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Sweden

ISBN 91-7373-622-8 ISSN 0345-7524

Printed by UniTryck, Linköping, Sweden 2003
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Abstract

Controlling a system with control and state constraints is one of the most important
problems in control theory, but also one of the most challenging. Another important
but just as demanding topic is robustness against uncertainties in a controlled
system. One of the most successful approaches, both in theory and practice, to
control constrained systems is model predictive control (MPC). The basic idea in
MPC is to repeatedly solve optimization problems on-line to find an optimal input
to the controlled system. In recent years, much effort has been spent to incorporate
the robustness problem into this framework.

The main part of the thesis revolves around minimax formulations of MPC
for uncertain constrained linear discrete-time systems. A minimax strategy in
MPC means that worst-case performance with respect to uncertainties is optimized.
Unfortunately, many minimax MPC formulations yield intractable optimization
problems with exponential complexity.

Minimax algorithms for a number of uncertainty models are derived in the
thesis. These include systems with bounded external additive disturbances, systems
with uncertain gain, and systems described with linear fractional transformations.
The central theme in the different algorithms is semidefinite relaxations. This
means that the minimax problems are written as uncertain semidefinite programs,
and then conservatively approximated using robust optimization theory. The result
is an optimization problem with polynomial complexity.

The use of semidefinite relaxations enables a framework that allows extensions
of the basic algorithms, such as joint minimax control and estimation, and approx-
imation of closed-loop minimax MPC using a convex programming framework.
Additional topics include development of an efficient optimization algorithm to
solve the resulting semidefinite programs and connections between deterministic
minimax MPC and stochastic risk-sensitive control.

The remaining part of the thesis is devoted to stability issues in MPC for
continuous-time nonlinear unconstrained systems. While stability of MPC for un-
constrained linear systems essentially is solved with the linear quadratic controller,
no such simple solution exists in the nonlinear case. It is shown how tools from
modern nonlinear control theory can be used to synthesize finite horizon MPC
controllers with guaranteed stability, and more importantly, how some of the tech-
nical assumptions in the literature can be dispensed with by using a slightly more
complex controller.
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Notation

Operators and functions

A � (�) 0 A positive (semi)definite matrix, xT Ax ≥ (>) 0 ∀x 6= 0
A � (≺) 0 A negative (semi)definite matrix, xT Ax ≤ (<) 0 ∀x 6= 0
AT Transpose of a matrix
A−1 Inverse of a matrix
TrA Trace of a matrix
det A Determinant of a matrix
diag(A) Vector with diagonal of matrix
A⊕B Direct sum of matrices (block diagonal concatenation)
A ◦B Hadamard product of matrices (element-wise product)
||A|| Induced 2-norm, max||x||=1 xT Ax
diag(x) Diagonal matrix ⊕n

i=1xi

|x| Element-wise absolute value
||x|| Euclidean norm of vector, ||x|| =

√
xT x =

√∑n
i=1 x2

i

||x||2 Euclidean norm of vector
||x||1 Sum of absolute elements, ||x||1 =

∑n
i=1 |xi|

||x||∞ Largest element maxi |xi|
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x Notation

Sets

X× Y Cartesian product, X× Y = {(x, y) : x ∈ X, y ∈ Y}
R (R+) Set of (non-negative) real numbers
R

n (Rn
+) Set of (non-negative) real vectors with n elements

R
n×m Set of real matrices with n rows and m columns

EP Ellipsoidal set EP = {x : xT Px ≤ 1} (P � 0)
Co{X(1), . . . , X(n)} Convex hull

Others

E Mathematical expectation
I Identity matrix
1 Vector of ones, 1 =

(
1 1 . . . 1

)T
1N Vector of N ones
ei ith unit vector, I =

(
e1 e2 . . . en

)

Abbreviations

BMI Bilinear Matrix Inequality
CLF Control Lyapunov Function
FIR Finite Impulse Response
HJB Hamilton-Jacobi-Bellman
KKT Karush-Kuhn-Tucker
LMI Linear Matrix Inequality
LP Linear Program(ming)
LQ Linear Quadratic
MAXDET Determinant Maximization
MPC Model Predictive Control
PDF Probability Density Function
QP Quadratic Program(ming)
SDP Semidefinite Program(ming)
SOCP Second Order Cone Program(ming)
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Introduction

Incorporating uncertainty models in model predictive control (MPC) is the main
topic of this thesis. The goal is to develop schemes that transparently extend
nominal MPC to deal with uncertainty.

The prevailing approach today to incorporate uncertainty in MPC is to opti-
mize worst-case performance. In optimization language, this corresponds to solving
minimax problems. Unfortunately, these minimax problems tend to be intractable
for many important problem formulations. The main idea in the thesis is to use
methods from robust semidefinite optimization theory to solve conservative ap-
proximations of these intractable problems.

1.1 Outline

The thesis starts with a number of introductory chapters on MPC, convex and
robust optimization, and robust MPC in Chapter 2, 3 and 4 respectively. The
main contributions on minimax MPC can be found in Chapters 5 to 11.

Chapters 5 and 6 present methods to deal with external bounded disturbances
and state estimation errors in minimax MPC. Semidefinite relaxations are intro-
duced as a tool to solve conservative approximations of minimax MPC problems.
The reader is advised to at least skim through Chapter 5, since much of the intro-
duced notation is used on several locations later in the thesis.

1



2 Introduction

The results from Chapter 5 are improved upon in Chapter 7 where a novel
approach to deal with conservativeness is introduced. The problem with standard
minimax MPC schemes is that they typically deal with open-loop formulations
which easily leads to conservative controllers. An extension to minimax MPC that
resolves this problem is closed-loop minimax MPC. However, closed-loop minimax
MPC is a much harder problem, and leads to completely intractable problems.
The result in Chapter 7 can be interpreted as a way to approximate closed-loop
minimax MPC.

Chapter 8 presents a short result on a connection between the developed deter-
ministic minimax MPC algorithms and stochastic risk-sensitive control.

The semidefinite relaxations employed in Chapter 5 and 6 give rise to large
sparse and structured semidefinite programs. A dedicated solver is developed in
Chapter 9 to solve these optimization problems. It is shown that a very simple
solver can yield substantial improvements in computational performance, compared
to available software, by exploiting the structure.

Chapters 10 and 11 are devoted to systems with uncertainty in the dynamic
model, instead of external disturbances. A rather general approach to minimax
MPC for systems described with linear fractional transformations is developed in
Chapter 11. Although convex and polynomially growing in size, the semidefinite
relaxation of the minimax MPC problem in Chapter 11 suffer from complexity
problems. A specialization to systems with uncertain gain is therefore developed
independently in Chapter 10. The result is a much more efficient formulation of
the minimax MPC problem.

Chapter 12 summarizes the material on minimax MPC and points at some
possible future extensions and research directions.

Finally, a completely different problem is addressed in Chapter 13. MPC can
readily be extended to cope with nonlinear systems, at least conceptually. The
stability theory in linear MPC transfers nicely to nonlinear systems, but the results
are not as constructive since they require knowledge of a stabilizing controller with
certain prescribed properties. It is shown how some of these requirements can be
relaxed, thus making synthesis of nonlinear MPC more tractable.

1.2 Contributions

To summarize, the main contributions of the thesis are:

• Semidefinite relaxations are advocated as a tool to solve conservative approxi-
mations of minimax MPC problems with finite horizon quadratic performance
measures.

• The semidefinite relaxation of minimax MPC for systems with bounded ad-
ditive external disturbances in Chapter 5.

• The semidefinite relaxation of minimax MPC for systems with uncertainties
described with a linear fractional transformation (LFT model) in Chapter 11.
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• Introduction of a novel approach in Chapter 7 to deal with conservativeness
in minimax MPC. Closed-loop minimax MPC is approximated by parame-
terizing the control sequence in a novel way.

• Specialization of the results on minimax MPC for LFT models, to systems
with uncertain gain. The result in Chapter 10 is an optimization problem
with much better complexity than the general solution.

• It is shown in Chapter 6 that a joint estimation and minimax MPC problem
can be written as a semidefinite program with a bilinear matrix inequality.

• It is shown in Chapter 8 that there are close connections between a semidefi-
nite relaxation of a minimax MPC problem and stochastic risk-sensitive con-
trol.

• A new approach to synthesize MPC controllers with guaranteed stability in
nonlinear continuous-time systems is presented in Chapter 13.

1.3 Publications

Parts of the thesis are based on previously published material. Chapters 5, 6 and
7 are based on

Löfberg, J. (2001a). Linear model predictive control: Stability and ro-
bustness. Licentiate thesis LIU-TEK-LIC-2001:03, Department of Elec-
trical Engineering, Linköpings universitet, Sweden.

Löfberg, J. (2002b). Towards joint state estimation and control in min-
imax MPC. In Proceedings of the 15th IFAC World Congress on Auto-
matic Control, Barcelona, Spain.

Löfberg, J. (2003). Approximations of closed-loop minimax MPC. Sub-
mitted to CDC03.

Chapter 10 builds upon

Löfberg, J. (2002a). Minimax MPC for systems with uncertain gain. In
Proceedings of the 15th IFAC World Congress on Automatic Control,
Barcelona, Spain.

The main result in Chapter 13 is based on

Löfberg, J. (2001b). Nonlinear receding horizon control: Stability with-
out stabilizing constraints. In Proceedings of the European Control Con-
ference ECC01, Porto, Portugal.

A related publication is

Löfberg, J. (2000). Backstepping with local LQ performance and global
approximation of quadratic performance. In Proceedings of the Ameri-
can Control Conference 2000, Chicago, Illinois.
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2

Model Predictive Control

Model predictive control, or MPC, is a control paradigm with a motley background.
The underlying ideas for MPC originated already in the sixties as a natural ap-
plication of optimal control theory. Already in (Propoi, 1963), a controller with
close connections to MPC was developed, and a more general optimal control based
feedback controller was discussed in (Lee and Markus, 1968)

“One technique for obtaining a feedback controller synthesis from knowledge
of open-loop controllers is to measure the current control process state and then
compute very rapidly for the open-loop control function. The first portion of this
function is then used during a short time interval, after which a new measurement
of the process state is made and a new open-loop control function is computed for
this new measurement. The procedure is then repeated”.

As we will see in this and the following chapters, this is the definition of the
control method that we today call MPC.

In this chapter, we will give a short historical account of MPC and describe the
basics of an MPC algorithm. The admissible systems will be defined and some sim-
ple notation will be explained. After the introduction of a standard MPC controller,
we show how the obtained problems can be solved with quadratic programming.
The chapter ends with a short introduction to stability issues in nominal MPC.

