Lecture 1 – Rigid Body Motion

Mikael Norrlöf and Thomas Schön,
Division of Automatic Control,
Department of Electrical Engineering,
Linköping University.
Email: {mino,schon}@isy.liu.se

Content

- Rigid body transformation
- Rotation
 - Rotation matrices
 - Euler’s theorem
 - Parameterization of SO(3)
- Homogeneous representation
 - Matrix representation
 - Chasles’ theorem

Background to modeling

Kinematics

- studies the motion of objects without consideration of the circumstances leading to the motion

Dynamics

- studies the relationship between the motion of objects and its causes

Rigid body motion

The motion of a rigid body can be parameterized as
- position
- orientation
of one point of the object. The configuration.
The motion of a rigid body can be parameterized as
- position - orientation
of one point of the object. The **configuration**.

Content

- Rigid body transformation
- Rotation
 - Rotation matrices
 - Euler's theorem
 - Parameterization of SO(3)
- Homogeneous representation
 - Matrix representation
 - Chasles' theorem

Representation of orientation

- Angle – axis representation
- Euler angles
- Quaternion
- Exponential coordinates
- ...

Euler angles
Euler angles

The order of rotation axes is important

\[
R_1(\alpha) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\alpha) & \sin(\alpha) \\
0 & -\sin(\alpha) & \cos(\alpha)
\end{bmatrix}
\]

\[
R_2(\alpha) = \begin{bmatrix}
\cos(\alpha) & 0 & -\sin(\alpha) \\
0 & 1 & 0 \\
\sin(\alpha) & 0 & \cos(\alpha)
\end{bmatrix}
\]

\[
R_3(\alpha) = \begin{bmatrix}
\cos(\alpha) & \sin(\alpha) & 0 \\
-\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Gimbal lock (Apollo IMU Gimbal lock 1, 2)

\[
R(\alpha, \beta, \gamma) = \begin{bmatrix}
0 & \cos \gamma \sin \alpha - \cos \alpha \sin \gamma & \cos \alpha \cos \gamma + \sin \alpha \sin \gamma & 0 \\
0 & \cos \alpha \cos \gamma + \sin \alpha \sin \gamma & \cos \alpha \sin \gamma - \cos \gamma \sin \alpha & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Quaternions

Sir William Rowan Hamilton (1809-1865)

Lectures on Quaternions: Containing a Systematic Statement of
A New Mathematical Method

Of which the principles were communicated in 1843 to the Royal Irish Academy; and which has since formed the subject of successive courses of lectures, delivered in 1848 and subsequent years in the halls of Trinity College, Dublin: with numerous illustrative diagrams, and with some geometrical and physical applications.
Quaternions

Generalization of complex numbers to 3D.

\[s + i x + j y + k z \]

with \(i^2 = j^2 = k^2 = i j k = -1, i j = -j i = k, j k = -k j = i, k i = -i k = j \).

A quaternion is usually represented as \(q = s + v \) with

- \(s \) scalar (real part)
- \(v \) vector in \(\mathbb{R}^3 \) (complex part)

Unit quaternion \(||q|| = 1 \).

Rotation with quaternions

Angle axis to quaternion

\[q = \cos \frac{\theta}{2}, \sin \frac{\theta}{2} \cdot v \]

Composition of rotations, \(q_1 \) then \(q_2 \)

\[q = q_2 q_1 \]

Rotation of a vector, \(u = R v \)

\[v_q = <0, v> \text{, } q \text{ is quaternion representation of } R \]

\[u_q = q v q^{-1} = <0, u> \]

\[R_q(q) = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2 q_1 q_2 - 2 q_0 q_3 & 2 q_1 q_3 + 2 q_0 q_2 \\ 2 q_1 q_2 + 2 q_0 q_3 & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2 q_2 q_3 - 2 q_0 q_1 \\ 2 q_1 q_3 - 2 q_0 q_2 & 2 q_2 q_3 + 2 q_0 q_1 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix} \]

Some remarks

- \(q \) and \(-q\) represent the same rotation

- \(q = <s,v> \text{ and } q^{-1} = <s,-v> \)
Quaternions

- Can only represent orientation
- Quaternion math is not so well known
- Compact representation, based upon angle axis rep.
- Simple interpolation methods
- No gimbal lock
- Simple composition
- Linear (bi-linear) dynamics, (NASA)

