t1

(
∂φ

∂t2

∣∣∣∣
t2=0

)∣∣∣∣∣
t1=0

Using this fact for the function

y(t1 + t2) = h(π2(t2, π1(t1, x0)))

(where π1 and π2 are the solutions corresponding to u1 and u2 respectively) we
compute first

∂

∂t2
h(π2(t2, π(t1, x0)))

∣∣∣∣
t2=0

= (Lf2h)(π1(t1, x0))

using (2.6). Using again (2.6), with h replaced by Lf2h(π1(t1, x0)), we get

∂

∂t1
Lf2h(π1(t1, x0))

∣∣∣∣
t1=0

= (Lf1Lf2h)(x0)

This quantity is then equal to

∂2

∂t1∂t2
y(t1 + t2)

∣∣∣∣
t1=t2=0

For a general k the proposition is proved by repeated use of the same argument.
The extension to a vector valued y is straightforward. �
It is now natural to introduce some notation for the functions that are generated
by successive Lie differentiation.

Definition 2.4 Let G denote the collection of all functions of the form

h, Lf1h, Lf2h, . . . , Lf1Lf2h, . . . , Lf1Lf2 · · ·Lfkh, . . .

with the fi corresponding to all possible choices of constant controls ui.
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The connection between this set of functions and observability is given by the
following fact.

Proposition 2.2 Let x1 and x2 be two points in the open set U . If they are
U -indistinguishable then not only is h(x1) = h(x2) but also

φ(x1) = φ(x2) for all φ ∈ G

Proof. Let the control signal be chosen as in Proposition 2.1 and let y1 and y2
be the outputs with the initial conditions x1 and x2 respectively. Since

y1(t1 + t2 + · · ·+ tk) ≡ y2(t1 + t2 + · · ·+ tk)

successive derivatives with respect to ti are also equal. Then it follows from
Proposition 2.1 that

(Lf1Lf2 . . . Lfkh) (x1) = (Lf1Lf2 . . . Lfkh) (x2)

�
As in analyzing (2.3) it is easier to study the Jacobians of the functions in G.

Definition 2.5 The system (2.2) satisfies the observability rank condition at
x0 if among all the row vectors of the form φx, where φ is any element in G,
there are n linearly independent elements.

Finally we are ready to state a criterion for local weak observability in terms of
repeated Lie derivatives.

Theorem 2.2 If the system (2.2) satisfies the observability rank condition at
x0, then it is locally weakly observable at x0.

Proof.. Choose n functions φ1,..,φn in G such that their derivatives are linearly
independent. Form the function

Φ =

⎛
⎜⎝ φ1

...
φn

⎞
⎟⎠

Then the Jacobian of Φ is nonsingular at x0. From the implicit function theorem
it then follows that there is a neighborhood V of x0 such that Φ restricted to V
is one to one. In particular there can not be two different points in V such that
Φ(x1) = Φ(x2). Proposition 2.2 then shows that there are no indistinguishable
points in V . �

2.4 Exercises

2.1 How is (2.3) and Theorem 2.1 changed if f and h are time-varying? Spe-
cialize to a linear time-varying system and show that this gives a proof of The-
orem 9.10 in Rugh.
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2.2 At what points are the systems below locally weakly observable? Are they
observable,? Are they locally observable?
a.

ẋ = u

y = x2

b.

ẋ = u

y = sinx

c.

ẋ1 = x2

ẋ2 = 0

y = x31

d.

ẋ =

[−2 1
1 −2

]
x+ u

[
0 0
1 0

]
x

y =
[
1 1
]
x

2.3 Consider the aircraft speed dynamics (Example 1.1) problem.

ẋ1 = x2 − f(x1)

ẋ2 = −x2 + u

y = x1

Is the system locally weakly observable? What happens if instead the thrust x2
is measured?

2.4 A ship that moves with a constant speed in a straight line is observed with
a radar that measures distance only. Let x1 and x2 be the position of the ship
in rectangular coordinates, v its speed through water, and θ its heading angle
(a known constant). If y is the radar measurement, the dynamical equations
are

ẋ1 = v cos θ

ẋ2 = v sin θ

v̇ = 0

y =
√
x2 + y2

a. Is the system locally weakly observable?
b. What happens if the heading angle is constant but unknown?
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Chapter 3

Controllability.

For linear systems it is well known that the concept of controllability plays a
key role in the understanding of many phenomena. One of the great advances
in nonlinear systems in recent years is the development of a theory for con-
trollability and reachability. We will begin by giving a simple example where
controllability is important.

Example 3.1 Consider a simple model of the motion of a four-wheeled vehicle
as shown in figure 3.1 Let u1 be the angular velocity with which the forward
wheels are turned and let u2 be the speed of the vehicle. If the motion is slow,
inertial effects can be neglected, and u1 and u2 can be regarded as inputs. The
model is then

d

dt

⎛
⎜⎜⎝

θ
φ
ξ
η

⎞
⎟⎟⎠ = u1

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠+ u2

⎛
⎜⎜⎝

0
sin θ

cos(θ + φ)
sin(θ + φ)

⎞
⎟⎟⎠ (3.1)

We note that the model has the form

ẋ = u1g1(x) + u2g2(x) (3.2)

We know from experience that a vehicle like this is completely controllable: It is
possible to get it into any position with any orientation, by a suitable choice of
u1 and u2. Suppose however that we were given the task of writing a computer
program that could compute the u1 and u2 that would take the vehicle from an
arbitrary position and orientation to another arbitrary position and orientation.
This is an example of a motion planning problem. It is not completely trivial
even in a simple case like this. �

3.1 The basic ideas of controllability

Suppose we have a system described by

ẋ = f(x, u) (3.3)

and that we are considering a number of different constant control signals: u =
u1, u = u2 etc. Let us use the notation

fj(x) = f(x, uj)

19
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ξ

η

P

θ

φ

Figure 3.1: Vehicle geometry

Suppose we start at the point x0 at t = 0. In what directions is it possible to
move? Suppose the control uj is chosen. Then a Taylor expansion gives

x(t) = x0 + tẋ(0) +O(t2) = x0 + tfj(x0) +O(t2)

As expected we see that we can move in all the directions fj(x0). Now consider
what happens when the control u1 is applied during a time interval of length
h1, followed by u2 during h2 time units. We get

x(h1) = x0 + h1f1(x0) +O(h21)

x(h2) = x(h1) + h2f2(x(h1)) +O(h22)

Since

f2(x(h1)) = f2(x0) +O(|x(h1)− x0|) = f2(x0) +O(h1)

we get

x(h2) = x0 + h1f1(x0) + h2f2(x0) +O(h2)

where h = max(h1, h2). Generalizing this derivation we can show that it is
possible to move from x0 in all directions of the form

h1f1(x0) + h2f2(x0) + · · ·+ hmfm(x0) (3.4)

where h1,..,hm are positive numbers (since it is in general not possible to go
backwards in time). Does (3.4) give all possible directions? To investigate that
we have to consider higher order Taylor expansions. Consider

ẋ = fj(x), x(0) = z

The second order Taylor expansion gives

x(t) = z + tfj(z) +
t2

2
fj,x(z)fj(z) +O(t3)
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Now suppose that the initial point z has the Taylor expansion

z = x0 + td1 + t2d2 +O(t3)

Then, since
fj(z) = fj(x0) + tfj,x(x0)d1 +O(t2)

fj,x(z) = fj,x(x0) +O(t)

we get

x(t) = x0+ t(d1+ fj(x0))+ t2(d2 + fj,x(x0)d1 +
1

2
fj,x(x0)fj(x0))+O(t3) (3.5)

We can now use this formula to check the following scenario: Suppose that the
controls u1, u2, u3 and u4 are used after each other, each for h units of time.
Suppose also that it is possible to choose u3 and u4 in such a way that

f3(x) = −f1(x), f4(x) = −f2(x)
We then get successively, using (3.5) (all quantities are evaluated at x0)

x(h) = x0 + hf1 + h2
1

2
f1,xf1 +O(h3)

x(2h) = x0 + h(f1 + f2) + h2(
1

2
f1,xf1 + f2,xf1 +

1

2
f2,xf2) +O(h3)

x(3h) = x0+h(f1+f2+f3)+h
2(
1

2
f1,xf1+f2,xf1+

1

2
f2,xf2+f3,x(f1+f2)+

1

2
f3,xf3)+O(h

3)

Using f3(x) = −f1(x) gives

x(3h) = x0 + hf2 + h2(f2,xf1 +
1

2
f2,xf2 − f1,xf2) +O(h3)

Finally

x(4h) = x0+h(f2+f4)+h
2(f2,xf1+

1

2
f2,xf2−f1,xf2+f4,xf2+ 1

2
f4,xf4)+O(h

3)

Using f4(x) = −f2(x) then gives

x(4h) = x0 + h2(f2,xf1 − f1,xf2) + O(h3)

The expression which comes up above motivates the following definition

Definition 3.1 The Lie bracket of the vector fields f(x) and g(x) is

[f, g](x) = gx(x)f(x) − fx(x)g(x)

Note that the Lie bracket is itself a new vector field. We can now formulate the
following result of our investigation.

Proposition 3.1 A movement along f1(x), then f2(x), then −f1(x) and finally
along −f2(x), each for h units of time, results in the position

x(4h) = x0 + h2[f1, f2](x0) +O(h3)
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The proposition shows that it is indeed possible to move along directions differ-
ent from the fj themselves.

Example 3.2 Let us continue Example 3.1. Introducing

f1 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

and

f2 =

⎛
⎜⎜⎝

0
sin θ

cos(θ + φ)
sin(θ + φ)

⎞
⎟⎟⎠

corresponding to the control signals u = (1 0)T and u = (0 1)T respectively, we
get, with x0 = 0

f1(x0) =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , f2(x0) =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

Now consider the Lie Bracket

[f1, f2] = f2,xf1 − f1,xf2 =

⎛
⎜⎜⎝

0 0 0 0
− sin θ 0 0 0

− sin(θ + φ) − sin(θ + φ) 0 0
cos(θ + φ) cos(θ + φ) 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ =

=

⎛
⎜⎜⎝

0
cos θ

− sin(θ + φ)
cos(θ + φ)

⎞
⎟⎟⎠

In particular

[f1, f2](x0) =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ (3.6)

We see that we have found a movement which is linearly independent of the
previous ones. From Proposition 3.1 we see that the Lie bracket [f1, f2] cor-
responds to a small turning of the front wheels, followed by a small forward
movement, followed by a turning back of the front wheels, followed by a small
backwards movement. Our intuition tells us that this should result in a small
turn (increase of φ) and a small increase in the y coordinate. This it precisely
the result in (3.6). We could now consider more complicated movements. What
happens if a small movement forwards is followed by the maneuver just de-
scribed, followed by a small movement backwards, followed by the reverse of
the maneuver? Applying Proposition 3.1 twice, we see that we should consider

[f2, [f1, f2]] =

⎛
⎜⎜⎝

0
0

sinφ
− cosφ

⎞
⎟⎟⎠
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In particular we have

[f2, [f1, f2]](x0) =

⎛
⎜⎜⎝

0
0
0

−1

⎞
⎟⎟⎠

We have thus discovered a set of movements that leaves everything unchanged,
except that the vehicle moves to the right. �
We have seen from the example that the Lie bracket is useful for studying the
motion of nonlinear systems. Let us note some computational rules for Lie
brackets. They are all proved by straightforward applications of the definitions.