7



8 Model Predictive Control

2.1 Historical Background

The true birth of MPC took place in the industry in the mid-seventies to mid-
eighties. Advocated by the work on Model Predictive Heuristic Control (MHRC)
(Richalet et al., 1978) and Dynamic Matrix Control (DMC) (Cutler and Ramaker,
1980), the MPC strategy became popular in the petro-chemical industry. During
this period, there was a flood of new variants of MPC. Without going into de-
tails, MAC, DMC, EHAC, EPSAC, GMV, MUSMAR, MURHAC, PFC, UPC and
GPC were just some of the algorithms (Camacho and Bordons, 1998). Despite
the vast number of abbreviations introduced, not much differed between the algo-
rithms. Typically, they differed in the process model (impulse, step, state-space
etc.), disturbance (constant, decaying, filtered white noise etc), and adaptation to
time varying models.

During the nineties, the theory of MPC has matured substantially. The main
reason is probably the use of state-space models instead of input-output models.
This has simplified, unified and generalized much of the theory. In the case of non-
accessible states, the Kalman filter (most easily used in a state-space formulation)
simplifies the estimation part, the connections to linear quadratic control give a
lot of insight (Bitmead et al., 1990), stability theory is almost only possible in a
state-space formulation and much recent MPC theory is based on linear matrix
inequalities which are most suitable for state-space methods.

2.2 System Setup

In this thesis, we will exclusively use state-space methods. The system we control
will in principle be the same throughout the thesis, a linear discrete-time system

xk+1 = Axk + Buk (2.1a)
yk = Cxk (2.1b)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p denote the state, control input and controlled

output respectively.
Besides the dynamics, the system has control and state constraints.

u ∈ U (2.2a)
x ∈ X (2.2b)

The sets U and X are polyhedrons, i.e., described by linear inequalities.

U = {u : Euu ≤ fu} (2.3a)
X = {x : Exx ≤ fx} (2.3b)

2.3 A Basic MPC Controller

MPC is an optimization based control law, and the performance measure is al-
most always quadratic, i.e., based on `2-norms. By using a quadratic performance
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measure, connections to linear quadratic control are evident, efficient optimization
problems arise (quadratic programming), and mathematical analysis simplifies. A
quadratic performance measure is also intuitively what we want from a control
perspective, it is much more important to reduce large deviations than reducing
small deviations.

By defining positive definite matrices Q = QT � 0 and R = RT � 0 (the
performance weights), our underlying goal is to find the optimal control input that
minimizes an infinite horizon performance measure.

Jk =
∞∑

j=0

yT
k+jQyk+j + uT

k+jRuk+j (2.4)

The positive definiteness assumptions on Q and R can in most cases be relaxed to
semidefiniteness, but we refrain from this to obtain a simple notation.

An alternative is a performance measure based on `1-norms or `∞-norms.

Jk =
∞∑

j=0

||Q1/2yk+j ||1 + ||R1/2uk+j ||1 (2.5a)

Jk =
∞∑

j=0

||Q1/2yk+j ||∞ + ||R1/2uk+j ||∞ (2.5b)

The common ingredient in these two performance measures is that they can be
dealt with using linear programming. They are therefore sometimes called lin-
ear performance measures. However, as indicated in (Rao and Rawlings, 2000),
strange closed-loop behavior can in some cases be obtained with these performance
measures.

The solution to the infinite horizon problem with the quadratic performance
measure is in the unconstrained case given by the linear quadratic (LQ) controller
(Anderson and Moore, 1971). In the general constrained case, there does not exist
any simple closed-form expression for the solution, although it can be shown that
the solution is a piece-wise affine state feedback law (Bemporad et al., 2002b).
Instead, the first step in MPC is to define a prediction horizon N and approximate
the performance measure by using a finite horizon,

Jk =
N−1∑
j=0

yT
k+j|kQyk+j|k + uT

k+j|kRuk+j|k (2.6)

The variables yk+j|k denote predicted outputs, given an input sequence uk+j|k,
a state estimate xk|k and the model (2.1). It is assumed throughout this thesis,
except in Chapter 6, that the true state is available, hence xk|k = xk.

The term finite horizon is crucial. Due to the finite horizon, we are able to
minimize the performance measure since it is an optimization problem with a finite
number of decision variables and a finite number of constraints, but at the same
time, the finite horizon introduce stability problems.
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The second idea is to repeatedly resolve finite horizon problems when we obtain
new measurements xk|k of the state xk. Let us define this finite horizon optimal
control problem.

min
u

∑N−1
j=0 yT

k+j|kQyk+j|k + uT
k+j|kRuk+j|k

subject to uk+j|k ∈ U

xk+j|k ∈ X

(2.7)

Putting the conceptual idea into an algorithm yields the following basic MPC
controller

Algorithm 2.1 (Basic MPC controller)

1. Measure xk|k
2. Obtain u·|k by solving a finite horizon optimal control problem (e.g. (2.7))

3. Apply the first element uk = uk|k

The difference between different MPC schemes is the finite horizon optimal control
problem used in step 2.

2.4 Quadratic Programming Formulation of MPC

Already in (Propoi, 1963), it was realized that the optimization problem (2.7) is a
quadratic program. The earliest reference that takes advantage of this fact in an
MPC context is probably (Garcia and Morshedi, 1986), although it had been in use
in the industry for quite some time before. Quadratic programming is a classical
optimization problem for which there exist efficient solution methods, and this is
probably one of the reasons why MPC has become so popular in practice.

To put the optimization problem in a form suitable for quadratic programming,
we introduce stacked vectors with future outputs, states and control inputs

Y =
(
yT

k|k yT
k+1|k . . . yk+N−1|k

)T

(2.8a)

X =
(
xT

k|k xT
k+1|k . . . xk+N−1|k

)T

(2.8b)

U =
(
uT

k|k uT
k+1|k . . . uT

k+N−1|k
)T

(2.8c)

The predicted states and outputs can be conveniently written as

Y = CX (2.9a)
X = Axk|k + BU (2.9b)
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where A ∈ R
Nn×n, B ∈ R

Nn×Nm and C ∈ R
Np×Nn are given by

A =




I
A
A2

...
AN−1


 , B =




0 0 0 . . . 0
B 0 0 . . . 0

AB B 0 . . . 0
...

. . . . . . . . .
...

AN−2B . . . AB B 0


 , C = ⊕N

j=1C (2.10)

The operator ⊕ (direct sum) will be used throughout this thesis to define block
diagonal matrices, as in the definition of Q ∈ R

Nn×Nn and R ∈ R
Nm×Nm.

Q = ⊕N
j=1Q =




Q 0 . . . 0
0 Q . . . 0
...

. . . . . .
...

0 . . . 0 Q


 , R = ⊕N

j=1R =




R 0 . . . 0
0 R . . . 0
...

. . . . . .
...

0 . . . 0 R


 (2.11)

Since the constraints are defined by linear inequalities, they can be written as
U ∈ U

N = {U : EuU ≤ Fu} and X ∈ X
N = {X : ExX ≤ Fx} where

Eu = ⊕N
j=1 Eu, Fu =

(
fT

u fT
u . . . fT

u

)T (2.12a)

Ex = ⊕N
j=1 Ex, Fx =

(
fT

x fT
x . . . fT

x

)T (2.12b)

The optimization problem (2.7) can now be written as

min
U

Y TQY + UTRU

subject to EuU ≤ Fu

ExX ≤ Fx

(2.13)

Inserting the definition of X and simplifying yields the final quadratic program in
the decision variable U

min
U

UT (ATCTQCTA+R)U + 2UTBTQCAxk|k

subject to
(
Eu
ExB

)
U ≤

( Fu

Fx − ExAxk|k

) (2.14)

For small to medium-scale systems with reasonably long sample-time, standard
quadratic programming algorithms (Nocedal and Wright, 1999) will probably suf-
fice to solve the on-line optimization problems, but if performance is crucial, there
exist algorithms that can exploit structure in large-scale MPC problems to reduce
the computational complexity (Wright, 1997).

Notice that if the problem is unconstrained, we can easily find the optimal
solution analytically.

U = −(ATCTQCTA+R)−1BTQCAxk|k (2.15)
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By isolating the first m rows in this solution, we see that we can write the optimal
control law as a linear time-invariant state feedback.

uk = Lxk|k (2.16)

Of course, this result is rather irrelevant, since there is no reason to apply finite
horizon MPC with a quadratic performance measure to an unconstrained linear
system. A better solution is to let N =∞ and calculate the optimal LQ controller.
However, we will use this unconstrained solution now when we discuss stability of
MPC.

2.5 Stability of MPC

From a theoretical point of view, the main problem with linear MPC has been, and
maybe still is, the lack of a general and unifying stability theory.

So why is stability theory for linear MPC still a problem, 25 years after the
first development of MPC? To begin with, we have to keep in mind that an un-
stable input-constrained system cannot be globally stabilized (Saberi et al., 2000).
Hence, all results have to be local in the general case. Furthermore, although the
system we analyze is linear, the constraints introduce nonlinearities, which com-
plicate the stability analysis. Another problem is that the control law is generated
by the solution of an optimization problem. These obstacles prevented the devel-
opment of stability results in the early days of MPC. The situation was even more
complicated by the fact that the analysis often was performed in an input-output
setting. As state-space formulations became standard in MPC, stability results
began appearing in late eighties and early nineties.

The central concept that started to appear was to abandon the idea to ana-
lyze the impact of different choices of the parameters Q, R and N , since these
parameters in general affect stability in a complicated way (see example below).

Instead, the main trend now is to reformulate the underlying optimization prob-
lem in order to guarantee stability for arbitrary Q, R and N . An excellent survey
on recent stability theory for MPC can be found in (Mayne et al., 2000).

To motivate the theory in this section, let us start with a simple numerical
study to illustrate the problems with stability in MPC.

Example 2.1 (Unstable MPC)
Consider the following unstable system1

xk+1 =
(

1.216 −0.055
0.221 0.9947

)
xk +

(
0.02763
0.002673

)
uk

yk =
(
0 0.2

)
xk

Let us assume that the system is unconstrained, and that we wish to control the
system using the standard MPC controller defined in Section 2.3. From Section

1Zero-order hold discretization of 0.1
(s−1)2

, sampled at 0.1 seconds
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2.4, we know that the resulting MPC controller is a linear feedback uk = Lxk. This
means that we can analyze stability by calculating the eigenvalues of A + BL.
The optimal feedback matrix L depends on the weights Q and R, and the prediction
horizon N . To study the impact of these variables, we generate a large number of
MPC controllers using

Q = I, R = 0, 0.01, . . . , 10, N = 1, 2, . . . , 50

Stability analysis can now easily be performed by calculating the eigenvalues of
A+BL for each combination of N and R. The results are illustrated in Figure 2.1.

