Lecture 2 – Camera Models and Calibration

Thomas Schön,
Division of Automatic Control,
Department of Electrical Engineering,
Linköping University.
Email: schon@isy.liu.se

Camera – A device that provides 2D projections of the 3D world \(x = \frac{X}{Z}, \ y = \frac{X}{Z} \)

Content – Lecture 2

1. Summary of Lecture 1
2. Image representation
3. Geometric camera models
 a. Extrinsic camera parameters \(P_c = R(P_w) \)
 b. Normalized pinhole model \(p_n = P_n(P_c) \)
 c. Lens distortion \(p_d = D(P_n) \)
 d. Intrinsic camera parameters \(p_p = K(p_d) \)
4. Camera calibration (gray-box sys.id. problem)
 a. Initial parameters
 b. Maximum likelihood

Summary – Lecture 1 (Rotations SO(3))

The Special Orthogonal group:

\[SO(3) \triangleq \left\{ R \in \mathbb{R}^{3 \times 3} \mid R^T R = I, \det(R) = +1 \right\} \]

Commonly used parameterizations of SO(3):

1. Rotation matrices
2. Unit quaternions
3. Euler angles
4. Exponential coordinates
5. Axis/angle
Summary – Lecture 1 (SE(3))

A mapping $g : \mathbb{R}^3 \to \mathbb{R}^3$ is a rigid body motion / special Euclidean transformation if it satisfies the following properties:

1. **Length is preserved:** $\|g(p) - g(q)\| = \|p - q\|$ for all points $p, q \in \mathbb{R}^3$
2. **The cross product is preserved:** $g(v \times w) = g(v) \times g(w)$ for all vectors $v, w \in \mathbb{R}^3$

Definition:

$$SE(3) \triangleq \{ g = (R, T) | R \in SO(3), T \in \mathbb{R}^3 \}$$

Theorem (Chasles):

Every rigid body motion can be realized by a rotation about an axis combined with a translation about that axis.

$$X^w = R^w X^c + T^w$$

$$X^w = \begin{pmatrix} X^w \\ 1 \end{pmatrix} = \begin{pmatrix} R^w & T^w \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X^c \\ 1 \end{pmatrix} = \bar{g}^w X^c$$

Summary – Lecture 1 (SE(3) and homogeneous coord.)

Homogeneous coordinates are obtained by augmenting the Euclidean coordinates with an additional 1.

$$X^w = R^w X^c + T^w$$

$$X^w = \begin{pmatrix} X^w \\ 1 \end{pmatrix} = \begin{pmatrix} R^w & T^w \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X^c \\ 1 \end{pmatrix} = \bar{g}^w X^c$$

Theorem (Chasles):

Every rigid body motion can be realized by a rotation about an axis combined with a translation about that axis.

Image Representation

Common example for illustration

$$I : \Omega \subset \mathbb{R}^2 \to \mathbb{R}_+$$

$$\Omega = [1, 640] \times [1, 480] \subset \mathbb{Z}^2$$

$$\mathbb{R}_+ \approx [0, 255] \subset \mathbb{Z}_+$$

Three different representations

1. The graph of I
2. Matrix of integers
3. A "picture" of the image

Geometric Camera Models

“A camera is a device that produce 2D projections of the 3D world”
Coordinate frames

World (w): This is considered an inertial frame and it is typically attached to a real object in the scene (hence another name is object frame).

Camera (c): The camera frame is fixed to the moving camera.

Geometric Camera Models – Different Lenses

- Standard perspective lens
- Fish-eye lens
- Radial lens distortion
- Radial and tangential distortion

Geometric Camera Models – Radial Lens Distortion

Distorted image: Undistorted image

Compensate for the radial distortion

Distorted image (obtained directly from the camera) = Undistorted image (as if it was generated by a pinhole camera)

Radial distortion: Tangential distortion

\[
\begin{align*}
(x_d) &= (1 + a_1 r^2 + a_2 r^4 + a_3 r^6) (x_n) + \frac{2a_4 x_n y_n + a_5 (r^2 + 2r_0^2)}{a_4 (r^2 + 2y_0^2) + 2a_5 x_n y_n}
\end{align*}
\]

The tangential distortion is due to imperfect centering ("decentering") of the lens components and other manufacturing defects in a compound lens.

Historical Notes

- One of the first introduction of the tangential distortion model. This distortion model is also known as the "Brown-Conrady model".
- The very first introduction of the decentering distortion model.
Dynamic Vision
T. Schön

Geometric Camera Models – Intrinsic Parameters

Using homogeneous coordinates and normalized pinhole projection \(D = I \) we have

\[
\lambda \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = \begin{pmatrix} f_x s_x & f_y s_y & o_x \\ 0 & f_y s_y & o_y \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} R_{cw} & w_c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_w \\ y_w \\ z_w \end{pmatrix} \begin{pmatrix} \lambda p \end{pmatrix}
\]

Note that the model is nonlinear in Euclidean space

\[
x_p = \frac{\pi_1 p_w}{\pi_3 p_w}, \quad y_p = \frac{\pi_2 p_w}{\pi_3 p_w}
\]

Geometric Camera Models – Fish-Eye Lens

A fish-eye lens covers the whole hemispherical field in front of the camera and the angle of view is very large, about 180.

The spherical projection model is different from the pinhole model, for a good introduction, see

History – First Photograph on record

By Nicéphore Niepce in 1822

The set table (la table service)
Camera Calibration – Idea

Without loss of generality we can choose the world reference frame to be aligned with checkerboard,

\[P_w = \begin{pmatrix} X \\ Y \\ 0 \\ 1 \end{pmatrix} \]

Calibration for standard perspective lenses:

Also taking care of wide-angle and fish-eye lenses:

Camera Calibration – Procedure

1. Print a checkerboard pattern and attach it to a planar surface.
2. Acquire a few images of the checkerboard pattern under different poses, either by moving the camera or the pattern.
3. Detect the corners in the images. This provides a set of 2D/3D correspondences \(p_j^2, P_w^j \) for each image \(j \).
4. Obtain an initial estimate of the intrinsic parameters and all the extrinsic parameters.
5. Solve a maximum likelihood problem to obtain the intrinsic parameters, all the extrinsic parameters and the lens distortion parameters.

Camera Calibration - Software

There is very good software freely available on the Internet!

1. Caltech camera calibration toolbox

 Just google "camera calibration toolbox" or use http://www.vision.caltech.edu/bouguetj/calib_doc/

2. OpenCV is a computer vision library originally developed by Intel, now available on sourceforge.net. Free for commercial and research use under BSD license. Contains much more than calibration.

Camera Calibration

When a camera is calibrated it is convenient to preprocess the images and work with the normalized image coordinates \(p_n \) instead.

This implies that the camera measurements are decoupled from the intrinsic and the distortion parameters.

Useful for assembling estimation problems including images as we will see later in the course.
Project Idea – Camera Calibration using Gray-Box Sys. Id.

$$\hat{\theta} = \arg \min_{\theta} \sum_{t=1}^{N} (y_t - \tilde{y}_t(\theta))^T \Lambda_t^{-1} (y_t - \tilde{y}_t(\theta)).$$

- Use a movie as input, not a couple of images.
- The parameters only include the intrinsic parameters and the lens distortion, NOT the pose.
- The pose is obtained by solving a filtering problem.
- This project is a very good way of getting used to how cameras work (mathematically speaking) and how to formulate estimation problems.

More details are available on the course web site.