[a, a] = 0 (3.7)

[a, b] = −[b, a] (3.8)

[a+ b, c] = [a, c] + [b, c] (3.9)

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, (Jacobi identy) (3.10)

( A vector field that also has an operation satisfying (3.7) – (3.10) is called a
Lie algebra.)

The Lie bracket has an interesting property under coordinate transforma-
tions. Suppose we have a differential equation

ẋ = f(x)

and that we change variables to

z = T (x)

where T is an infinitely differentiable transformation that also has an infinitely
differentiable inverse (such a transformation is called a diffeomorphism):

x = S(z), x = S(T (x))

In the z variables the differential equation is satisfied by

ż = Tx(x)ẋ = Tx(x)f(x) = Tx(S(z))f(S(z)) = f̃(z)

If we have a second differential equation

ẋ = g(x)

it is in the same way transformed into

ż = g̃(z), g̃(z) = Tx(S(z))g(S(z))

Now consider the Lie bracket [f̃ , g̃]. From the definition we have

[f̃ , g̃] = g̃z f̃ − f̃z g̃ = (Txg)zTxf − (Txf)zTxg =

= TxgxSxTxf − TxgxSxTxg +

⎛
⎜⎜⎝

...
gTTixxf

...

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

...
fTTixxg

...

⎞
⎟⎟⎠ = Tx[f, g]

We see that the Lie bracket of two vector fields undergoes the same linear
transformation as the vector fields themselves, when the coordinate system is
changed. We have thus proved the following proposition.
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Proposition 3.2 Consider a set of vector fields fj, forming the right hand side
of differential equations. If the coordinate system is changed using a diffeomor-
phism, then the fj and their Lie brackets

fi, . . . , [fi, fj], . . . , [fi, [fj , fk]], . . . , [. . . , [fi, fj], . . .]

are all transformed by the same nonsingular linear transformation. Tests of
linear dependence or independence thus give the same result in any coordinate
system.

3.2 Controllability of general systems.

Using the ideas of the previous section we will now discuss controllability of
systems of the form

ẋ = f(x, u) (3.11)

where x is an n-vector and f is assumed to be infinitely differentiable. As in
the previous section we look at vectors

fj(x) = f(x, uj)

correspond to a number of constant control signals uj.
We make the following definitions.

Definition 3.2 AU (x0) is the reachable set from x0, while remaining in the set
U , i.e. all points xf for which there exists a time interval 0 ≤ t ≤ tf and a
control u such that x(0) = x0, x(tf ) = xf and x(t), 0 ≤ t ≤ tf lies in U .

Definition 3.3 The system (3.11) is said to be controllable if ARn(x) is Rn

for any x.

Definition 3.4 The system (3.11) is said to be locally accessible at x if AU (x)
has a nonempty interior for any neighborhood U of x.

If a system is locally accessible it means that a sphere or cube of dimension n
is contained in AU (x) so that the reachable set has “full dimension”.

Definition 3.5 The system (3.11) is said to be symmetric, if for every u there
is a ū such that f(x, ū) = −f(x, u).

Example 3.3 A system of the form

ẋ = u1g1(x) + · · ·+ umgm(x)

is symmetric (just change signs of the uj). Descriptions of this type are typical
in motion planning problems, see Examples 3.1 and 3.2. �

Remark 3.1 Systems of the form

ẋ = f(x) + u1g1(x) + · · ·+ umgm(x)

typical for control applications, are in general not symmetric, due to the presence
of the drift term f(x).
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The significance of symmetric systems from the controllability point of view
is related to the observation that in equation (3.4) only positive values of the hi
are allowed. Changing the sign of hi is equivalent to the replacement of fi with
−fi. For a symmetric system this is always possible, so that the sign restriction
on the hi effectively dissappears. For a symmetric system it is thus possible
to move in all directions that are linear combinations of the vectors fi. For a
symmetric system Proposition 3.1 can always be used, since −f1 and −f2 are
available if f1 and f2 are. It follows that it is possible to control the system as if
the right hand side of (3.11) contained not only fi = f(x, ui) but also all vectors
of the form [fi, fj ]. But then Proposition 3.1 can be applied again to show that
vectors of the form [fi, [fj , fk]], [[fi, fj], [fk, fl]] have to be considered. One is
led to the following definition.

Definition 3.6 The Lie algebra generated by {fi = f(x, ui)} consists of all
vectors that can be generated by taking linear combinations and successive Lie
brackets of the vectors fi. It is denoted {fi}LA.

Intuitively it is possible to move in any direction if this Lie algebra has enough
elements. This leads to the following definition

Definition 3.7 The system (3.11) is said to satisfy the controllability rank con-
dition at x0 if there are n linearly independent elements in {fi}LA(x0) , where
fi(x0) = f(x0, ui) for all possible choices of ui.

Remark 3.2 Using Jacobi’s identity one can show that each element of {fi}LA(x0)
can be written as a linear combination of iterated Lie brackets of the form

[fj , [fj−1, [. . . , [f2, f1] . . .]]]

Example 3.4 In Example 3.2 we showed that

f1(x0) =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , f2(x0) =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , [f1, f2](x0) =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ , [f2, [f1, f2]](x0) =

⎛
⎜⎜⎝

0
0
0

−1

⎞
⎟⎟⎠

Clearly the controllability rank condition is satisfied at the origin. �

Using the controllability rank condition it is easy to formulate the main con-
trollability results.

Theorem 3.1 Let the controllability rank condition be satisfied at x0 for the
system (3.11). Then the system is locally accessible at x0.

Proof. (sketch) Take an fi which is nonzero at x0. (If all the fi are zero at
x0, it is easy to see that the controllability rank condition can not be satisfied.)
Let π(t, x0) be the solution of ẋ = fi starting at x0. If n = 1 we are finished,
since the set π(t, x0) for t > 0 clearly has a nonempty interior. If n > 1 consider
solutions of ẋ = fk, k 
= i, with x(0) = π(t1, x0) for t1-values close to 0. There
must be some fk such that fk is not tangent to the curve π(t1, x0) for some small
t1-value. (Assume this is not the case. Introduce a coordinate system where the
curve π(t, x0) is the first coordinate axis. In that coordinate system all the fi
would then have the form (∗0 . . .0)T along the first coordinate axis. All their Lie
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brackets would then also have that form, contradicting the controllability rank
condition.) The set γ(t, π(t1, x0)) where γ denotes the solution of ẋ = fk is then
a two-dimensional set, parameterized by t and t1, having nonempty interior. If
n > 2 we can continue the construction to higher dimensions. �
If the system is symmetric we get a stronger result.

Theorem 3.2 If a symmetric system of the form (3.11), satisfies the controlla-
bility rank condition at x0, then the reachable set AU (x0) contains a full neigh-
borhood of x0 for every neighborhood U of x0.

Proof. ( sketch ) From Theorem 3.1 we know that there exists an ε > 0 and a
point x1 such that the full n-dimensional sphere with radius ε, centered at x1
can be reached from x0. Since the system is symmetric, there is a control signal
ū on some time interval [0, t1], that reverses the motion and carries the state
from x1 back to x0. Now keep ū fixed and consider the differential equation
ẋ = f(x, ū) for starting points in the ε-sphere around x1. It follows from the
fundamental theorems on differential that the points in the sphere will be carried
onto a neighborhood of x0. �

Example 3.5 Consider the system

ẋ1 = u
ẋ2 = x21

(3.12)

If we define

f1 = f(x, 0) =

(
0
x21

)
, f2 = f(x, 1) =

(
1
x21

)
then it is clear that f1 and f2 are linearly independent at all points where x1 
= 0.
Computing some Lie brackets one gets

[f1, f2] =

(
0

−2x1

)
, [[f1, f2], f2] =

(
0
2

)
Since [[f1, f2], f2] and f2 are linearly independent everywhere, the system satis-
fies the controllability rank condition at all points. According to Theorem 3.1
the system then has the accessibility property at all points. In this case the
system is clearly not controllable, since the x2-variable can not be decreased. �

3.3 Control affine systems

Let us specialize to control systems of the form

ẋ = f(x) + g(x)u (3.13)

where x is an n-vector and u an m-vector. Let us write the system in the form

ẋ = f(x) +

m∑
i=1

uigi(x) (3.14)

to emphasize that the control variables can be seen as coefficients of the vector
fields gi. From Theorem 3.1 we immediately get
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Theorem 3.3 Consider the control affine system (3.14). Let the Lie algebra
generated by f ,g1,...,gm at x0 have full rank. Then the system is locally accessible
at x0.

Proof. Follows from Theorem 3.1. �
In our discussion of accessibility we have not included a discussion of the time
needed to reach a point. Sometimes the effect of the drift vector field f will be
to make certain points reachable only at certain times.

Example 3.6 Consider the system

ẋ =

[
1
0

]
+

[
0
1

]
u

The set of points that can be reached at time t from the origin is the vertical
line x1 = t. The system is locally accessible, since our definition allows us to
take the union of these sets for all t > 0 when calculating AU (0). However, it
is clear that our ability to control the system is severely restricted by the fact
that a given point can not necessarily be reached at a given time. �

Motivated by this example it is natural to define the following.

Definition 3.8 Let AU (x0, T ) be the points that can be reached from x0 in
precisely T units of time, with trajectories staying in U , i.e. all points xf for
which there exists a control u such that x(0) = x0, x(T ) = xf and x(t), 0 ≤ t ≤ T
lies in U .