5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

9

10

N

R

Figure 2.1: The figure shows the effect of the prediction horizon N and the control
weight R. Grey regions indicate combinations of N and R that generate stabilizing MPC
controllers. White regions indicate unstable control laws. The figure shows that the set
of stabilizing controllers for this example is nonconvex in N and R

Combinations of N and R that give a stable closed-loop system, are indicated in
the figure with grey regions, whereas combinations yielding an unstable closed-loop
are white. As an example, if we look at the slice R = 1, the closed-loop is stable for
17 ≤ N ≤ 20 and N ≥ 36. Similarly, for N = 22, the system is stable for R ≤ 0.37
and 3.68 ≤ R ≤ 5.41.
The numbers above are not that interesting, but with this simple example, we have
numerically found an essential property; the set of stabilizing combinations of Q,
N and R can in the general case be nonconvex and disconnected.
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2.5.1 A Stabilizing MPC Controller

In this section, a rather general approach to stabilizing MPC will be introduced.
The method that follows is based on three ingredients: a nominal controller, a
terminal state domain defined by a terminal state constraint, and a terminal state
weight. Having these, it is possible to summarize many proposed schemes in the
following theorem (Mayne et al., 2000).

Theorem 2.1 (Stabilizing MPC)
Suppose the following assumptions hold for a linear system, a nominal controller
L(x), a terminal state domain XT and a terminal state weight Ψ(x)

A1. xk+1 = Axk + Buk

A2. 0 ⊆ XT ⊆ X

A3. Ax + BL(x) ∈ XT ∀x ∈ XT

A4. Ψ(0) = 0, Ψ(x) ≥ 0 ∀ x 6= 0

A5. Ψ(Ax + BL(x))−Ψ(x) ≤ −xT Qx− LT (x)RL(x) ∀x ∈ XT

A6. L(x) ∈ U ∀x ∈ XT

Then, assuming feasibility at the initial state, an MPC controller using the
following optimization problem will guarantee asymptotic stability

min
u

∑N−1
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k + Ψ(xk+N |k)

subject to uk+j|k ∈ U

xk+j|k ∈ X

xk+N |k ∈ XT

(2.17)

Proof The proof is based on using the optimal cost of the performance measure as a
Lyapunov function. Let us denote the cost Jk, and the optimal cost J∗

k , obtained with
the optimal control sequence [u∗

k|k . . . u∗
k+N−1|k]. The use of a ∗ is a generic notation for

variables related to optimal solutions. Introducing the associated optimal state sequence
yields

J∗
k =

N−1∑
j=0

x∗T
k+j|kQx∗

k+j|k + u∗T
k+j|kRu∗

k+j|k + Ψ(x∗T
k+N|k)

A feasible solution at time k + 1 is [u∗
k+1|k, . . . , u∗

k+N−1|k, L(x∗
k+N|k)]. To see this, we

first recall that x∗
k+N|k ∈ XT . Using Assumption 6, we see that L(x∗

k+N|k) satisfies the
control constraint, and Assumption 3 assures satisfaction of the terminal state constraint
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on xk+N+1|k+1. Since XT ⊆ X according to Assumption 2 we also have xk+N+1|k+1 ∈ X.
The cost using this (sub-optimal) control sequence will be

Jk+1 =

N−1∑
j=0

[xT
k+1+j|k+1Qxk+1+j|k+1 + uT

k+1+j|k+1Ruk+1+j|k+1] + Ψ(xk+N+1|k+1)

=

N−1∑
j=0

[x∗T
k+j|kQx∗

k+j|k + u∗T
k+j|kRu∗

k+j|k] + Ψ(x∗
k+N|k)

+Ψ(xk+N+1|k+1) − Ψ(x∗
k+N|k)

+x∗T
k+N|kQx∗

k+N|k + LT (x∗
k+N|k)RL(x∗

k+N|k)

−x∗T
k|kQx∗

k|k − u∗T
k|kRu∗

k|k

In the equation above, we added and subtracted parts from the optimal cost at time k.
This is a standard trick in stability theory of MPC, and the reason is that the first line
in the last equality now corresponds to the optimal cost at time k, i.e., J∗

k .

According to Assumption 5, the sum of the second and third row in the last equality is
negative. Using this, we obtain

Jk+1 ≤ J∗
k − x∗T

k|kQx∗
k|k − u∗T

k|kRu∗
k|k

Since our new control sequence was chosen without optimization (we only picked a feasible
sequence) we know that Jk+1 ≥ J∗

k+1. In other words, we have

J∗
k+1 ≤ J∗

k − x∗T
k|kQx∗

k|k − u∗T
k|kRu∗

k|k

This shows that J∗
k is decreasing as long as x 6= 0 (Q � 0 by assumption). By construction,

Jk ≥ 0, so Jk has to converge to 0. Furthermore, Jk = 0 iff xk = 0, hence xk converge to
the origin. 2

Details and more rigorous proofs can be found in, e.g., (Lee, 2000) and (Mayne
et al., 2000).

The assumptions in the theorem are easily understood heuristically. If we use
the controller uk = L(xk), and start in XT , we know that uk ∈ U and xk+1 ∈ XT ⊆
X. Furthermore,

Ψ(xk+1)−Ψ(xk) ≤ −xT
k Qxk − uT

k Ruk (2.18)

By summing the left- and right-hand from time k to infinity, we obtain

Ψ(x∞)−Ψ(xk) ≤
∞∑

j=0

−xT
k+jQxk+j − uT

k+jRuk+j (2.19)

It follows from the assumptions that Ψ(xk) is a Lyapunov function when the con-
troller L(x) is used, hence xk+j → 0 for j → 0. Using this, we obtain

∞∑
j=0

xT
k+jQxk+j + uT

k+jRuk+j ≤ Ψ(xk) (2.20)
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In other words, Ψ(x) is an upper bound of the infinite horizon cost, when we
use the (sub-optimal) controller L(xk). Obviously, the optimal cost is even lower,
so Ψ(xk) is an upper bound of the optimal cost also. This is the most intuitive way
to interpret the assumptions. The terminal state weight Ψ(x) is an upper bound of
the optimal infinite horizon cost in the terminal state domain XT .

Methods to Choose {XT , L(x),Ψ(x)}

So, having a fairly general theorem for stabilizing MPC controllers, what is the
catch? The problem is of course to find the triple {XT , L(x),Ψ(x)}. A number of
methods have been proposed over the years.

A very simple method, generalizing the basic idea in, e.g., (Kleinman, 1974),
was proposed and analyzed in the seminal paper (Keerthi and Gilbert, 1988). The
method holds for a large class of systems, performance measures and constraints,
and in order to guarantee stability, a terminal state equality is added to the opti-
mization

min
u

∑N−1
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k

subject to uk+j|k ∈ U

xk+j|k ∈ X

xk+N |k = 0

(2.21)

In terms of Theorem 2.1, this corresponds to XT = {0}, L(x) = 0 and Ψ(x) = 0.
The set-up is successful since L(x) trivially satisfies all assumptions of Theorem 2.1
in XT . Notice that the equality constraint is artificial in the sense that the state
will not reach the origin at time k + N , since the constraint continuously is shifted
forward in time.

The second approach, applicable to stable systems without state constraints,
can be considered as the complete opposite to the previous approach. Since the
system is stable, a stabilizing controller is L(x) = 0, and this controller satisfies the
control constraints trivially for all states, hence XT = R

n. If we chose a quadratic
terminal state weight Ψ(x) = xT Px, Assumption 5 in Theorem 2.1 simplifies to

xT
k AT PAxk − xT

k Pxk � −xT
k Qxk (2.22)

This is guaranteed if

AT PA− P � −Q (2.23)

Hence, all we have to do is to solve a Lyapunov equation to find P , and use the
following formulation of the finite horizon problem.

min
u

∑N−1
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k + xT

k+N |kPxk+N |k

subject to uk+j|k ∈ U

(2.24)
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This was essentially the idea used in (Rawlings and Muske, 1993).
More general schemes can be obtained by combining ideas from the two previous

approaches. In (Rawlings and Muske, 1993), only the unstable modes of the system
were forced to the origin in the prediction, and a quadratic terminal state weight
was applied to the stable modes. Later, generalizing the ideas in, e.g., (Rawlings
and Muske, 1993), the following idea emerged.

We use a linear feedback uk = Lxk as the nominal controller, an ellipsoidal
terminal state domain XT = EW = {x : xT Wx ≤ 1} and a quadratic terminal
state weight Ψ(x) = xT Px. With these choices, we obtain the following MPC
problem from Theorem 2.1.

min
u

∑N−1
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k + xT

k+N |kPxk+N |k

subject to uk+j|k ∈ U

xT
k+N |kWxk+N |k ≤ 1

(2.25)

There is one appealing property of this approach. If we chose L as the LQ
controller obtained using the weights Q and R, the matrix P will be the Riccati
solution to the LQ problem and satisfy

xT
k+N |kPxk+N |k = min

u∈Rm

∞∑
j=N

xT
k+j|kQxk+j|k + uT

k+j|kRuk+j|k (2.26)

Now, if control and state constraints are inactive for i ≥ k + N in the solution
to the constrained infinite horizon problem, and the terminal state constraint is
satisfied in this solution, we must have

min
u∈U,x∈X

∑∞
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k

⇔
min

u∈U,x∈X

∑N−1
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k +

min
u∈Rm

∑∞
j=N xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k

⇔
min

u∈U,x∈X
xk+N|k∈XT

∑N−1
j=0 xT

k+j|kQxk+j|k + uT
k+j|kRuk+j|k + xT

k+N |kPxk+N |k

The stabilized finite horizon MPC solution will thus coincide with the infinite
horizon problem whenever control constraints are inactive beyond the prediction
horizon and the terminal state constraint is inactive.

This last approach in the cornerstone in many algorithms for stabilizing MPC
(Zheng, 1995; Chen, 1997; Bemporad and Mosca, 1997; Scokaert and Rawlings,
1998; Lee and Kouvaritakis, 1999; De Doná, 2000; Lee, 2000).
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3

Convex and Robust Optimization

A considerable part of the material in this thesis is based on convex optimization.
The idea in almost all chapters is to formulate an optimization problem, and then
show that the problem can be cast as some standard convex optimization problem.

The appealing property of convex optimization problems is that we can, under
fairly weak conditions, construct algorithms that are guaranteed to find an opti-
mal solution, if one exists, or construct a certificate that there exist no solution
(Nesterov and Nemirovskii, 1993; Ben-Tal and Nemirovski, 2001).