Comparison for different operations

<table>
<thead>
<tr>
<th>Method</th>
<th>Storage</th>
<th># multiplies</th>
<th># add/subtracts</th>
<th>Total operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation matrix</td>
<td>9</td>
<td>27</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>Quaternions</td>
<td>4</td>
<td>18</td>
<td>12</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Storage</th>
<th># multiplies</th>
<th># sin/cos</th>
<th>Total operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation matrix</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Quaternions</td>
<td>4</td>
<td>21</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>Angle/Axis</td>
<td>4*</td>
<td>23</td>
<td>16</td>
<td>41</td>
</tr>
</tbody>
</table>

Illustration of Euler’s Theorem

Hence, the effect of the rotation R is to rotate vectors in the plane spanned by v_1 and v_2 through an angle φ along u. This shows that R rotates a rigid body about u through an angle φ. This concludes the proof of Euler’s theorem.

Canonical Representation of the Rotation Matrix

There is a canonical representation of any rotation matrix R, that allows us to view it as a rotation through an angle φ about the z-axis.

Define the orthonormal matrix $Q = \begin{pmatrix} v_1 & v_2 & u \end{pmatrix}$ and

$$
\Lambda = \begin{pmatrix}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{pmatrix}
$$

Then we can show that

$$
R = QAQ^T
$$

Recall that “change of basis = similarity transformation”
Homogeneous Representation

How do we represent rigid body motion in general, i.e., both orientation and translation.

A full rigid-body motion is denoted by \(g = (R, T) \)

The set of all possible configurations of a rigid body can be described by the space of rigid-body motions or special Euclidean transformations

\[
SE(3) \triangleq \{ g = (R, T) | R \in SO(3), T \in \mathbb{R}^3 \}
\]

Homogeneous Representation

The equation

\[
X^w = R^{wc} X^c + T^{wc}
\]

is affine, we would like to get rid of the additive term.

We can convert the affine transformation into a linear transformation by augmenting an additional 1 to \(X \)

\[
\bar{X} = \begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{pmatrix}
\]

Homogeneous Representation

What is linear about this?

Let us have a look

\[
\bar{X}^w = \begin{pmatrix} X^w \\ 1 \end{pmatrix} = \begin{pmatrix} R^{wc} & T^{wc} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X^c \\ 1 \end{pmatrix} = \bar{g}^{wc} \bar{X}^c
\]

Chasle’s Theorem

Proof:

Consider a general 4x4 homogeneous matrix (describing a rigid body motion)

\[
A = \begin{pmatrix} R & d \\ 0 & 1 \end{pmatrix}
\]

We will now change basis in order to see better (again, recall that “change of basis = similarity transform”).

Perform a similarity transformation of the matrix A

\[
\Lambda = \begin{pmatrix} Q^T & -Q^T c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} Q & c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} Q^T R Q & Q^T R c - Q^T c + Q^T d \\ 0 & 1 \end{pmatrix}
\]
Chasle's Theorem

Proof (continued):

Rotation:

Recall that v_1, v_2 and u are orthogonal

Choose Q according to $Q = \begin{pmatrix} v_1 & v_2 & u \end{pmatrix}$

$$Q^T R Q = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

This is a rotation about the z-axis

Hence, the rigid body motion is described by a rotation about the z-axis through an angle φ followed by a translation along the z-axis through a distance k.

If the top $2x2$ submatrix of $(Q^T R Q - I)$ is singular, then $Q^T R Q = I$. This means that Λ is a pure translation.

The proof is finished.

Chasle's Theorem – Screw Motion

The motion implied by Chasle's theorem is like when you screw in that it rotates and translates along the same axis.
Further Studies Besides Course Literature

- R.M. Murray, Z. Li, and S.S. Sastry: *A mathematical introduction to Robotic Manipulation* (Chapter 2)
- James Diebel: *Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors*
- Erik B. Dam, Martin Koch, and Martin Lillholm: *Quaternions, Interpolation and Animation*