Definition 3.9 The system (3.14) is locally strongly accessible from x0 if for
any neighborhood U of x0 the set AU (x0, T ) contains an non-empty opens subset
for any sufficiently small T > 0.

To get strong accessibility, the criterion has to be modified somewhat.

Theorem 3.4 For the system (3.14 consider the following set of Lie brackets

[hj , [hj−1, [. . . [h1, gi] . . .]]], i = 1, . . . ,m (3.15)

where the hj are taken from the set f, g1, . . . , gm. If the span of (3.15) at x0 has
full rank, then the system is locally strongly accessible from x0.

Proof. (Sketch) Introduce the extra state variable xn+1 satisfying ẋn+1 = 1,
x(0) = 0 so that xn+1 = t. The result can now be obtained by applying Theorem
3.3 to the system [

ẋ
ẋn+1

]
=

[
f(x)
1

]
+

m∑
i=1

ui

[
gi(x)
0

]

�

3.4 Exercises.

3.1 Consider the following one-wheeled vehicle (“uni-cycle”).
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ξ

η

P
θ

Suppose that the vehicle can balance on its single wheel and that it is possible
to turn the wheel with the speed u1 and to move forward with speed u2. The
dynamics is then

θ̇ = u1

ξ̇ = u2 cos θ

η̇ = u2 sin θ

What can be said about controllability/accessibility if u1, u2 are control signals?

3.2 What can be said about the controllability/accessibility of the aircraft
model of Example 1.1?

3.3 Check the controllability/accessibility of the system

ẋ1 = u1x3 + u2 (3.16)

ẋ2 = u1x1 (3.17)

ẋ3 = u1x2 (3.18)

3.4 Consider a rigid body with angular velocities xi. Assume that there is just
one control signal, which is the torque along an axis with coordinates (b1, b2, b3).
Then the system description is

ẋ1 = a1x2x3 + b1u (3.19)

ẋ2 = a2x1x3 + b2u (3.20)

ẋ3 = a3x1x2 + b3u (3.21)

where the ai are given by the moments of inertia. What can be said about
controllability and reachability, starting from x = 0?

3.5 Consider the system

ẋ = f(x) + g(x)u, f(0) = 0

Let the linearization of the system at x = 0 be controllable. Show that this im-
plies local strong accessibility. (Actually one can show that a full neighborhood
of the origin can be reached in this case.)
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3.6 Prove the statement of Remark 3.2.
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Chapter 4

Input-output descriptions –
Volterra series

For linear systems there are explicit characterizations of the output as a function
of the input like

y(t) =

∫ t

0

h(t, τ)u(τ)dτ

where h is the impulse response, or

Y (s) = G(s)U(s)

where Y , U are Laplace transformed quantities and G is the transfer function.
Is it possible to do something similar for nonlinear systems?

To get a feeling for the problem, let us for a moment discuss a single-input-
single-output discrete time system. If the system is initialized at t = 0, then we
can write

y(t) = F (t, u(0), u(1), . . . , u(t)), t = 0, 1, 2, . . .

for some function F . If F is sufficiently smooth we can make a Taylor expansion

y(t) = y0(t) +

t∑
j=0

g1(t, j)u(j) +

t∑
j=0

t∑
k=0

g2(t, j, k)u(j)u(k) + · · ·

where

y0(t) = F (t, 0, . . . , 0), g1(t, j) = ∂F/∂u(j), g2(t, j, k) =
1

2

∂2F

∂u(j)∂u(k)

Sums of discrete time variables usually correspond to integrals of continuous
time variables. It is then a reasonable guess that we should be able to obtain a
description of the form

y(t) = y0(t)+

∫ ∞

∞
h1(t, σ)u(σ)dσ+

∫ ∞

−∞

∫ ∞

−∞
h2(t, σ1, σ2)u(σ1)u(σ2)dσ1dσ2+· · ·

· · ·+
∫ ∞

−∞
. . .

∫ ∞

−∞
hn(t, σ1, . . . , σn)u(σ1) · · ·u(σn)dσ1 . . . dσn + · · · (4.1)

31
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for some class of nonlinear systems. We will assume that the variables are
defined so that u(t) = 0 corresponds to y(t) = 0 which means that y0(t) = 0.
Also we usually consider the time-invariant case where the functions hi depend
only on on the difference between the time variables:

y(t) =

∫ ∞

∞
h1(t−σ)u(σ)dσ+

∫ ∞

−∞

∫ ∞

−∞
h2(t−σ1, t−σ2)u(σ1)u(σ2)dσ1dσ2+· · ·

· · ·+
∫ ∞

−∞
. . .

∫ ∞

−∞
hn(t− σ1, . . . , t− σn)u(σ1) · · ·u(σn)dσ1 . . . dσn + · · · (4.2)

With a simple variable change this can also be written

y(t) =

∫ ∞

∞
h1(σ)u(t−σ)dσ+

∫ ∞

−∞

∫ ∞

−∞
h2(σ1, σ2)u(t−σ1)u(t−σ2)dσ1dσ2+· · ·

· · ·+
∫ ∞

−∞
. . .

∫ ∞

−∞
hn(σ1, . . . , σn)u(t− σ1) · · ·u(t− σn)dσ1 . . . dσn + · · · (4.3)

A description like (4.1), (4.2) or (4.3) is called a Volterra series for the system.
The functions hn are called kernels. If only the n:th kernel is nonzero the
system is said to be homogeneous of degree n. In this chapter we will show how
a Volterra series can be computed for a fairly general nonlinear system. We will
also look at frequency response representations of the kernels by looking at the
multivariable Laplace transform:

H(s1, . . . , sn) =

∫ ∞

0

. . .

∫ ∞

0

h(σ1, . . . , σn)e
−s1σ1 · · · e−snσndσ1 . . . dσn (4.4)

These function are sometimes referred to as higher order transfer functions.

4.1 Some simple Volterra series

For some simple systems the Volterra series can be calculated directly.

Example 4.1 Consider a multiplicative parallel connection of two linear sys-
tems with impulse responses h1 and h2 as shown below

u y
h1

h2

Π

The output signal y is given by

y(t) =

∫ ∞

−∞
h1(σ1)u(t− σ1)dσ1

∫ ∞

−∞
h2(σ2)u(t− σ2)dσ2 =

=

∫ ∞

−∞

∫ ∞

−∞
h(σ1, σ2)u(t− σ1)u(t− σ2)dσ1dσ2 (4.5)

where h(σ1, σ2) = h1(σ1)h2(σ2) . which is of the form (4.3) with only one term
in the series. The system is thus homogeneous of degree 2. �
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Example 4.2 Consider the special case of the previous example where the
linear systems are given by

h1(σ) = Δ(σ)e−σ , h2(σ) = Δ(σ)e−2σ, where

Δ(σ) =

{
1, if σ ≥ 0

0, if σ < 0

then
h(σ1, σ2) = e−(σ1+2σ2)Δ(σ1)Δ(σ2)

(The Δ:s give impulse responses that are causal) Taking the Laplace transform
gives the transfer function

H(s1, s2) =
1

(s1 + 1)(s2 + 2)

�
Now consider an example which has an infinite series.

Example 4.3 Below is a system of Wiener type, i.e. a linear system followed
by a static nonlinearity.

u yv
h atan(·)

Expanding the arctangent into its Taylor series gives

y(t) = v(t)− 1

3
v(t)3 +

1

5
v(t)5 − · · · =

∑
k odd

(−1)
k−1
2

k
v(t)k

Substituting

v(t) =

∫ ∞

−∞
h(σ)u(t− σ)dσ

gives

y(t) =
∑
k odd

(−1)
k−1
2

k

(∫ ∞

−∞
h(σ)u(t− σ)dσ

)k
Rewriting the integrals as multiple integrals in a manner analogous to (4.5) gives

y(t) =
∑
k odd

∫ ∞

−∞
· · ·
∫ ∞

−∞

(−1)
k−1
2

k
h(σ1) · · ·h(σk)u(t−σ1) . . . u(t−σk)dσ1 . . . dσk

�
As a special case we look at

Example 4.4 Consider the system of the previous example with

h(t) = Δ(t)e−t

Then, for odd n, the n:th kernel is given by

hn(σ1, . . . , σn) = (−1)
n−1
2

1

n
Δ(σ1) · · ·Δ(σn) · e−(σ1+···+σn)

while the corresponding transfer function is

Hn(s1, . . . , sn) = (−1)
n−1
2

1

n(s1 + 1) · · · (sn + 1)

�
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4.2 The Volterra series of a bilinear system

Volterra series are also easily calculated for bilinear systems. A single-input-
single-output bilinear system is given by

ẋ = Ax+ (Dx+ b)u

y = cx

x(0) = 0

(4.6)

where x is an n-vector, y and u are scalars, and A, D, b and c are matrices of
appropriate dimensions. Note that we assume an initial value of x that is zero.
The kernels of the Volterra series for this system have an appealing and simple
structure.

Theorem 4.1 The bilinear system (4.6) has a Volterra series (4.3), where the
n:th order kernel is given by

hn(σ1, . . . , σn) ={
ceAσ1DeA(σ2−σ1)D · · ·DeA(σn−σn−1)b if 0 ≤ σ1 ≤ · · · ≤ σn

0 otherwise
(4.7)

Proof. We use the change of variables x = eAtz in (4.6), which gives

Ax +Dx u+ bu = ẋ = eAtż +AeAtz

Solving for ż gives
ż = u e−AtDeAt︸ ︷︷ ︸

D̄(t)

z + e−Atb︸ ︷︷ ︸
b̄(t)

u

Using the iteration (1.5) gives

zj+1(t) =

∫ t

0

(b̄(τ) + D̄(τ)zj(τ))u(τ)dτ

Iterating gives

z1(t) =

∫ t

0

b̄(σ1)u(σ1)dσ1

z2(t) =

∫ t

0

b̄(σ1)u(σ1)dσ1 +

∫ t

0

D̄(σ1)u(σ1)

∫ σ1

0

b̄(σ2)u(σ2)dσ1dσ2

...

zn(t) =

∫ t

0

b̄(σ1)u(σ1)dσ1 + · · ·

· · ·+
∫ t

0

D̄(σ1)u(σ1) . . .

∫ σn−1

0

b̄(σn)u(σn)dσ1 · · · dσn
...