Moreover, it is possible to construct algorithms with polynomial complexity .
This essentially means that the computational effort required to find the solution
grows polynomially with respect to the problem dimensions (typically the number
of variables and constraints) and the desired accuracy on the solution. In other
words, we can construct efficient algorithms that scale well with problem size.

The introduction of convex optimization, and semidefinite programming in par-
ticular, as a standard mathematical tool has had, and still has, a profound impact
on control and systems theory. In the same sense that we earlier considered a
solution in terms of a Riccati equation as a closed form expression, problems with
solutions described by a convex program can now in many situations be considered
to be “analytically” solved.

There is a vast amount of literature on convex optimization, so let us just
mention a few references that fit as reference reading to this thesis. The forthcoming
book (Boyd and Vandenberghe, 2002) serves as an excellent introduction to both

19
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mathematical and engineering aspects of convex optimization. Another book in the
same vein, but with a slight bias towards semidefinite programming, is (Ben-Tal
and Nemirovski, 2001). A rather detailed, yet easily accessible, look at some basic
solution strategies, so called interior-point methods, can be found in (den Hertog,
1994).

3.1 Standard Convex Optimization Problems

For the sake of completeness, let us begin with the definition of a general convex
optimization problem (Boyd and Vandenberghe, 2002).

Definition 3.1 (Convex program, CP)

min
x

f0(x)

subject to fi(x) ≤ 0 i = 1 . . . m

Ax = b

(3.1)

The objective function f0(x) : R
n → R and the constraint functions fi(x) : R

n → R

are assumed convex in the decision variable x, hence the term convex programming.
Although the general problem can be solved relatively efficiently as discussed

above, it is always advantageous to use dedicated solvers that exploit structure in
the objective function and the constraints. In order to do so, a number of standard
problems can be defined, and we will now introduce the most important ones, all
of them used in this thesis.

3.1.1 Linear and Quadratic Programming

The first and perhaps most commonly known problem class is linear programming.

Definition 3.2 (Linear program, LP)

min
x

cT x

subject to Cx ≥ d

Ax = b

(3.2)

Another problem class that most readers should be familiar with is quadratic pro-
gramming.
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Definition 3.3 (Quadratic program, QP)

min
x

1
2xT Qx + cT x

subject to Cx ≥ d

Ax = b

(3.3)

Since we are addressing convex optimization problems, it is assumed that the matrix
Q is positive semidefinite. This yields a convex problem.

3.1.2 Second Order Cone Programming

Generalization of quadratic programming leads to second order cone programming.

Definition 3.4 (Second order cone program, SOCP)

min
x

cT x

subject to
∥∥Aix + bi

∥∥ ≤ cT
i x + di i = 1 . . . m

Ax = b

(3.4)

A constraint in the form
∥∥Aix + bi

∥∥ ≤ cT
i x + di is called a second order cone

constraint, hence the term second order cone programming. This is a surprisingly
expressive problem class with many applications, such as robust least squares, sum-
of-norms minimization and quadratically constrained quadratic programming, just
to mention a few (Lobo et al., 1998; Ben-Tal and Nemirovski, 2001)

3.1.3 Semidefinite Programming

Linear and quadratic programming is optimization over the nonnegative orthant,
and second order cone programming is optimization over the second order cone (the
ice-cream cone or Lorenz cone). Further generalization leads us to optimization
over the semidefinite cone, described with linear matrix inequalities (LMIs).

Definition 3.5 (Linear matrix inequality, LMI)

F (x) = F0 +
m∑

i=1

xiFi � 0, x ∈ R
m, Fi = FT

i ∈ R
n×n

Optimization over the semidefinite cone is called semidefinite programming.
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Definition 3.6 (Semidefinite program, SDP)

min
x

cT x

subject to F (x) � 0
Ax = b

(3.5)

An excellent introduction to semidefinite programming and LMIs, with special
attention to problems arising in systems theory, can be found in the already clas-
sic (Boyd et al., 1994). More recent material can be found in, e.g., (El Ghaoui and
Niculescu, 2000) and (Ben-Tal and Nemirovski, 2001).

The semidefinite programming problem can be generalized further1 and we end
up with a determinant maximization problem.

Definition 3.7 (Determinant maximization, MAXDET)

min
x

cT x− log detG(x)

subject to F (x) � 0
G(x) � 0

Ax = b

(3.6)

This awkward looking optimization problem has many applications in, e.g., control
theory (invariant set theory), geometry (bounding polytopes with ellipsoids and
similar problems) and optimal experiment design (Vandenberghe et al., 1998).

3.2 Robust Optimization

Robust optimization means that we have an optimization problem with uncertainty
in the problem data. The uncertainty, here denoted ∆, is only known to belong to
some set ∆. The goal is to minimize some objective function, while guaranteeing
a set of constraints to be satisfied for all possible uncertainties.

Definition 3.8 (Robust programming)

min
x

f0(x)

subject to fi(∆, x) ≤ 0 i = 1 . . . m ∀∆ ∈∆
Ax = b

(3.7)

1The determinant maximization problem can actually be stated as a standard semidefinite
programming problem but the conversion is highly intricate (Nesterov and Nemirovskii, 1993)
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Note that there is no loss of generality to assume the objective function to be
known, since an uncertain objective function can be taken care of by an epigraph
formulation, i.e., introducing a new variable t and constraint f0(∆, x) ≤ t, and
changing the objective function to t.

From the definition above, we see that robust programming is all about ensuring
robust satisfaction of constraints. This means that we must be able to perform a
maximization of fi(∆, x) over the admissible uncertainties ∆ ∈ ∆. The following
results will be used throughout this thesis to facilitate this.

The first case involves maximization of a linear function in the unit cube.

Theorem 3.1 (Maximum of linear function in the unit cube)

max
|x|≤1

cT x = ||c||1 = |cT |1 (3.8)

Proof Follows immediately since max
|x|≤1

cT x = max
|x|≤1

∑
cixi =

∑
cisign(ci) = ||c||1 2

Changing the uncertainty set to an ellipsoid gives us our second case.

Theorem 3.2 (Maximum of linear function in ellipsoid)
Let W � 0. It then holds that

max
xT Wx≤1

cT x =
√

cT W−1c (3.9)

Proof Let y = W 1/2x. The objective is now maximization of cT W−1/2y subject to

yT y ≤ 1. The optimal choice y is the parallel vector y =
(

cT W−1/2

||cT W−1/2||

)T

which yields the

objective cT W−1c

||cT W−1/2|| =
√

cT W−1c. 2

The third case is a bit more complex and involves robust satisfaction of quadratic
constraints (Boyd et al., 1994).

Theorem 3.3 (The S-procedure)
Let Ti(x) be quadratic functions,

Ti(x) = xT Pix, Pi = PT
i , i = 0, . . . ,m (3.10)

A sufficient condition for

T0(x) ≤ 0 ∀x such that Ti(x) ≤ 0 i = 1, . . . , m (3.11)

to hold is that there exist a τ ∈ R
m
+ such that

P0 −
m∑

i=1

τiPi � 0 (3.12)

When the condition is both sufficient and necessary, the S-procedure is said to be
lossless. This is the case when m = 1.
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The S-procedure can be used to derive a number of theorems related to un-
certain LMIs. The theorems that follow, on so-called semidefinite relaxations, can
be found in (El Ghaoui et al., 1998). The proofs are taken from (El Ghaoui and
Lebret, 1997) (minor changes are made in the proof to suit our notation better).

Theorem 3.4 (Robust linear matrix inequality for affine uncertainty)
Let F , L, R and ∆ be real matrices of appropriate size. The uncertain LMI

F + L∆R + RT ∆T LT � 0 (3.13)

holds for all ∆ ∈ {∆ : ∆ = ⊕m
1 ∆i,∆i ∈ R

r×p, ||∆i|| ≤ 1, i = 1 . . . m} if there exist
a τ ∈ R

m
+ , T = ⊕m

i=1τiI
p×p and S = ⊕m

i=1τiI
r×r such that

(
F − LSLT RT

R T

)
� 0 (3.14)

The condition is sufficient and necessary when m = 1.

Proof To begin with, we introduce matrices Ti ∈ R
mp×p and Si ∈ R

mr×r

T1 =




Ip×p

0p×p

...
0p×p


 , . . . , Tm =




0p×p

0p×p

...
Ip×p


 , S1 =




Ir×r

0r×r

...
0r×r


 , . . . , Sm =




0r×r

0r×r

...
Ir×r


 (3.15)

The constraint (3.13) is equivalent to xT (F + L∆R + RT ∆T LT )x ≥ 0 ∀x. Introduce
y = ∆T LT x and we have xT Fx + yT Rx + xT RT y ≥ 0. Multiply y with T T

i to obtain
T T

i y = T T
i ∆T LT x. Notice now that T T

i ∆T = T T
i ∆T SiS

T
i , hence T T

i y = T T
i ∆T SiS

T
i LT x.

The LMI should hold when ||∆Ti|| ≤ 1 which implies yT TiT
T
i y ≤ xT LSiS

T
i SiS

T
i LT x. We

notice that ST
i Si = I, hence we know that yT TiT

T
i y ≤ xT LSiS

T
i LT x. We can now write

our uncertain LMI as

(
x
y

)T (
F RT

R 0

)(
x
y

)
≥ 0 when

(
x
y

)T (
LSiS

T
i LT 0

0 −TiT
T
i

)(
x
y

)
≥ 0 (3.16)

Application of the S-procedure gives a sufficient condition.

(
F RT

R 0

)
≥

m∑
i=1

τi

(
LSiS

T
i LT 0

0 −TiT
T
i

)
(3.17)

Defining the matrices T =
∑m

i=1 τiTiT
T
i = ⊕m

i=1τiI
p×p and S =

∑m
i=1 τiSiS

T
i = ⊕m

i=1τiI
r×r

gives the desired result. 2

The following theorem is a slight generalization and deals with uncertainty in
a linear fractional transformation model (LFT).
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Theorem 3.5 (Robust linear matrix inequality for LFT uncertainty)
Let F = FT , L, R, D and ∆ be real matrices of appropriate size. The uncertain
LMI

F + L∆(I −D∆)−1R + RT (I −D∆)−T ∆T LT � 0 (3.18)

holds for all ∆ ∈ {∆ : ∆ = ⊕m
1 ∆i,∆i ∈ R

r×p, ||∆i|| ≤ 1, i = 1 . . . m} if there exist
a τ ∈ R

m
+ , T = ⊕m

i=1τiI
p×p and S = ⊕m

i=1τiI
r×r such that that(

F − LSLT RT − LSDT

R−DSLT T −DSDT

)
� 0 (3.19)

The condition is sufficient and necessary when m = 1.