Using that
y(t) = cx(t) = ceAtz(t)
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and substituting the expressions for b̄ and D̄ gives

y(t) =

∫ t

0

ceA(t−σ1)bu(σ1)dσ1+

∫ t

0

∫ σ1

0

ceA(t−σ1)DeA(σ1−σ2)bu(σ1)u(σ2)dσ1dσ2 · · ·

· · ·+
∫ t

0

∫ σ1

0

· · ·
∫ σn−1

0

ceA(t−σ1)DeA(σ1−σ2)D · · ·

· · ·DeA(σn−1−σn)bu(σ1) · · ·u(σn)dσ1 . . . dσn + · · ·
Performing the change of variables t− σi → σi completes the proof. �
A kernel of the form (4.7) is called a triangular kernel since it is zero outside a
triangular region.

Example 4.5 Consider a heat exchanger model.

� �q qT

Th

T0

A fluid which initially has the temperature T0 flows with the flow rate q through
the heat exchanger, which is surrounded by a medium with temperature Th. It
is assumed that very good mixing takes place so that one can assume the same
temperature T at every point in the heat exchanger. If the heat capacity of the
fluid is c per unit volume and C for the whole heat exchanger, and if the heat
transfer coefficient of the walls is κ, then a heat balance gives

d

dt
(CT ) = qcT0 − qcT + κ(Th − T )

Assume that the flow rate is controlled around a nominal flow q0 so that

q = q0 − u

Then, using the numerical values

c/C = 1, κ/C = 1, Th = q0 = −T0 = 1

gives the model
Ṫ = −2T + uT + u (4.8)

where the temperature T is a state variable and the flow change u is the input.
(Note that a positive u means a decrease in flow.)

Using (4.23) we get the following kernels

h1(t1) = e−2t1 , h2(t1, t2) = e−2t2 , . . . , hn(t1, . . . , tn) = e−2tn , . . . (4.9)

�
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Example 4.6 For the bilinear system

ẋ =

(
0 1
0 0

)
x u+

(
1
1

)
u (4.10)

y = (1 0)

one has
A = 0, eAt = I

h1(t1) = ceAtb = cb = 1 (4.11)

h2(t1, t2) = ceAt1DeA(t2−t1)b = cDb = 1 (4.12)

hn(t1, . . . , tn) = cDn−1b = 0, n > 2 (4.13)

�

The last two examples show that bilinear systems might have finite or infinite
Volterra series.

4.3 Volterra series for control affine systems

Having obtained a formula for computing the Volterra series for a bilinear sys-
tems, we can use the idea of Carleman bilinearization from section 1.2 to handle
a general control affine system.

ẋ = f(x) + g(x)u, y = h(x), x(0) = 0 (4.14)

It is assumed that f(0) = 0, h(0) = 0. We can first compute an N :th truncation
of the Carleman bilinearization (1.27):

żN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 . . . FN

0 A21 A23 . . . A2,N−1

0 0 A33 . . . A3,N−2

0 0 0
. . .

...
...

0 0 . . . 0 AN,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AN

zN +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1 G2 G3 . . . GN

B20 B21 B22 . . . B2,N−1

0 B30 B31 . . . B3,N−2

0 0 B40 . . .
...

...
...

. . .

. . . 0 BN,0 BN,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
DN

zN u+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(0)
0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
bN

u

y =
[
H1 H2 H3 . . . HN

]︸ ︷︷ ︸
cN

zN

(4.15)

where zN is a truncation of z containing components corresponding to monomi-
als of degree N or lower. Using (4.23) the first N kernels can then be computed
from

hn(t1, . . . , tn) ={
cNe

AN t1DNe
AN (t2−t1)DN · · ·DNe

AN (tn−tn−1)bN if 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn

0 otherwise

n = 1, . . . , N (4.16)

The approximation achieved is shown by the following theorem.
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Theorem 4.2 Let the kernels hi be calculated from (4.16). Then there is a
positive number ε such that the output y of (4.14) is given by

y(t) =

N∑
k=1

∫ ∞

−∞
. . .

∫ ∞

−∞
hk(σ1, . . . , σk)u(t− σ1) . . . u(t− σk)dσ1 . . . dσk + o(||u||N )

(4.17)

for ||u|| ≤ ε.

Proof. (Sketch) One can show that, starting with x(0) = 0, and for sufficiently
small u, the solution of (4.14) satisfies ||x|| = O(||u||). The truncation of the
Carleman bilinearization removes terms which are powers of x higher than N .
Their size is o(||x||N ) = o(||u||N ). The truncated Carleman bilinearization will
in general have an infinite Volterra series. Truncating this series after N terms
also give the error o(||u||N ). �

4.4 Uniqueness of Volterra series

In Theorem 4.2 we obtained formulas for the Volterra kernels for a truncated
Volterra series. There are actually many ways of calculating kernels and one
might wonder if they always give the same result. It is then important to know
the following fact

Theorem 4.3 If a system has a Volterra expansion

y(t) =

N∑
k=1

∫ ∞

−∞
. . .

∫ ∞

−∞
h
(i)
k (s1, . . . , sk)u(t− s1) . . . u(t− sk)ds1 . . . dsk+

+ o(||u||N ) (4.18)

for two sets of kernels h
(1)
1 , . . . , h

(1)
N and h

(2)
2 , . . . , h

(2)
N , then for any k, 1 ≤ k ≤ N

and any u∫ ∞

−∞
. . .

∫ ∞

−∞
h
(1)
k (s1, . . . , sk)u(t− s1) . . . u(t− sk)ds1 . . . dsk =∫ ∞

−∞
. . .

∫ ∞

−∞
h
(2)
k (s1, . . . , sk)u(t− s1) . . . u(t− sk)ds1 . . . dsk (4.19)

Proof.(sketch) Subtracting the series and replacing u with εu, for some fixed
u, we get

0 =
N∑

k=1

εk
∫ ∞

−∞
. . .

∫ ∞

−∞

(
h
(1)
k (s1, . . . , sk)− h

(2)
k (s1, . . . , sk)

)
·

·u(t− s1) . . . u(t− sk)ds1 . . . dsk + o(εN )

Letting ε tend to zero we see that we get a contradiction unless, for any u and
any k, 1 ≤ k ≤ N∫ ∞

−∞
. . .

∫ ∞

−∞

(
h
(1)
k (s1, . . . , sk)− h

(2)
k (s1, . . . , sk)

)
u(t−s1) . . . u(t−sk)ds1 . . . dsk = 0
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�
Unfortunately it does not follow from (4.19) that h

(
i1) = h

(
i2). Consider for

example a second order kernel. By making the variable change σ1 → σ2, σ2 → σ1
in the integral one sees that

y(t) =

∫ ∞

−∞

∫ ∞

−∞
h(σ1, σ2)u(t− σ1)u(t− σ2)dσ1dσ2 =∫ ∞

−∞

∫ ∞

−∞
h(σ2, σ1)u(t− σ1)u(t− σ2)dσ1dσ2

This means that the kernels h(σ1, σ2) and h(σ2, σ1) give exactly the same input-
output behaviour. This will then also be true for 1

2

(
h(σ1, σ2) + h(σ2, σ1)

)
. In

Example 4.2 we can thus choose between the expressions

h(σ1, σ2) = e−(σ1+2σ2)Δ(σ1)Δ(σ2) (4.20)

h(σ1, σ2) = e−(2σ1+σ2)Δ(σ1)Δ(σ2) (4.21)

h(σ1, σ2) =
1

2
e−σ1−σ2(e−σ1 + e−σ2)Δ(σ1)Δ(σ2) (4.22)

The situation is analogous for higher order kernels and we could equally well
write the kernel (4.7) for a bilinear system as

hn(t1, . . . , tn) ={
ceAtnDeA(tn−1−tn)D · · ·DeA(t1−t2)b if t1 ≥ t2 ≥ . . . ≥ tn ≥ 0

0 otherwise
(4.23)

One way of removing this ambiguity is to use triangular kernels that are always
nonzero over the same triangular region. Another way is to use the symmetric
kernel

hsym(σ1, σ2) =
1

2

(
h(σ1, σ2) + h(σ2, σ1)

)
which for an n:th order kernel becomes

hsym(σ1, . . . , σn) =
1

n!

∑
π( )

h(σπ(1), . . . , σπ(n)) (4.24)

where the summation is over all permutations π( ) of the indices. Obviously the
symmetric kernel will have the property that

hsym(σ1, . . . , σn) = hsym(σπ(1), . . . , σπ(n))

where π is any permutation. The Laplace transform of a symmetric kernel is
called the symmetric transfer function. Because of the linearity of the Laplace
transform it can also be obtained from the formula

Hsym(s1, . . . , sn) =
1

n!

∑
π( )

H(sπ(1), . . . , sπ(n)) (4.25)

where H is the transform of some non-symmetric kernel.
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4.5 Response to simple input functions

When considering the response of an n:th order homogeneous system to various
input signals, it is convenient to work with an operator, defined to work on n
different input signals:

Hn[u1, . . . , un] =

∫ ∞

−∞
. . .

∫ ∞

−∞
hn(σ1, . . . , σn)u1(t−σ1) . . . un(t−σn)dσ1 . . . dσn

(4.26)
The response of a Volterra series containing only the nth term

y(t) =

∫ ∞

−∞
. . .

∫ ∞

−∞
hn((t1, . . . , tn))u(t− t1) · · ·u(t− tn)dt1 . . . dtn

is then

y = Hn[u, . . . , u]

Let us consider the operation of a second order operator H2[., .] on an input
which is a sum of some more elementary signals vi.

u(t) =

p∑
i=1

αivi(t)

From the definitions we get immediately that

y = H2[u, u] = H2

⎡
⎣ p∑

i=1

αivi,

p∑
j=1

αjvj

⎤
⎦ = p∑

i=1

p∑
j=1

αiαjH2[vi, vj ]

This formula shows that Hs[., .] is a bilinear operator. It also shows that it
is enough to know the action of the operator on pairs of the more elementary
signals vi.

This result is easily generalized to the general case.

Proposition 4.1 Let Hn[., . . . , .] be the operator corresponding to a degree n
homogeneous Volterra system as defined in (4.26). If

u(t) =

p∑
i=1

αivi(t)

then

y = Hn[u, . . . , u] =

p∑
i1=1

· · ·
p∑

in=1

αi1 · · ·αinHn[vi1 , . . . , vin ]

The proposition shows that the operator Hn[., . . . , .] is multilinear. We are now
ready to consider some different input signals.

4.5.1 Response to impulses

For linear systems we know that the kernel has an interpretation as the response
to an impulse. For a general homogeneous system we have
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Proposition 4.2 If the input of a degree n homogeneous system, with kernel
hn(t1, . . . , tn), is a unit impulse δ(t), then the output is y(t) = hn(t, . . . , t).