Proof Define the matrices Si and Ti as in the proof for Theorem 3.4. We require xT (F +
L∆(I−D∆)−1R+RT (I−D∆)−1∆T LT )x ≥ 0 ∀x. Introduce y = (I−D∆)−T ∆T LT x and
we have xT Fx + yT Rx + xT RT y ≥ 0. Trivial manipulations yield y = ∆T (LT x + DT y).
Multiply with T T

i to obtain T T
i y = T T

i ∆T (LT x + DT y). Use the fact that T T
i ∆T =

T T
i ∆T SiS

T
i to obtain T T

i y = T T
i ∆T SiS

T
i (LT x + DT y). Use the norm bound on Ti∆ to

conclude that yT TiT
T
i y ≤ (xT L + yT D)SiS

T
i SiS

T
i (LT x + DT y). Exploiting ST

i Si = I
finally enables us to write our uncertain LMI as(

x
y

)T (
F RT

R 0

)(
x
y

)
≥ 0 when

(
x
y

)T (
LSiS

T
i LT LSiS

T
i DT

DSiS
T
i LT DSiS

T
i DT − TiT

T
i

)(
x
y

)
≥ 0

Application of the S-procedure yields a sufficient condition.(
F RT

R 0

)
�

m∑
i=1

τi

(
LSiS

T
i LT LSiS

T
i DT

DSiS
T
i LT DSiS

T
i DT − TiT

T
i

)
(3.20)

Defining the matrices T =
∑m

i=1 τiTiT
T
i = ⊕m

i=1τiI
p×p and S =

∑m
i=1 τiSiS

T
i = ⊕m

i=1τiI
r×r

gives the desired result. 2

3.3 Software

The great success of convex programming lies in the fact that the problems can be
solved with high efficiency. Since convex programming is a highly active research
area, there exist a plethora of free software packages for solving various classes of
convex optimization problems.

The major part of this thesis relies on second order cone and semidefinite pro-
gramming, so we concentrate on solvers for these problems.

For standard semidefinite problems, DSDP (Benson and Ye, 2001), CSDP

(Borchers, 1999) and SDPA (Yamashita et al., 2002) stand out as some of the
fastest and most robust solvers. Somewhat more general solvers are SeDuMi

(Sturm, 1999) and SDPT3 (Toh et al., 1999). These solvers address mixed semidef-
inite and second order cone programming problems, i.e., problems with both semidef-
inite and second order cone constraints. Finally, the determinant maximization
problem can be solved using MAXDET (Wu et al., 1996).
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A comprehensive computational survey on semidefinite and second order cone
programming solvers can be found in (Mittelmann, 2002).

The solvers above only solve the optimization problem, but do not support defi-
nition of problems. In order to simplify algorithm development and implementation
of optimization problems, some kind of interface to the solver is needed. During
the writing of this thesis, the MATLAB toolbox YALMIP (Löfberg, 2002c) was
developed to facilitate this. YALMIP supports all of the solvers above, and can be
used to define linear, second order cone, semidefinite and determinant maximiza-
tion problems.

Optimization problems in this thesis have been solved, if not otherwise is stated,
with YALMIP and SeDuMi.



4

Robust MPC

Controlling a system with control and state constraints is one of the most important
problems in control theory, but also one of the most challenging. Another important
but just as demanding topic is robustness against uncertainties in a controlled
system. Solving a control problem with both constraints and uncertainties can
thus feel like a daunting task. Nevertheless, this is the main topic in this thesis.

The crucial question in robust control is how to exploit knowledge about uncer-
tainty. Typical knowledge can be bounds on uncertain parameters in the system,
such as the weight of a robot arm, or bounds on external disturbances, such as
the load on the robot arm. Of course, we can never capture all uncertainties in
practice, but we can hopefully capture the most important and account for these.

We saw in the introductory chapter on MPC that the control law is based on
an on-line optimization problem. Adding uncertainties to the model thus requires
some way to incorporate this information into the optimization problem. This
thesis is to a large extent devoted to an approach for robust MPC called mini-
max MPC. The purpose of this chapter is to give a background to the topic and
summarize the main results.

27



28 Robust MPC

4.1 Uncertainty Models

The systems we address in this chapter are constrained uncertain linear systems.
Loosely speaking, we have

xk+1 = A(∆k)xk + B(∆k)uk + G(∆k), ∆k ∈∆ (4.1a)
yk = Cxk (4.1b)

The models that are introduced here cover almost all models used in minimax
MPC schemes. For notational simplicity, we do not present the most general models
possible, but settle with a simple description that suffices for our purpose.

The simplest model is to assume a bounded unknown external additive distur-
bance.

xk+1 = Akxk + Bkuk + Gwk, wk ∈W (4.2a)
yk = Cxk (4.2b)

The disturbance set W is typically a polytope, but not necessarily. A standard
assumption however is that W is convex and compact.

The perhaps most often used model is the polytopic model.

xk+1 = Akxk + Bkuk (4.3a)
yk = Cxk (4.3b)(

Ak Bk

)
∈ Co{

(
A(1) B(1)

)
, . . . ,

(
A(q) B(q)

)
} (4.3c)

The notation Co{·} is used to denote the convex hull.

Co{x(1), x(2), . . . , x(q)} = {x : x =
q∑

j=1

λjx
(j),

q∑
j=1

λj = 1, λ ≥ 0} (4.4)

Another frequently used model is the linear fractional transformation uncer-
tainty model, or LFT model for short.

xk+1 = Axk + Buk + Gpk (4.5a)
yk = Cxk (4.5b)
hk = Dxxk + Duuk + Dppk (4.5c)
pk = ∆khk, ||∆k|| ≤ 1 (4.5d)

Here, we assumed the uncertainty ∆ to be unstructured, but this can be extended
to allow for more complex uncertainty structures.

The crucial difference now compared to the nominal case in Chapter 2 is that
the predictions yk+j|k and xk+j|k define sets instead of exactly known values. Let
us exemplify this.
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Example 4.1 (Prediction sets)
Consider an autonomous system with a polytopic uncertainty.

xk+1 = Akxk Ak ∈ Co{A(1), A(2), A(3)} (4.6a)

A(1) =
(

0.25 0
0.5 0.25

)
, A(2) =

(
0.5 0
0.25 0.25

)
, A(3) =

(
0.25 0
0.25 0.25

)
(4.6b)

With an initial condition xk|k we obtain the one-step prediction

xk+1|k = Akxk|k ∈ Co{A(1)xk|k, A(2)xk|k, A(3)xk|k} = Co{x(1)
k+1|k, x

(2)
k+1|k, x

(3)
k+1|k}

It can readily be shown, see e.g. (Schuurmans and Rossiter, 2000), that the proce-
dure can be recursed and the two-step prediction is(

xk+1|k
xk+2|k

)
=

(
xk+1|k

Akxk+1|k

)

∈ Co{
(

x
(1)
k+1|k

A(1)x
(1)
k+1|k

)
,

(
x

(1)
k+1|k

A(2)x
(1)
k+1|k

)
,

(
x

(1)
k+1|k

A(3)x
(1)
k+1|k

)
, (4.7)

(
x

(2)
k+1|k

A(1)x
(2)
k+1|k

)
, . . . ,

(
x

(3)
k+1|k

A(2)x
(3)
k+1|k

)
,

(
x

(3)
k+1|k

A(3)x
(3)
k+1|k

)
}

= Co{
(

x
(1)
k+1|k

x
(11)
k+2|k

)
,

(
x

(1)
k+1|k

x
(21)
k+2|k

)
, . . . ,

(
x

(3)
k+1|k

x
(23)
k+2|k

)
,

(
x

(3)
k+1|k

x
(33)
k+2|k

)
} (4.8)

Continuing this process allows us to define the predicted set for arbitrary prediction
horizons. See Figure 4.1 for an illustration with xk|k =

(
1 4

)
. Notice that the

number of possible vertices in the description grows exponentially in the horizon
length. With q models in the polytopic description and a prediction length of N ,
there will be qN elements in the description of the predicted states. This is one of
the main obstacles in minimax MPC algorithms.

Our next step is to use these sets of predicted states in some way. The prevailing
approach in robust MPC, and robust control in general, is to solve minimax prob-
lems, i.e., solve problems where worst-case scenarios are accounted for. Clearly,
this is a conservative approach, but it is one of the few ways we have to place the
word robustness in a well-defined mathematical framework.

4.2 Minimax MPC

In this section, we will try to give an historical background to minimax MPC and
categorize the different approaches under a couple of headers. The categories are
not exact, some approaches fit under several headers, but it should give a flavor
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Figure 4.1: State predictions for system with a polytopic uncertainty. The predictions
are no longer points but sets. The marker ’*’ indicate states obtained using the recursive
procedure where we create predictions using all the vertices of the uncertainty set. The
predicted states are guaranteed to be contained in the convex hull of these predictions,
here indicated by the gray-shaded regions.

of what methods we have available today, and what the main differences are. The
interested reader might find the surveys in (Bemporad and Morari, 1999) and
(Mayne et al., 2000) suitable for additional reading.

A minimax MPC problem can typically be written as

min
u

max
∆

`(xk|k, uk|k, xk+1|k, uk+1|k, . . . , xk+N−1|k, uk+N−1|k)

subject to uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆
∆k+j|k ∈ ∆

(4.9)

Notice that the control input works in open-loop. Schemes based on (4.9) are
therefore sometimes called open-loop minimax MPC.

A typical and reasonable assumption in minimax MPC is to assume the per-
formance measure ` to be convex in xk+j|k and uk+j|k. This enables the use of
following central theorem.

Theorem 4.1 ((Bertsekas, 1999))
Let C be a closed convex set and let f : C→ R be a convex function. Then if f
attains a maximum over C, it attains a maximum at some extreme point of C.
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To us, this means that if ` is convex and the uncertainties ∆k generate a con-
vex set of predictions, we only need to check the extreme points of this set. In
the example above, we could have concentrated our effort on the predicted states
obtained using the vertex matrices A(1), A(2) and A(3), since the extreme points
are among these predictions. Notice that an extreme point of the uncertainty set
does not necessarily generate an extreme point of the predicted set. The converse
is however true, an extreme point of the predicted set is defined by an extreme
point of the polytopic model. We will be sloppy and sometimes talk about extreme
points (vertices) of the predicted sets, when we actually mean the states generated
by the extreme points of the uncertainty set.

FIR models and Minimum Peak Problems

Minimax formulations for robust MPC date back to the work of (Campo and
Morari, 1987). They used an uncertain finite impulse response (FIR) model.

yk =
M∑
i=1

θiuk−i, θ ∈ Θ (4.10)

The uncertainty set Θ was a polytope. It should be mentioned that they also
recognized that the model easily could be extended to a polytopic model to deal
with parametric uncertainties in the B (or C) matrix of a state space model.

The minimax problem they solved was minimization of the worst-case deviation
from a known reference trajectory rk+j|k (the minimum peak problem).

min
u

max
j

max
θ

||yk+j|k − rk+j|k||∞
subject to uk+j|k ∈ U

(4.11)

It was shown that this problem can be cast as a linear program. Unfortunately,
the size of the linear program grew exponentially in the number of uncertain pa-
rameters, since a brute force enumeration scheme was used, i.e., a constraint for
every vertex of the polytope Θ was added to a linear program.

The complexity of the approach in (Campo and Morari, 1987) was later im-
proved upon in (Allwright and Papavasiliou, 1992) where it was recognized that
maximization over θ could be performed analytically, and the result was a problem
formulation with polynomial complexity, not much larger than the nominal prob-
lem. Further work along the same ideas include (Zheng and Morari, 1993; Zheng,
1995) where stability issues are analyzed and slightly more general performance
measures are introduced. More recent work include generalization to FIR models
with norm-bounded errors in (Boyd et al., 1997), (Oliviera et al., 2000) with em-
phasis on the uncertainty modeling, and (Vandenberghe et al., 2002) who exploit
the inherent structure in the linear programs to develop an efficient solver.

The common ingredients in the references above are that the minimax problems
are cast as linear programs, and the maximization with respect to the uncertainty
is performed analytically, resulting in a reasonably small linear program.
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LMI Based Minimization and Linear State Feedback Parameterizations

A major theoretical breakthrough in MPC came with the seminal paper (Kothare
et al., 1994). The idea was to solve a robust linear state feedback problem repeat-
edly on-line using semidefinite programming and linear matrix inequalities (LMIs).

The system (Kothare et al., 1994) addressed in the original paper was a poly-
topic model.

xk+1 = Akxk + Bkuk (4.12)

Before we present the MPC scheme, let us look at the robust linear state feed-
back problem. Finding a linear state feedback uk = Lxk that minimizes an upper
bound of the worst-case infinite horizon quadratic cost

max
∆

∞∑
k=0

xT
k Qxk + uT

k Ruk (4.13)

given a polytopic uncertainty model, can be done using LMIs. The function xT
k Pxk

with P � 0 is an upper bound on the worst-case cost if it holds for all possible
models Ak and Bk that

xT
k+1Pxk+1 − xT

k Pxk ≤ −xT
k Qxk − uT

k Ruk (4.14)

This is easily seen by adding up the left- and right-hand side from 0 to ∞. After
inserting a linear feedback uk = Lxk, we obtain a matrix inequality.

(Ak + BkL)T P (Ak + BkL)− P � −Q− LT RL (4.15)

The problem of finding P and L can be transformed to a semidefinite program
by performing a clever variable change (Boyd et al., 1994). Performing a congru-
ence transformation with W = P−1, defining K = LP−1 and applying a Schur
complement yields an LMI in W and K.


W (AkW + BkK)T W KT

AkW + BkK W 0 0
W 0 Q−1 0
K 0 0 R−1


 � 0 (4.16)

The LMI should hold for all possible models, but due to the polytopic model, we
only need to check the vertices (Boyd et al., 1994)


W (A(i)W + B(i)K)T W KT

A(i)W + B(i)K W 0 0
W 0 Q−1 0
K 0 0 R−1


 � 0 (4.17)

This off-line solution does not honor any constraints in the system, and this is where
(Kothare et al., 1994) enter the scene. Instead of solving the problem off-line, a
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related semidefinite program is solved on-line for each xk|k. At time k, we calculate
a feedback to be used in the future uk+j = Lkxk+j . A natural performance measure
is the upper bound on the infinite horizon cost using this feedback law, γk =
xT

k|kPkxk|k. We now have to ensure that the control law Lkxk is feasible, and
will remain feasible, with respect to control and state constraints. To do this, we
first note that Pk defines an invariant ellipsoid for the (unconstrained) control law
uk+j = Lkxk+j , since xT

k Pkxk is a Lyapunov function according to (4.14). We thus
know that the control law will keep us in the ellipsoid xT Pkx ≤ γk. Ensuring that
the constraints are satisfied in this ellipsoid can be written as

max
xT Pkx≤γk

Exx ≤ fx (4.18a)

max
xT Pkx≤γk

EuLkx ≤ fu (4.18b)

It can be shown that the conservative choice Wk = γkP−1
k together with The-

orem 3.2 enables us to write the complete problem as the following semidefinite
program (Kothare et al., 1994) (the notation (·)i means the ith row).

min
Wk,Kk,γk

γk

subject to




Wk (A(i)Wk + B(i)Kk)T Wk KT
k

A(i)W + B(i)Kk Wk 0 0
Wk 0 γkQ−1 0
Kk 0 0 γkR−1


 � 0

(
((fu)i)2 (EuKk)i

((EuKk)i)T Wk

)
� 0(

((fx)i)2 (Ex)i

((Ex)i)T Wk

)
� 0(

1 xT
k|k

xk|k Wk

)
� 0

This semidefinite program is solved at each sample, and the control input to the
system is uk|k = Lkxk|k = KkW−1

k xk|k. A strong feature of the approach is that
stability follows by construction, but there are some drawbacks. To begin with, we
are parameterizing the control sequence in terms of a linear state feedback. This is
clearly a conservative choice. Consider for instance when the true optimal solution
is constant over a number of future samples. This can never be obtained with
a linear state feedback. Another major problem is state and control constraints.
These are treated using ellipsoidal arguments, and the outcome of this is that we
cannot treat asymmetric constraints such as uk ≥ 0.

The results were later extended in various directions with LFT models, tracking
formulations, observer-based control, vanishing disturbances and more (Kothare
et al., 1996).

The ideas lay the foundation for a number of extensions, including systems with
measurable uncertainties (Lu and Arkan, 2000) and uncertainties with a bounded
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rate of change (Casavola et al., 2002a). Conservativeness of the linear state feed-
back parameterization is one of the main arguments against the framework. One
approach towards a stronger parameterization is (Cuzzola et al., 2002) where a
more flexible Lyapunov function is used. Another reason for conservativeness of
the original approach in (Kothare et al., 1994) is that the method essentially uses
a horizon N = 0 and calculates a terminal state weight on-line. This has been
improved upon in (Casavola et al., 2000) and (Schuurmans and Rossiter, 2000)
where a finite horizon cost has been appended to the problem, and the methods
in (Kothare et al., 1994) are used for optimizing terminal state weight and con-
straint. This gives substantial improvements in some cases, but leads to problems
with exponential complexity. Finally, we should also mention that the framework
has been used as a tool for nonlinear MPC (Bloemen and van den Boom, 1999;
Bloemen et al., 2000; Wu, 2001).

Enumerative Schemes and Dynamic Programming

The original minimax formulation with worst-case peak minimization in (Campo
and Morari, 1987) was based on a pure enumerative scheme. The same has been
done also for more general problems. As we saw above, if it can be shown that the
set of possible future states defines a convex set, we only need to check the extreme
points of this set to find the maximum.

For polytopic models, this means that we can solve any minimax problem with
a convex performance measure by minimizing a variable t subject to the constraints

`(xk|k, uk|k, x
(i)
k+1|k, uk+1|k, . . . , x

(i)
k+N−1|k, uk+N−1|k) ≤ t (4.19)

where x
(i)
k+N−1|k denote the (exponentially many) extreme point vertices. This

scheme has been used in (Casavola et al., 2000) and (Schuurmans and Rossiter,
2000) for quadratic performance measures. Due to the exponential complexity
however, the methods are only applicable to problems with short horizons and a
small number of uncertain parameters.

A slightly more general minimax problem has been studied in, for example,
(Lee and Yu, 1997) and (Scokaert and Mayne, 1998). The idea is to assume that
measurements will be available in the future, and solve

min
uk|k

max
wk|k

· · · min
uk+N−1|k

max
wk+N−1|k

`(xk|k, uk|k, . . . , xk+N−1|k, uk+N−1|k) (4.20)

This type of problems, called closed-loop minimax MPC, was proposed and ana-
lyzed for polytopic systems and a quadratic performance measure in (Lee and Yu,
1997) using dynamic programming. Systems with additive disturbances and gen-
eral performance measures was addressed in (Scokaert and Mayne, 1998) using a
straightforward enumerative approach. Unfortunately, the results in (Lee and Yu,
1997) and (Scokaert and Mayne, 1998) are optimization problems with exponential
complexity.
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Feedback Predictions

One class of methods that has received attention due to its simplicity is algorithms
based on feedback predictions. The idea is that we pre-stabilize the system with
some suitably chosen feedback law Lxk|k and then optimize a bias, or perturba-
tion, uk+j|k = Lxk+j|k + vk+j|k, so that the constraints are robustly satisfied. A
prototype algorithm for this scheme would be

min
v

∑N−1
j=0 vT

k+j|kvk+j|k

subject to uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆

(4.21)

We see immediately that when the constraints can be guaranteed with the feedback
law uk+j|k = Lxk+j|k, the bias vk+j|k will be zero, hence giving us our pre-defined
linear state feedback. One of the benefits with this formulation is that the perfor-
mance measure is detached from the minimax problem. All uncertainty lies in the
control and state constraints. The idea has been used for polytopic uncertainties
in (Lee and Kouvaritakis, 2000; Chisci et al., 2001), and additive disturbances (Be-
mporad, 1998; Chisci and Zappa, 1999; Bemporad and Garulli, 2000).

Explicit off-line Solutions

One of the most interesting recent ideas is to calculate explicit solutions to the
minimax problems off-line. It has recently been shown that nominal MPC con-
trollers can be written explicitly as piecewise affine feedback laws (Bemporad et al.,
2002a; Bemporad et al., 2002b). These affine control laws are found using multi-
parametric programming, i.e., parameterization of the solution of an optimization
problem with respect to some variable, in our case the state xk|k. These ideas can
in some cases be extended to minimax formulations.

Systems with external disturbances and linear performance measures are ad-
dressed in (Bemporad et al., 2001), (Borrelli, 2002), (Kerrigan and Mayne, 2002)
and (Sato et al., 2002). A quadratic performance measure and external distur-
bances are used in (Kakalis et al., 2002), however, only a nominal performance
measure is minimized, and the uncertainties are only addressed in the constraints.
Explicit solutions of minimax MPC with quadratic performance measures seem to
be an unresolved problem.