Proof.

y(t) =

∫ ∞

−∞
. . .

∫ ∞

−∞
hn(σ1, . . . , σn)δ(t−σ1) . . . δ(t−σn)dσ1 . . . dσn = hn(t, . . . , t)

from the properties of the δ-functions. �

Example 4.7 The impulse response of the system in Example 4.2 is e−3t for
t > 0. �

We see that the the response to a single impulse only involves the “diagonal”
part of the kernel. To see the “off-diagonal” parts, several impulses are needed.

Example 4.8 Consider the response of a second order homogeneous system
with kernel h2(t1, t2) to the input

u(t) = δ(t) + δ(t+ T )

Denoting the delta-functions u1 and u2 respectively we have

y = H2[u1 + u2, u1 + u2] = H2[u1, u1] +H2[u1, u2] +H2[u2, u1] +H2[u2, u2]

where H2[, ] is the bilinear operator corresponding to the kernel h2. Using the
properties of delta-functions we get

y(t) = h2(t, t) + h2(t, t+ T ) + h2(t+ T, t) + h2(t+ T, t+ T )

�

From the example we see that it is possible (in principle) to determine the kernel
from identification experiments with multiple impulses.

4.5.2 Response to exponentials

Consider an input of the form

u(t) =

p∑
k=1

αke
skt

applied to a degree n homogeneous system, with kernel hn, transfer function
Hn and operator Hn[., .., .]. Using Proposition 4.1 gives

y =

p∑
k1=1

· · ·
p∑

kn=1

αk1 · · ·αknHn[e
sk1 t, . . . , eskn t]

We have
Hn[e

sk1 t, . . . , eskn t] =

= e(sk1+···+skn )t

∫ ∞

−∞
. . .

∫ ∞

−∞
hn(σ1, . . . , σn)e

−sk1σ1 · · · − esknσndσ1 . . . dσn =
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= Hn(sk1 , . . . , skn)e
(sk1+···+skn )t

so that finally we get

y(t) =

p∑
k1=1

· · ·
p∑

kn=1

αk1 · · ·αknHn(sk1 , . . . , skn)e
(sk1+···+skn )t

To interpret the formula one usually wants to group together terms having the
same exponential function. With a bit of combinatorics one can prove

Proposition 4.3 If the input α1e
s1t + · · · + αpe

spt is applied to a degree-n
homogeneous system with the symmetric transfer function Hsym then the output
is

y(t) =
∑

αm1
1 · · ·αmp

p Cm1,...,mp(s1, . . . , sp)e
(m1s1+···+mpsp)t (4.27)

where the sum is taken over all positive mj whose sum is n, and where the
coefficients are given by

Cm1,...,mp(s1, . . . , sp) =
n!

m1! · · ·mp!
Hsym(s1, . . . , s1︸ ︷︷ ︸

m1

, . . . , sp, . . . , sp︸ ︷︷ ︸
mp

)

Corollary 4.1 If n = p then the coefficient of

e(s1+···+sn)t is n!Hsym(s1, . . . , sn)

Proposition 4.3 and its corollary can be used to compute transfer functions by
identification of the coefficients. The idea is shown by the following example.

Example 4.9 Consider the pendulum equation

ÿ + 2ζẏ + sin y = u

and assume that the transfer functions up to order three are wanted. Using the
input exp(s1t) + exp(s2t) the output will be

y(t) = H1(s1)e
s1t +H1(s2)e

s2t + 2H2(s1, s2)e
(s1+s2)t + · · ·

where of course H1 is the usual transfer function. Substituting into the pendu-
lum equation and using the series expansion of sin, the coefficient of exp((s1 +
s2)t) of the left hand side is

2
(
(s1 + s2)

2 + 2ζ(s1 + s2) + 1
)
H2(s1, s2)

Since there is no corresponding term in the right hand side, it follows that
H2 = 0.

Using the input
u(t) = es1t + es2t + es3t

the output will have the form

y(t) = H1(s1)e
s1t +H1(s2)e

s2t +H1(s3)e
s3t + 6H3(s1, s2, s3)e

(s1+s2+s3)t + · · ·
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Collecting all the coefficients of exp((s1 + s2 + s3)t) gives the equation(
(s1+ s2+ s3)

2+2ζ(s1+ s2+ s3)+ 1
)
6H3(s1, s2, s3)−H1(s1)H1(s2)H1(s3) = 0

or

H3(s1, s2, s3) =
1

6
H1(s1)H1(s2)H1(s3)H1(s1 + s2 + s3)

where

H1(s) =
1

s2 + 2ζs+ 1

�

4.5.3 Response to sinusoidal inputs.

Using the results of the previous section it is easy to determine the response of
a nonlinear system to sine or cosine signals. Consider the following example

Example 4.10 Let the input to a degree 2 homogeneous system with symmet-
ric transfer function be

u(t) = A0 + 2A1 cosωt = A1e
−iωt +A0 +A1e

iωt

Then the output is

y(t) = A2
1H(iω, iω)e2iωt + 2A0A1H(0, iω)eiωt +A2

0H(0, 0) + 2A2
1H(iω,−iω)+

+2A0A1H(0,−iω)e−iωt +A2
1H(−iω,−iω)e−2iωt

or in real form

y(t) = A2
0H(0, 0) + 2A2

1H(iω,−iω) + 4A0A1|H(0, iω)| cos(ωt+ argH(0, iω))+

+2A2
1|H(iω, iω)| cos(2ωt+ argH(iω, iω))

�

This example clearly shows an important nonlinear phenomenon: different fre-
quencies are mixed. The amplitude of the cosine with frequency ω depends
not only on the input at that frequency but also on the constant component.
Likewise the constant component in the output depends on the the cosine in the
input. For a nonlinear system it is thus perfectly possible that high frequency
noise gives a change in the dc-level of the output.

4.6 Exercises

4.1 Compute the first three terms of the Volterra series for the scalar system

ẋ =
(
1 + x2
)
u, x(0) = 0

4.2 What are the kernels of

ẋ =

( −2 0
0 −3

)
x+

(
0 0
1 0

)
x u+

(
1
0

)
u (4.28)
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4.3 Compute the step response of the system defined in the previous exercise
using

1. a direct solution of the differential equation,

2. the Volterra series.

4.4 Compute the second order Carleman bilinearization and the Volterra series
of the system

ẋ1 = x2
ẋ2 = −x2 + x22 + u
y = x1

(4.29)

4.5 Compute the second order Carleman bilinearization and the Volterra series
of the system

ẋ1 = x22
ẋ2 = u
y = x1

(4.30)

4.6 What are the transfer functions of the two systems given below?

� ( )2 � 1

s+ 1
� � 1

s+ 1
� ( )2 �

4.7 What are the first nonzero higher order transfer functions from the refer-
ence r to the output y of the the feedback system shown below when

1. f(y) = y2

2. f(y) = y3

� � � G(s)

�f( )�−K

�
Σ

4.8 Let the signal 2A1 cosω1t + 2A2 cosω2t be the input to a degree-2 homo-
geneous system . What is the output?

4.9 Suppose that the input to the systems of exercise 4.6 is 2A1 cosωt +
2A2 cos 2ωt where the low frequency cosine is the signal and the high frequency
one is a disturbance. Discuss using the previous exercise which system is the
better low pass filter.
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4.10 Compute the kernels and transfer functions for the Volterra series of the
system below

� 1

s+ 1
� atan(.) � 1

s+ 2
�



Chapter 5

Realization of input-output
descriptions.

The purpose of the present chapter is to analyze the inverse problem of the
previous chapter. In realization theory one assumes that a sequence of Volterra
kernels or transfer functions is given and tries to find a corresponding state
space description. A common reason for this is that simulation programs usually
require the state space form. When constructing Volterra series one of the main
methods is to use Carleman bilinearization to get a bilinear system and then
use the formula for a bilinear system, (4.23). For the inverse problem it is then
natural to search for a bilinear system corresponding to the given Volterra series.

5.1 A convenient form for transfer functions

Consider the formulas for a bilinear system (??), (4.23) and make the variable
transformation

τ1 = t1 − t2

τ2 = t2 − t3

...

τn = tn

This gives

y(t) =
∞∑

n=1

∫ ∞

−∞
. . .

∫ ∞

−∞
hreg(t1, . . . , tn)u(t− t1−· · ·− tn)u(t− t2−· · ·− tn) . . .

. . . u(t− tn)dt1 . . . dtn (5.1)

where

hreg(t1, . . . , tn) =

{
ceAtnDeAtn−1D · · ·DeAt1b, t1 ≥ 0, . . . , tn ≥ 0

0, otherwise
(5.2)

When the Volterra series and its kernels are written in this way we call hreg a
regular kernel. From the formulas (4.23), (5.2) it follows that the regular and

45
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triangular kernels are related through the formulas

hreg(t1, . . . , tn) = htri(t1 + · · ·+ tn, t2 + · · ·+ tn, . . . , tn) (5.3)

htri(t1, . . . , tn) = hreg(t1 − t2, t2 − t3, . . . , tn−1 − tn, tn) (5.4)

The main advantage of the regular kernel is that the corresponding transfer
functions become simple. Taking the multivariable Laplace transform

Hreg(s1, . . . , sn) =

∫ ∞

−∞
. . .

∫ ∞

−∞
hreg(t1, . . . , tn)e

−s1t1−···−sntn dt1 · · · dtn

of (5.2) gives

Hreg(s1, . . . , sn) = c(snI −A)−1D(sn−1I −A)−1D · · ·D(s1I −A)−1b (5.5)

in analogy with the transfer function formula for linear systems. Laplace trans-
formation of the relations (5.3), (5.4) gives the corresponding relation between
the transfer functions

Hreg(s1, . . . , sn) = Htri(s1, s2 − s1, s3 − s2, . . . , sn − sn−1) (5.6)

Htri(s1, . . . , sn) = Hreg(s1, s1 + s2, s1 + s2 + s3, . . . , s1 + · · ·+ sn) (5.7)

Example 5.1 Consider the heat exchanger model (4.8).

Ṫ = −2T + uT + u (5.8)

Using (5.2) we get the following regular kernels

h1(t1) = e−2t1 , h2(t1, t2) = e−2(t1+t2), . . . , hn(t1, . . . , tn) = e−2(t1+t2+···+tn), . . .
(5.9)

The regular transfer functions are then

H1(s1) =
1

s1 + 2
, H2(s1, s2) =

1

(s1 + 2)(s2 + 2)
, . . .