4.3 Stability

The discussion in the previous section focused on the choice of uncertainty models,
performance measures, and the related minimax formulations. As in nominal MPC,
special considerations have to be taken to actually guarantee robust stability.

The following theorem is a direct extension of Theorem 2.1. The proof, and
some additional technical assumptions, can be found in (Mayne et al., 2000).
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Theorem 4.2 (Robustly stabilizing minimax MPC)
Suppose the following assumptions hold for a system with uncertainty ∆ ∈ ∆, a
nominal controller L(x), a terminal state domain XT , a stage cost `(xk, uk) and a
terminal state weight Ψ(x)

A1. xk+1 = f(xk, uk,∆k)

A2. 0 ∈ XT ⊆ X

A3. f(xk, L(xk),∆k) ∈ XT ∀xk ∈ XT ,∀∆ ∈∆

A4. `(0, 0) = 0, `(x, u) > 0 ∀ (x, u) 6= 0

A5. Ψ(0) = 0, Ψ(x) > 0 ∀ x 6= 0

A6. Ψ(f(x,L(x),∆))−Ψ(x) ≤ −`(x,L(x)) ∀x ∈ XT , ∀∆ ∈∆

A7. L(x) ∈ U ∀x ∈ XT

Then, assuming feasibility at the initial state, an MPC controller using the following
minimax formulation will guarantee asymptotic stability

min
u

max
∆

∑N−1
j=0 `(xk+j|k, uk+j|k) + Ψ(xk+N |k)

subject to uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆

xk+N |k ∈ XT ∀∆ ∈∆

(4.22)

The interpretation is the same as in the nominal case. We append the performance
measure with a terminal state weight that serves as an upper bound on the worst-
case infinite horizon cost using the controller L(x). This bound holds only if the
nominal controller is unconstrained, hence the optimization problem has to be
appended with a terminal state constraint, to ensure that the end state reaches a
positively invariant domain XT where all constraints indeed are satisfied.

Unfortunately, we will not be able to use this theorem in this thesis. The
reasons for this will be discussed later. However, the basic idea in the theorem
(terminal state weight based on worst-case infinite horizon cost) will be used to
create controllers with good practical performance. For guaranteed stability, we will
be forced to employ more conservative approaches based on contraction constraints,
as in, e.g., (Zheng, 1995; Badgwell, 1997).

4.4 Summary

From the brief survey, we see that there is a considerable amount of proposed
methods to deal with uncertainty in MPC. Algorithms exist for the most important
uncertainty structures such as additive bounded external disturbances, polytopic
uncertainties and LFT models. The tools to solve the problems range from simple
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linear programs, almost as efficiently formulated as the nominal problems, to LMI
based methods and off-line solutions using multi-parametric optimization.

An open problem seems to be minimax formulations with quadratic perfor-
mance measures. The approaches available are essentially approximate methods
based on upper bounds using linear state feedback parameterizations, and exact
but enumerative schemes with exponential complexity. The problems with the
quadratic performance measure are reasonable, since we in many cases try to solve
special cases of well known NP-hard problems. Consider for instance a minimax
formulation with a quadratic performance measure and an external disturbance
||wk||∞ ≤ 1. Solving the maximization part boils down to maximization of a convex
quadratic function in the unit-cube. This is a well-known NP-hard problem (Vava-
sis, 1991). The same holds for the case ||wk||2 ≤ 1. This leads to maximization
of a convex quadratic function over the intersection of ellipsoids. Also this is a
NP-hard problem (follows immediately since wk ∈ R gives maximization over the
unit-cube).

Despite these obviously inherent problems with the quadratic performance mea-
sures, we will devote the main part of this thesis to this formulation.
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Part II

Minimax MPC
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5

MPC for systems with additive

disturbances

This chapter focuses on MPC applied to systems with bounded external distur-
bances. These disturbances can have a physical meaning, such as worst-case loads
on a robot arm, leakage in a tank system or similar. An alternative is to consider
fictitious disturbances used in a more pragmatic way to regularize the solutions in
the optimization problems in MPC to obtain a less sensitive control law.

The main contribution in this chapter is that we show how a minimax MPC
problem for systems with external disturbances, and a finite horizon quadratic per-
formance measure, can be efficiently addressed using semidefinite relaxations. The
novelty compared to earlier work is that we can work with the classical quadratic
performance measure in a rather general framework. Previous approaches have
typically abandoned the quadratic performance measure and introduced new cost
functions for which the minimax problems become tractable (Chisci and Zappa,
1999; Bemporad and Garulli, 2000; Bemporad et al., 2001; Sato et al., 2002), or
resorted to computationally intractable solutions (Scokaert and Mayne, 1998).

Since this is the first chapter in this thesis where we encounter the concept
semidefinite relaxations, and its use in minimax MPC, the material in this chapter
will be slightly more detailed compared to the forthcoming chapters where similar
ideas are used. Much notation introduced in this chapter will be used throughout
the thesis.

41
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5.1 Uncertainty Model

The class of systems we address in this chapter is linear discrete-time systems with
external disturbances.

xk+1 = Axk + Buk + Gwk (5.1a)
yk = Cxk (5.1b)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p and wk ∈ R

r denote the state, control input,
controlled output and external disturbance respectively. Furthermore, the system
is constrained, uk ∈ U and xk ∈ X. The constraint sets U and X are assumed to
be polyhedrons.

The disturbance wk is only known to be bounded in some measure, but other-
wise unknown. The set of possible disturbances is denoted W.

wk ∈W (5.2)

The disturbance set W is one of the ingredients that determine the type of
optimization problem we end up with. The two models that will be used in this
chapter are ball-constrained and box-constrained disturbances.

W2 = {w : ||w||2 ≤ 1} (5.3a)
W∞ = {w : ||w||∞ ≤ 1} (5.3b)

These two standard models can be used to define more complex disturbance models,
and most results in this chapter can be extended to those models without too much
effort. For the sake of clarity and notational simplicity, we omit these extensions.

5.2 Minimax MPC

The goal in this chapter is to derive an MPC controller that explicitly considers
the external disturbances. As we saw in the previous chapter, the standard way to
do this is to look at worst-case scenarios, which translates into solving a minimax
problem.

One of the main ideas with the algorithms that are developed in this thesis is
that they should be as close as possible to the original nominal MPC formulation.
Changing from a nominal to a worst-case performance measure should not force
you to leave the classical framework with finite horizon quadratic performance
measures. Hence, the following minimax problem is used.

min
u

max
w

∑N−1
j=0 yT

k+j|kQyk+j|k + uT
k+j|kRuk+j|k

subject to uk+j|k ∈ U ∀w ∈W

xk+j|k ∈ X ∀w ∈W

wk+j|k ∈ W

(5.4)
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To obtain a convenient notation, define stacked versions of the predicted out-
puts, states, inputs, and unknown disturbance realization.

Y =
(
yT

k|k yT
k+1|k . . . yT

k+N−1|k
)T

(5.5a)

X =
(
xT

k|k xT
k+1|k . . . xT

k+N−1|k
)T

(5.5b)

U =
(
uT

k|k uT
k+1|k . . . uT

k+N−1|k
)T

(5.5c)

W =
(
wT

k|k wT
k+1|k . . . wT

k+N−1|k
)T

(5.5d)

Since w ∈W, we readily obtain

W ∈W
N = W×W× · · · ×W (5.6)

The predicted states and outputs depend linearly on the current state, the future
control input and the disturbance. Hence, the following relations hold.

Y = CX (5.7a)
X = Axk|k + BU + GW (5.7b)

The matrices A, B and C are given by Equation (2.10), whereas G ∈ R
Nn×Nr is

defined as

G =




0 0 0 . . . 0
G 0 0 . . . 0

AG G 0 . . . 0
...

. . . . . . . . .
...

AN−2G . . . AG G 0


 (5.8)

Vectorization of the performance measure in (5.4) gives a more compact definition
of the minimax problem (recall the definition of Q and R in Equation (2.11)).

min
U

max
W

Y TQY + UTRU

subject to U ∈ U
N ∀W ∈W

N

X ∈ X
N ∀W ∈W

N

W ∈ W
N

(5.9)

This is the optimization problem we will attempt to solve in this chapter.
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5.2.1 Semidefinite Relaxation of Minimax MPC

Guided by the discussion in Section 4.4, it is clear that one should not set ones
hope too high on the prospect of solving the minimax problem exactly. Instead,
we will show that replacing the original minimax problem with a conservative
approximation yields a problem that can be solved efficiently.

To do this, we begin with an epigraph formulation of the objective function

min
U,t

t

subject to Y TQY + UTRU ≤ t ∀W ∈W
N

U ∈ U
N ∀W ∈W

N

X ∈ X
N ∀W ∈W

N

(5.10)

The derivation of the main result will now be divided in two steps. We will first
show how the first, performance related, constraint in (5.10) can be dealt with, and
then address state and control constraints.

Bounding the Performance Measure

The following theorem will be very useful in this and forthcoming chapters (Zhang,
1999).

Theorem 5.1 (Non-strict Schur complement)
If W � 0, then for any X � 0

X − ZT W−1Z � 0⇔
(

X ZT

Z W

)
� 0

Applying a Schur complement on the first constraint in (5.10) transforms the un-
certain quadratic constraint to an uncertain LMI in t and U (remember that Y is
linearly parameterized in U and W ).

 t Y T UT

Y Q−1 0
U 0 R−1


 � 0 ∀W ∈W

N (5.11)

Inserting the definition of Y and separating certain and uncertain terms shows that
the uncertain LMI can be written as1
t (C(Axk|k + BU))T UT

? Q−1 0
? 0 R−1


 +


 0
CG
0


W

(
1 0 0

)
+ (?) � 0 (5.12)

1The notation P + S + (?) denotes P + S + ST . This convention will be used throughout this
thesis in order to save space. In a similar fashion, a ? inside a matrix is short for an element
defined by symmetry.
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The next step is to apply Theorem 3.4 which deals with robust satisfaction of
uncertain LMIs. To do this, we have to transform our problem into the format
used in the theorem.

Let us begin with the case wk ∈ W2. First, write the vector W in terms of a
block diagonal uncertainty which we call ∆.