. . . Hn(s1, . . . , sn) =
1

(s1 + 2) · · · (sn + 2)
(5.10)

�

5.2 Realizations of finite Volterra series.

Suppose we are given a sequence of regular transfer functions

H1(s1), H2(s1, s2), . . . , HN (s1, . . . , sN )

The realization problem is to find a state space description of a system with a
finite Volterra series, corresponding to these transfer functions. Let us use the
notation

Ĥ(s1, . . . , sN ) = (H1(s1), H2(s1, s2), , . . . , HN (s1, . . . , sN )) (5.11)

for the sequence of transfer functions.
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We will try to find a bilinear system that has the required Volterra series,
i.e. a bilinear system

ẋ = Ax+ u Dx+ b u
y = cx

(5.12)

with the regular transfer functions satisfying

Hm(s1, . . . , sm) = c(smI −A)−1D · · ·D(s1I −A)−1b, m = 1, 2, . . . (5.13)

The problem is thus to find matrices c, A, D and b so that (5.13) is satisfied. This
problem turns out to be easier to solve if the transfer functions are expanded
into negative powers of si. Using the expansion

(sI −A)−1 = s−1I + s−2A+ s−3A2 + · · ·
we can write (5.13) as

Hm(s1, . . . , sm) = c
∞∑

jn=0

Ajns−(jn+1)
n D · · ·D

∞∑
j1=0

Aj1s
−(j1+1)
1 b =

=
∞∑

j1=0

· · ·
∞∑

jn=0

cAjnD · · ·DAj1bs
−(j1+1)
1 · · · s−(jn+1)

n (5.14)

Suppose now that each of the given transfer functions is expanded in the same
way

Hn(s1, . . . , sn) =

∞∑
j1=0

. . .

∞∑
jn=0

hj1,...,jns
−(j1+1)
1 . . . s−(jn+1)

n (5.15)

We see that we can formulate the realization problem in the following way.

Proposition 5.1 Finding a bilinear system having a given finite, N :th order,
Volterra series is equivalent to finding matrices A,D,b and c such that

cAjmDAjm−1 · · ·DAj1b =

{
hj1,...,jm , if m ≤ N
0, if m > N

(5.16)

where hj1,...,jm is given by (5.15).

In studying the realization problem certain operators turn out to be use-
ful. The operator S transforms a sequence of transfer functions Ĥ into a new
sequence according to the following rules.

SĤ = (SH1, SH2, . . . , SHN) (5.17)

SHn(s1, . . . , sn) = s1Hn(s1, . . . , sn)− [s1Hn(s1, . . . , sn)]s1=∞ (5.18)

If Hn is expanded this takes the following form

SHn(s1, . . . , sn) =

∞∑
j1=0

. . .

∞∑
jn=0

hj1+1,...,jns
−(j1+1)
1 . . . s−(jn+1)

n (5.19)

The operator T shifts the transfer functions to the left:

T Ĥ = (TH2, TH3, . . . , THN−1, 0) (5.20)
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THn(s1, . . . , sn) = [s1Hn(s1, . . . , sn)]s1=∞,s2=s1,...,sn=sn−1
, n > 1 (5.21)

or equivalently for the series expansion

THn(s1, . . . , sn) =
∞∑

j1=0

. . .
∞∑

jn−1=0

h0,j1,...,jn−1s
−(j1+1)
1 · · · s−(jn−1+1)

n−1 (5.22)

The evaluation operator E is defined by

EĤ = EH1(s1) = [s1H(s1)]s1=∞ (5.23)

and is consequently an operator from a sequence of transfer functions to the real
numbers. Finally L operates from the real numbers into the space of sequences
of transfer functions:

Lr = Ĥ(s1, . . . , sN )r (5.24)

for any real number r. To illustrate the use of these operators, consider

Ĥ = (0, H2(s1, s2))

We have
SkĤ = (0, SkH2(s1, s2))

where

SkH2(s1, s2) = Sk
∞∑
i=0

∞∑
j=0

hi,js
−(i+1)
1 s

−(j+1)
2 =

∞∑
i=0

∞∑
j=0

hi+k,js
−(i+1)
1 s

−(j+1)
2

Applying the T operator gives

T Ĥ = (TSkH2(s1, s2), 0)

TSkH2(s1, s2) =

∞∑
j=0

hk,js
−(j+1)
1

More applications of the S-operator give the result

SmTSkĤ = (SmTSkH2(s1, s2), 0)

with

SmTSkH2(s1, s2) =
∞∑
j=0

hk,j+ms
−(j+1)
1

Finally the E-operator gives

ESmTSkĤ = (ESmTSkH2(s1, s2), 0) = hk,m

Introducing the L-operator this can be written

ESmTSkL = hk,m

where m and k are arbitrary nonnegative integers.
We see from this simple example that the operators can be used to pick out

individual coefficients of the transfer function expansion. The result is easily
generalized.
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Proposition 5.2 The operators E,T , S and L are linear and satisfy the rela-
tion

ESjmTSjm−1 · · ·TSj1L =

{
hj1,...,jm , if m ≤ N
0, if m > N

(5.25)

Proof. The linearity is obvious from the definition. The proof of the formula
just involves repeated calculations of the type used to show the simple example
above. �
We see that the operator formula (5.25) has exactly the same pattern as the
matrix formula (5.16). If the linear operators in (5.25) were known to operate
between finite dimensional spaces, then they could be represented by matrices.
These matrices would then satisfy (5.16) and the realization problem would be
solved. The space of all rational transfer functions is an infinite dimensional
one however. What might save the situation is the possibility that only a finite
dimensional subspace is involved in (5.25). To investigate this question, the
following subspaces are introduced.

X1 = span(Ĥ, SĤ, S2Ĥ, . . .)

Letting TX1 denote the image of X1 under the operator T , define

X2 = span(TX1, STX1, S
2TX1, . . .)

X3 = span(TX2, STX2, S
2TX2, . . .)

and so on.
In this fashion subspaces X1, . . . , XN are created for the transfer function

sequence
Ĥ = (H1, . . . , HN ) (5.26)

of order N . Define
X = span(X1, . . . , XN ) (5.27)

It is clear that the repeated application of the operators in the left hand side
of (5.25) will never lead outside X . This gives the following theorem

Theorem 5.1 A system described by regular transfer functions as in (5.26)
is realizable by a bilinear system if and only if X , defined by (5.27) is finite
dimensional. In that case the realization implied by (5.25), (5.16) is minimal
( i.e. no bilinear system with a lower dimensional state space has the same
transfer function ).

Proof. Suppose X is finite dimensional. Pick a basis for X . Then the linear
operators S, T , L and E can be represented as matrices A,D,b and c that will
satisfy (5.16) and a bilinear realization has been found.

Conversely assume that a bilinear system (5.12) exists, having the transfer
function Ĥ(s1, . . . , sN ) and a state space of dimension m. If z ∈ Rm, define the
function

ψ(z) =
(
c(s1I −A)−1z, c(s2I −A)−1D(s1I −A)−1z, . . .

)
Direct calculations give

ψ(Ab) =

⎛
⎝ ∞∑

j=0

cAj+1bs
−(j+1)
1 ,

∞∑
i=0

∞∑
j=0

cAjDAi+1bs
−(i+1)
1 s

−(j+1)
2 , . . .

⎞
⎠ =
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= SĤ(s1, . . . , sN )

and

ψ(Db) =

⎛
⎝ ∞∑

j=0

cAjDbs
−(j+1)
1 ,

∞∑
i=0

∞∑
j=0

cAjDAiDbs
−(i+1)
1 s

−(j+1)
2 , . . .

⎞
⎠ =

= T Ĥ(s1, . . . , sN )

From repeated calculations of this type it follows that

ψ(AjkD . . .DAj1b) = SjkT . . . TSj1H(s1, . . . , sN )

which shows that all rational functions in X can be generated by ψ. Since ψ is a
linear function defined on anm-dimensional space, it follows that the dimension
ofX can be at mostm and in particularX is finite dimensional. This calculation
also shows that any bilinear realization has a state space dimension higher than
or equal to the dimension of X , so that the realization defined by the E, S ,T
and L operators is minimal. �

Remark 5.1 The minimality is only with respect to bilinear systems. It is
quite possible that there exists a more general nonlinear description with a lower
dimensional state space but the same transfer functions. See Exercise 5.2.

We illustrate the realization procedure with two simple examples.

Example 5.2 Let Ĥ be given by

Ĥ(s1, . . . , s2) =

(
1

s1 + 1
,

1

(s1 + 1)(s2 + 2)

)

Then

S
1

s1 + 1
=

s1
s1 + 1

− 1 = − 1

s1 + 1

and

S
1

(s1 + 1)(s2 + 2)
=

s1
(s1 + 1)(s2 + 2)

− 1

s2 + 2
= − 1

(s1 + 1)(s2 + 2)

so that
SĤ = −Ĥ

Furthermore

T Ĥ =

(
s1

(s1 + 1)(s2 + 2)

∣∣∣∣
s1=∞,s2=s1

, 0

)
=

(
1

s1 + 2
, 0

)

and

S(T Ĥ) =

(
S

1

s1 + 2
, 0

)
=

(
− 2

s1 + 2
, 0

)
= −2 T Ĥ

Also
T (T Ĥ) = (0, 0)
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We see that, no matter how many times the S and T operators are applied, only
transfer functions that are linear combinations of Ĥ and T Ĥ are generated. The
space X is thus two-dimensional. Identifying the basis vectors(

1
0

)
,

(
0
1

)

with Ĥ and T Ĥ respectively, we see that the matrices A (corresponding to S)
and D (corresponding to T ) have to satisfy

A

(
1
0

)
= −
(

1
0

)
, A

(
0
1

)
= −2

(
0
1

)

D

(
1
0

)
=

(
0
1

)
, D

(
0
1

)
= 0

This gives

A =

( −1 0
0 −2

)
, D =

(
0 0
1 0

)
Since we have

EĤ = 1, E(T Ĥ) = 1, Lr = Ĥ

we get, representing these operators with c and b

b =

(
1
0

)
, c =

(
1 1
)

We see that the bilinear system

ẋ =

( −1 0
0 −2

)
x+ u

(
0 0
1 0

)
x+

(
1
0

)
u

y =
(
1 1
)
x

has the given Volterra transfer functions. �

Example 5.3 Consider the transfer function

Ĥ = (0, H2) =

(
0,

1

(s21 + 3s1 + 2)(s2 + 3)

)

An application of the S operator gives

SH2 =
s1

(s21 + 3s1 + 2)(s2 + 3)
− 0

and

S2H2 =
s21

(s21 + 3s1 + 2)(s2 + 3)
− 1

s2 + 3
=

=
−3s1 − 2

(s21 + 3s1 + 2)(s2 + 3)
= −3SH2 − 2H2

so that
S2Ĥ = −3S Ĥ − 2 Ĥ
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showing that X1 is finite dimensional. Now

T Ĥ = (0, 0)

while

TSĤ =

(
1

s1 + 3
, 0

)
Finally

STSĤ =

(
s1

s1 + 3
− 1, 0

)
=

( −3

s1 + 3
, 0

)
= −3TSĤ

From these calculations we see that no matter how many times we apply the S
and T operators, only rational functions that are linear combinations of(

0,
1

(s21 + 3s1 + 2)(s2 + 3)

)
,

(
0,

s1
(s21 + 3s1 + 2)(s2 + 3)

)
,

(
1

s1 + 3
, 0

)
are produced, so that X is three dimensional. If these rational functions are
used as basis vectors we get

A

⎛
⎝ 1

0
0

⎞
⎠ =

⎛
⎝ 0

1
0

⎞
⎠ , A

⎛
⎝ 0

1
0

⎞
⎠ =

⎛
⎝ −2

−3
0

⎞
⎠ , A

⎛
⎝ 0

0
1

⎞
⎠ =

⎛
⎝ 0

0
−3

⎞
⎠

and

D

⎛
⎝ 1

0
0

⎞
⎠ = 0, D

⎛
⎝ 0

1
0

⎞
⎠ =

⎛
⎝ 0

0
1

⎞
⎠ , D

⎛
⎝ 0

0
1

⎞
⎠ = 0

showing that

A =

⎛
⎝ 0 −2 0

1 −3 0
0 0 −3

⎞
⎠ , D =

⎛
⎝ 0 0 0

0 0 0
0 1 0

⎞
⎠

Since H corresponds to the first basis element, one has

bT =
(
1 0 0

)
and since

E

(
1

s1 + 3
, 0

)
= 1

while E operating on the other basis elements give zero, c is

c =
(
0 0 1

)
The desired bilinear system is

ẋ =

⎛
⎝ 0 −2 0

1 −3 0
0 0 −3

⎞
⎠x+

⎛
⎝ 0 0 0

0 0 0
0 1 0

⎞
⎠ x u+

⎛
⎝ 1

0
0

⎞
⎠u

y =
(
0 0 1

)
x

�
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Working through some examples one realizes that the procedure always
seems to work if the transfer functions are in factored form, with each fac-
tor depending on only one variable. Such rational functions deserve a special
name.

Definition 5.1 A rational function H(s1, . . . , sn) is called a recognizable func-
tion if it can be written in the form

H(s1, . . . , sn) =
P (s1, . . . , sn)

Q1(s1) · · ·Qn(sn)

It turns out that the realization problem is solvable precisely when we have such
transfer functions.

Theorem 5.2 An system having the regular transfer function

Ĥ = (H1, . . . , HN )

is bilinear realizable if and only if each Hi is strictly proper and recognizable.

Proof. The only if part follows from (5.13). The if part follows from an
investigation of what happens when the S-operator is applied to a rational
function of one variable.

S
b1s

n−1 + · · ·+ bn
sn + a1sn−1 + · · ·+ an

=
(b2 − a1b1)s

n−1 + · · ·+ (−anb1)
sn + a1sn−1 + · · ·+ an

The result of applying S to a degree n strictly proper rational function is thus
a new rational function with the same denominator, but different numerator
coefficients. Since there are only n numerator coefficients, the repeated appli-
cation of the operator can generate at most an n-dimensional space of rational
functions. A strictly proper recognizable transfer function can be written

P (s1, . . . , sn)

Q1(s1) . . . Qn(sn)
=

=
1

Q2(s2) . . .Qn(sn)

(
P1(s2, . . . , sn)

sm−1
1

Q1(s1)
+ · · ·+ Pm(s2, . . . , sn)

1

Q1(s1)

)
If S is applied to this expression, it will effectively work only on expressions
that are rational functions of s1. The argument above then applies and shows
that X1 is finite dimensional. In the same way X2 through XN must be finite
dimensional. �

5.3 Realization of infinite Volterra series.

The ideas of the previous section can in principle be extended to infinite Volterra
systems, where Ĥ consists of an infinite sequence of regular transfer functions.
However it is obvious that this infinite sequence must have a very special struc-
ture for the space X to be finite dimensional. A simple example of such a
situation is the following.
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Example 5.4 Consider the regular transfer function

Ĥ =

(
1

s1 + a
,

1

(s1 + a)(s2 + a)
,

1

(s1 + a)(s2 + a)(s3 + a)
, . . .

)

Using the definitions of the operators

SĤ =

( −a
s1 + a

,
−a

(s1 + a)(s2 + a)
, . . .

)
= −aĤ

T Ĥ = Ĥ

which shows that X has dimension one. The scalar realization is

ẋ = −ax+ xu+ u, y = x

(For the special case a = 2 this is the heat exchanger of Example 5.1.) �

5.4 A stability result.

Using the realization theory, it is possible to give a stability criterion for homo-
geneous systems based on the poles of the transfer function.

Theorem 5.3 Let a system be described by a strictly proper recognizable regular
transfer function

H(s1, . . . , sn) =
P (s1, . . . , sn)

Q1(s1) . . . Qn(sn)
,

If the roots of the factors Q1 through Qn all lie strictly in the left half plane then
the system is input output stable (in the sense that a bounded input produces a
bounded output ).

Proof. The transfer function can be realized as a bilinear system using the
procedure given in section 5.2. If the natural choice of basis is made, the ma-
trix A will have a block triangular structure where each block has eigenvalues
corresponding to the roots of one of the factors Qi. (This is illustrated in Ex-
ample 5.3.) The Volterra kernel can now be written in the form (5.2 ) where
the eigenvalues of A all lie strictly in the left half plane. Consequently one has∫ ∞

−∞
. . .

∫ ∞

−∞
|h(t1, . . . , tn)|dt1 . . . dtn ≤ K

for some constant K. If |u(t)| ≤ C, it follows that

|y(t)| ≤
∫ ∞

−∞
. . .

∫ ∞

−∞
|hn((t1, . . . , tn))|Cndt1 . . . dtn ≤ KCn

�
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5.5 Exercises.

5.1 Suppose the realization procedure described above is applied to the linear
system

b1s+ b2
s2 + a1s+ a2

What is the result? What canonical form is it?

5.2 What is the minimal bilinear realization of the regular transfer function

2

(s1 + 1)(s2 + 2)

Try to think of a scalar nonlinear system that realizes this transfer function,
showing that the minimal bilinear realization is not minimal in the class of real
analytic systems. Hint: Compute the symmetric transfer function.

5.3 Suppose the transfer function of exercise 5.1 is to be realized . What choice
of basis in the X-space gives the ordinary observable form ( observer form in
Kailath’s terminology)?

5.4 Give a minimal bilinear realization of the regular transfer function

s1s2 + 1

(s1 + 4)(s1 + 3)(s2 + 2)(s2 + 1)

5.5 Can the regular transfer function

1

s1s2 + 1

be realized by a finite dimensional bilinear system?

5.6 Give a minimal bilinear realization for the transfer function

Ĥ(s1, s2) =

(
1

s1 + a
,

1

(s1 + b)(s2 + c)
, 0, 0, . . .

)

5.7 Consider the Volterra system

Ĥ =

(
b1

s1 + 1
,

b2
(s1 + 1)(s2 + 1)

,
b3

(s1 + 1)(s2 + 1)(s3 + 1)
, . . .

)

where the b-coefficients satisfy

R(s) = b1s
−1 + b2s

−2 + b3s
−3 + · · ·

for some strictly proper rational function R. Show that the system is realizable
by a finite dimensional bilinear system.
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Chapter 6

Canonical forms

6.1 Controller forms

Many design methods for nonlinear systems assume that the system has the
following triangular form, where we assume u to be a scalar.

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...

ẋn−1 = fn−1(x1, . . . , xn)

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u

(6.1)

To ensure that the upper parts are connected to the lower parts, and that the
control affects the system, it is assumed that

gn 
= 0,
∂fj
∂xj+1


= 0, j = 1, . . . , n− 1 (6.2)

From the triangular form (6.1) it is possible to do exact linearization, Lyapunov
based backstepping and many other design methods. Since this system form is
useful it is natural to ask if it is possible to transform a system into this form.
One can get a feeling for this by looking at successive Lie brackets. With the
notation

f(x) =

⎡
⎢⎢⎢⎣

f1(x1, x2)
...

fn−1(x1, . . . , xn)
fn(x1, . . . , xn)

⎤
⎥⎥⎥⎦ , g(x) =

⎡
⎢⎢⎢⎣

0
...
0

gn(x1, . . . , xn

⎤
⎥⎥⎥⎦

we can calculate the successive Lie brackets

[f, g] =

⎡
⎢⎢⎢⎢⎢⎣

0
...
0

∂fn−1/∂xn · gn
×

⎤
⎥⎥⎥⎥⎥⎦ , [f, [f, g]] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

∂fn−2/∂xn−1 · gn
×
×

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, . . .

57
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Using the notation

(ad0f, g) = g, (adf, g) = [f, g], (ad2f, g) = [f, [f, g]], . . . (6.3)

and
Dk = column vectors with zeros in the first n− k positions (6.4)

we have that

Dk is spanned by (adjf, g), j = 0, . . . , k − 1

Since the first n − k positions of the vectors in Dk are zero, any Lie brackets
among such vectors will also have zeros in those positions, i.e. lie in Dk. Dk is
thus closed under Lie brackets. A set of vectors having this property is called
involutive.

Let us now look at generalizations of (6.1) to multi-input systems. Let
u be an m-vector and let x1,...,xn be vectors whose dimensions are ν1,...,νn
respectively. We assume that

rank
∂fj
∂xj+1

= νj , rank g(x) = νn (6.5)

and that these ranks are constant in some open subset U of the state space.
Since

rank
∂fj
∂xj+1

≤ dim xj+1 = νj+1

it follows that
νn ≥ νn−1 ≥ · · · ≥ ν1 (6.6)

Let gi be the i:th column of g. In analogy with the single input case we get

[f, gi] =

⎡
⎢⎢⎢⎢⎢⎣

0
...
0

∂fn−1/∂xn · gn,i
×

⎤
⎥⎥⎥⎥⎥⎦ , [f, [f, gi]] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

∂fn−2/∂xn−1 · gn,i
×
×

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, . . .

where ∂fn−1/∂xn, ∂fn−2/∂xn−1 are now block matrices and gn,i is a νn-dimensional
column vector. Defining now

Dk = column vectors with zeros in the first ν1 + · · ·+ νn−k positions (6.7)

we have that

Dkis spanned by (adjf, gi), j = 0, . . . , k − 1, i = 1, . . . ,m

and that for each k,

(adjf, gi), j = 0, . . . , k − 1, i = 1, . . . ,m

are involutive.
Let us now consider the possibility of taking a system

˙̄x = f̄(x̄) + ḡ(x̄)u (6.8)

with state space dimension n̄ and using a coordinate change x = T (x̄) to get it
into the form (6.1). We assume T to be a diffeomorphism (invertible, infinitely
differentiable in both directions).
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Theorem 6.1 The system (6.8) can locally be transformed into the form (6.1),
satisfying (6.5) with a diffeomorphism x = T (x̄) if and only if

(adj f̄ , ḡi), j = 0, . . . , k − 1, i = 1, . . . ,m (6.9)

are involutive, span constant dimensional spaces and

(adj f̄ , ḡi), j = 0, . . . , n̄− 1, i = 1, . . . ,m (6.10)

has dimension n̄.

Proof. From our calculations above we saw that the involutivity of (6.9) and the
dimension of (6.10) have to be satisfied by the system (6.1). From Proposition
3.2 it follows that the Lie brackets of the system (6.8) must have the same
properties.

The sufficiency of these conditions follows from a famous theorem by Frobe-
nius, but the details are omitted here. �

The actual calculation of the coordinate change can be complicated and we
postpone that discussion.

Instead we note that it is possible to proceed from the triangular form (6.1)
to other standard forms. Suppose for simplicity that all xi have the same
dimension. Then we can introduce new coordinates successively by

z1 = x1, z2 = f1(x1, x2)

Since ∂f1/∂x2) has full rank, this coordinate change is locally invertible. We
get

ż1 = z2

ż2 = ∂f1/∂x1f1 + ∂f1/∂x2f2 = f̃2(x1, x2, x3)

Introducing z3 = f̃2(x1, x2, x3) we get ż2 = z3. Proceeding in this fashion we
get the coordinate change

z1 = x1

z2 = f1(x1, x2)

...

zj = f̃j−1(x1, . . . , xj)

...

zn = f̃n−1(x1, . . . , xn)

It is easy to see that the conditions ∂fj−1/∂xj 
= 0 carry over into ∂f̃j−1/∂xj 
=
0. The coordinate change is thus locally invertible. The system dynamics be-
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comes

ż1 = z2

ż2 = z3

...

żn−1 = zn

żn = f̃n(z) + g̃n(z)u

In the general case when the xi do not have the same dimension the coordinate
change is somewhat more involved. It still begins with z1 = x1. Now suppose
that ν2 > ν1. Then divide x2 into two components x̂2 and x̄2 (possibly after
reordering the variables) so that ∂f1/∂x̂2 is nonsingular (this is always possible
since ∂f1/∂x2 has full rank). Then introduce the new variable as

z2 =

[
ẑ2
z̄2

]
=

[
f1(x1, x2)

x̄2

]

The coordinate change is still invertible, since ∂f1/∂x̂2 is nonsingular. Intro-
ducing new variables successively in this fashion gives the following description

ż = A0z +

⎡
⎢⎢⎢⎣

0
...
0

f̂n(z)

⎤
⎥⎥⎥⎦+
⎡
⎢⎢⎢⎣

0
...
0

ĝn(z)

⎤
⎥⎥⎥⎦u (6.11)

where A0 is a matrix of the form

A0 =

⎡
⎢⎢⎢⎢⎢⎣
0 E1 0 . . . 0
0 0 E2 . . . 0
...

. . .
...

0 0 . . . 0 En−1

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦ (6.12)

and each Ei consists of a νi-dimensional unit matrix and a ν1 × (ν2 − ν1) zero
matrix as follows.

Ei =
[
Iνi 0ν1×(ν2−ν1)

]
(6.13)

By using state feedback we can perform the ultimate simplification, converting
the system to a chain of integrators. Assume for simplicity that g is invertible
(otherwise some redundant control signals can be removed). Use the feedback

u = ĝn(z)
−1(−fn(z) + v) (6.14)

the system becomes

ż = A0z +

⎡
⎢⎢⎢⎣

0
...
0
Im

⎤
⎥⎥⎥⎦ v (6.15)
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This is called a Brunovsky canonical form. Note that in particular the system
is transformed into a linear system. Define the numbers

ρi = number of νk such that νk ≥ i, i = 1, . . . ,m (6.16)

From the definition
ρ1 ≥ ρ2 ≥ · · · ≥ ρm (6.17)

The ρi are called the controllability indices of the system. They can be in-
terpreted as the length of the chains of integrators in A0. This can be seen
by permuting the variables. Let xij denote the j:th element of the vector xi.
Define

ζ1 = z11, ζ2 = ζ̇1 = z21, ζ3 = ζ̇2 = z31, . . . , ζρ1 = zn1

If ν1 > 1, take
ζρ1+1 = z12, ζρ1+2 = z22, . . .

otherwise take
ζρ1+1 = z22, ζρ1+2 = z32, . . .

Continuing in this fashion changes (6.11) to

ζ̇1 = ζ2

ζ̇2 = ζ3

...

ζ̇ρ1 = a1(ζ) + b1(ζ)u

ζ̇ρ1+1 = ζρ1+2

ζ̇ρ1+2 = ζρ1+3

...

ζ̇ρ1+ρ2 = a2(ζ) + b2(ζ)u

...

ζ̇ρ1+···+ρn = aνn(ζ) + bνn(ζ)u

(6.18)

where ai and bi are the i:th rows of f̃n and g̃n respectively, with the variables
permuted suitably.

6.2 Computing the coordinate change

Let us consider the problem of finding a coordinate transformation z = T (x)
going directly from (6.8) to the form (6.18). Assume that we have checked the
conditions on the Lie brackets specified in Theorem 6.1. This also gives the
numbers νi and ρi. Let us write

ζ1 = φ1(x̄)

where φ1 is an unknown function to be determined. To simplify notation we
will write x instead of x̄ and f , g instead of f̄ , ḡ. We have

ζ̇1 = Lfφ1 +

m∑
i=1

uiLgiφ1
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If ρ1 > 1, then we want ζ̇1 = ζ2. We then get the conditions

Lgiφ1 = 0, i = 1, . . . ,m

and ζ2 has to be defined as
ζ2 = (Lfφ1)(x)

If ρ1 > 2 we differentiate and get

ζ̇2 = L2
fφ1 +

m∑
i=1

uiLgiLfφ1

which gives the conditions

LgiLfφ1 = 0, i = 1, . . . ,m

and ζ3 = (L2
fφ1)(x). Using the formula

LfLg − LgLf = L[f,g] (6.19)

this can be rewritten
L[f,gi]φ1 = 0, i = 1, . . . ,m

Continuing in this fashion, and doing analogous calculations for

ζρ1+1 = φ2(x), . . . ζρ1+···+ρm−1+1 = φm(x)

gives the following set of partial differential equations for φk, k = 1, . . . ,m.

Lgiφk = 0, i = 1, . . . ,m

L[f,gi]φk = 0, i = 1, . . . ,m

...

L(adρk−2f,gi)φk = 0, i = 1, . . . ,m

(6.20)

The functions bi in (6.18) will be given by

L(adρk−1f,gi)φk, k = 1, . . . ,m, i = 1, . . . ,m (6.21)

The functions φk should also be chosen so that these quantities form a nonsin-
gular matrix.

Example 6.1 Consider the following system of tanks (“the Lund tanks”).

ẋ1 = γu1 +
√
x3 −√

x1

ẋ2 = γu2 +
√
x4 −√

x2

ẋ3 = (1− γ)u2 −√
x3

ẋ4 = (1− γ)u1 −√
x4

where 0 ≤ γ < 1. We have that

g1 =

⎡
⎢⎢⎣

γ
0
0

1− γ

⎤
⎥⎥⎦ , g2 =

⎡
⎢⎢⎣

0
γ

1− γ
0

⎤
⎥⎥⎦ , [f, g1] =

⎡
⎢⎢⎢⎣

γ
2
√
x1

− 1−γ
2
√
x4

0
1−γ
2
√
x4

⎤
⎥⎥⎥⎦ , [f, g2] =

⎡
⎢⎢⎢⎣
− 1−γ

2
√
x3

γ
2
√
x2

1−γ
2
√
x3

0

⎤
⎥⎥⎥⎦
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Clearly g1 and g2 span a two-dimensional space. Since they are constant, they
are automatically involutive. Also g1, g2, [f, g1] and [f, g2] span the whole space.
It follows that Theorem 6.1 is satisfied with ν1 = 2, ν2 = 2. Consequently the
controllability indices are ρ1 = 2, ρ2 = 2. The conditions (6.20) become

Lg1φ1 = 0, Lg2φ1 = 0, Lg1φ2 = 0, Lg2φ2 = 0

Since g1 and g2 are constant, it is natural to try linear coordinate changes φ1
and φ2.

φ1(x) = vT1 x, φ2(x) = vT2 x

The conditions are then

vT1 g1 = 0, vT1 g2 = 0, vT2 g1 = 0, vT2 g2 = 0

For instance we can select

z1 = (1− γ)x1 − γx4, z3 = (1− γ)x2 − γx3

It follows that

ż1 = (1− γ)(
√
x3 −√

x1) + γ
√
x4 = z2

ż3 = (1− γ)(
√
x4 −√

x2) + γ
√
x3 = z4

and with this coordinate change the system is

ż1 = z2

ż2 = f1(z) + g11(z)u1 + g12(z)u2

ż3 = z4

ż4 = f2(z) + g21(z)u1 + g22(z)u2

where f1, f2 and the gij are computed by differentiating z2 and z4. �

6.3 Exercises

6.1 Finish Example 6.1 by computing the fi and the gij .

6.2 Compute the feedback that gives the Brunovsky canonical form for the
preceding example.

6.3 Prove that
LfLg − LgLf = L[f,g]