W = (⊕N−1
j=0 wk+j|k)1N = ((⊕N−1

j=0 wT
k+j|k))T 1N = ∆T 1N (5.13)

This means that we define ∆ as a block diagonal matrix with wT
k+j|k as the diagonal

blocks2. Furthermore, define

F̃ =


t (C(Axk|k + BU))T UT

? Q−1 0
? 0 R−1


 , R̃ =

(
0 GTCT 0

)
, L̃ =


1

0
0


 (1N )T

This enables us to write the LMI in (5.12) as

F̃ + L̃∆R̃ + R̃T ∆T L̃T � 0 (5.14)

Theorem 3.4 can now be used directly and we obtain a multiplier τ ∈ R
N
+ and

associated matrices S = ⊕N
1 τi and T = ⊕N

1 τiI
r×r. According to the theorem,

feasibility of the following LMI is a sufficient condition for (5.12) to be robustly
satisfied. (

F̃ − L̃SL̃T R̃T

R̃ T

)
� 0 (5.15)

Straightforward calculations shows that the matrix L̃SL̃T evaluates to

L̃SL̃T =


1

0
0


 (1N )T (⊕N

1 τi)1N
(
1 0 0

)
=



∑N

j=1 τj 0 0
0 0 0
0 0 0


 (5.16)

Inserting the definition of F̃ and R̃ gives us our final LMI.


t−
∑N

i=1 τi (C(Axk|k + BU))T UT 0
C(Axk|k + BU) Q−1 0 CG

U 0 R−1 0
0 (CG)T 0 T


 � 0 (5.17)

The case with wk ∈W∞ is treated in a similar fashion. The only difference is that
we now obtain a diagonal matrix ∆ when we place the independent disturbances
in W in a diagonal matrix.

W = (⊕Nr
j=1Wi)1Nr = ∆T 1Nr (5.18)

2The reason we have transposed ∆ related to W is that this will give us a semidefinite relaxation
with a simple structure. Transposing the definition of the uncertainty decides the choice of L and
R in Theorem 3.4.
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The changes in the semidefinite relaxation using Theorem 3.4 is that we now have
τ ∈ R

Nr
+ and S = T = ⊕Nr

1 τi. The semidefinite relaxation is now




t−
∑Nr

i=1 τi (C(Axk|k + BU))T UT 0
C(Axk|k + BU) Q−1 0 CG

U 0 R−1 0
0 (CG)T 0 T


 � 0 (5.19)

Hence, the only difference is the structure of the matrix T and the number of τ
variables. For notational convenience in the remainder of this chapter, we intro-
duce a variable s to denote the number of multipliers, i.e., s is either N or Nr
depending on the uncertainty structure. Furthermore, we will not explicitly derive
the semidefinite relaxations or describe the structure of T . The relaxations will
look almost the same throughout this chapter and s, τ , S and T follow immediately
from the uncertainty structure.

Robust Constraint Satisfaction

First note that the control constraints Euuk+j|k ≤ fu are unaffected by the distur-
bances and do not have to be addressed at the moment.

The predicted states however, depend on the disturbances and have to be ad-
dressed. Robust constraint satisfaction means that (definitions of Ex and Fx are
given in (2.12))

ExX ≤ Fx ∀W ∈W
N (5.20)

Inserting the definition (5.7) of X into (5.20) yields

Ex(Axk|k + BU) + ExGW ≤ Fx ∀W ∈W (5.21)

What have to be done now is to maximize each row in the uncertain term ExGW .
Partition the rows of the matrix ExG as

ExG =




ωT
1

ωT
2
...


 , ωT

i =
(
ωT

i1 ωT
i2 . . . ωT

iN

)
(5.22)

The dimension of ωT
ij ∈ R

1×r is chosen so that the ith row of ExGW can be written

(ExGW )i = ωT
i W =

N∑
j=1

ωT
ijwk+j−1|k (5.23)

Introduce a vector γ and let

γi = max
W∈WN

ωT
i W = max

w∈W

N∑
j=1

ωT
ijwk+j−1|k (5.24)
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The state constraints are then robustly satisfied if

Ex(Axk|k + BU) + γ ≤ Fx (5.25)

Notice that the computational complexity is unchanged, since the nominal linear
state constraints are transformed to another set of linear constraints.

The constant vector γ depends on the uncertainty structure and the gain ExG.
For the element-wise bounded disturbances w ∈ W∞, the maximization is per-
formed using Theorem 3.1.

γi = max
w∈W∞

ωT
i W (5.26)

= ||ωi||1 (5.27)

The maximization for w ∈W2 is done with Theorem 3.2.

γi = max
w∈W2

N∑
j=1

ωT
ijwk+j−1|k

=
N∑

j=1

||ωij ||2 (5.28)

The Complete Semidefinite Program

At this point, we are able to summarize our findings in an optimization problem
that solves a conservative approximation of the minimax problem (5.4)

min
U,t,τ

t

subject to




t−
∑s

i=1 τi (C(Axk|k + BU))T UT 0
C(Axk|k + BU) Q−1 0 CG

U 0 R−1 0
0 (CG)T 0 T


 � 0

EuU ≤ Fu

Ex(Axk|k + BU) + γ ≤ Fx

(5.29)

This is a rather clean result, and we will now take matters one step further by
looking at possible (and necessary) extensions.

5.3 Extensions

One of the main features of the framework that we develop in this thesis is that it
easily allows extensions. The most important ones are discussed below.
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5.3.1 Feedback Predictions

The minimax controller we have developed can easily become conservative. The
reason is that we are optimizing an open-loop control sequence that has cope with
all possible future disturbance realizations, without taking future measurements
into account. In other words, we have thrown away the knowledge that we are
applying a receding horizon, and will recalculate the control sequence at the next
sample instant.

What we really would like to solve is the closed-loop minimax program where we
incorporate the notion that measurements will be obtained (Scokaert and Mayne,
1998).

min
uk|k

max
wk|k

· · · min
uk+N−1|k

max
wk+N−1|k

N−1∑
j=0

yT
k+j|kQyk+j|k + uT

k+j|kRuk+j|k (5.30)

Instead of solving this (intractable) problem, the idea in feedback predictions, some-
times referred to as closed-loop predictions, is to a introduce new decision variables
vk+j|k, in some references denoted perturbations or bias terms, and parameterize
the future control sequence in the future states and vk+j|k.

uk+j|k = Lxk+j|k + vk+j|k (5.31)

This way, we say that there is at least some kind of feedback in the system, although
not optimal. This remedy is a standard concept and is used in several minimax
MPC schemes, see, e.g., (Bemporad, 1998; Schuurmans and Rossiter, 2000; Chisci
et al., 2001). We will return to feedback predictions in Chapter 7.

To incorporate feedback predictions in our framework, write the feedback pre-
dictions in a vectorized form.

U = LX + V (5.32)

where V is a stacked version of vk+j|k and L is a block diagonal matrix

V =
(
vT

k|k vT
k+1|k . . . vT

k+N−1|k
)T

(5.33a)

L = ⊕N
j=1 L (5.33b)

Of course, nothing prevents us from using a matrix L with a larger degree of
freedom, i.e., different feedback matrices along the diagonal, or feedback terms
also in the lower triangular part of the matrix L. The only requirement is that the
matrix is causal in the sense that uk+j|k only depends on xk+i|k, i ≤ j.

The predictions are now defined by a set of coupled equations.

Y = CX (5.34a)
X = Axk|k + BU (5.34b)
U = LX + V (5.34c)
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Solving this gives a parameterization linear in V and W .

Y = C(I − BL)−1(Axk|k + BV + GW ) (5.35a)

X = (I − BL)−1(Axk|k + BV + GW ) (5.35b)

U = L(I − BL)−1(Axk|k + BV + GW ) + V (5.35c)

It will now be shown that feedback predictions fit nicely into our minimax
problem in Section 5.2.1. To begin with, define

Ω = (I − BL)−1 (5.36)

The LMI in (5.11) can in the new variables be written as
t (CΩ(Axk|k + BV + GW ))T (LΩ(Axk|k + BV + GW ) + V )T

? Q−1 0
? 0 R−1


 � 0 (5.37)

As before, this is an uncertain LMI due to W . Separate certain and uncertain
terms.
t (CΩ(Axk|k + BV ))T (LΩ(Axk|k + BV ))T

? Q−1 0
? 0 R−1


+


 0
CΩG
LΩG


W

(
1 0 0

)
+(?) � 0

and apply exactly the same procedure as in Section 5.2.1 to obtain our semidefinite
relaxation of the minimax problem.


t−
∑s

i=1 τi (CΩ(Axk|k + BV ))T (LΩ(Axk|k + BV ) + V )T 0
? Q−1 0 CΩG
? 0 R−1 LΩG
0 ? ? T


 � 0(5.38)

We see that we have the same type of LMI as in the case without feedback pre-
dictions. Of course, s, τ and T are defined exactly as in Section 5.2.1 and follow
immediately from W.

One thing is however fundamentally different compared to the case without
feedback predictions. From (5.35), we see that the future control sequence is un-
certain. The reason is that the control constraints are mapped into state constraints
due to the feedback term. The control and state constraints can be written as(

ExΩ(Axk|k + BV + GW )
Eu(LΩ(Axk|k + BV + GW ) + V )

)
≤
(
Fx

Fu

)
∀W ∈W (5.39)

Or equivalently,(
ExΩ(Axk|k + BV )

Eu(LΩ(Axk|k + BV ) + V )

)
+
(
ExΩG
EuLΩG

)
W ≤

(
Fx

Fu

)
∀W ∈W (5.40)
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This uncertain constraint can be dealt with in the same way as the state constraint
in the previous section, and the result is a new set of linear constraints.(

Ex(Axk|k + BV )
Eu(LΩ(Axk|k + BV ) + V )

)
+ γ ≤

(
Fx

Fu

)
(5.41)

The only difference is that γ now is derived using
(
ExΩG
EuLΩG

)
instead of ExG.

For future reference, define the semidefinite program to solve the relaxation of
the minimax MPC problem with feedback predictions.

min
U,t,τ

t

subject to (5.38), (5.41)
(5.42)

We should mention that feedback predictions introduce a new tuning knob in
minimax MPC, the feedback matrix L. The choice of L is not obvious, and this
will be discussed in detail in the examples, and even more in Chapter 7 where we
try to incorporate L as a free variable in the optimization problem.

5.3.2 Tracking

In practice, the control objective is often to have the output yk follow a desired
reference trajectory. This can also be addressed in our minimax framework, and
the derivation is straightforward so we just state the results for future reference.

As a performance measure, we use the deviation from the desired future output
yr

k+j|k and control input ur
k+j|k.

min
u

max
w

N−1∑
j=0

||yk+j|k − yr
k+j|k||2Q + ||uk+j|k − ur

k+j|k||2R (5.43)

As usual, we vectorize everything

Yr =
(
yr

k|k yr
k+1|k . . . yr

k+N−1|k
)T

(5.44a)

Ur =
(
ur

k|k ur
k+1|k . . . ur

k+N−1|k
)T

(5.44b)

Applying the same techniques as before gives the following semidefinite program
(assuming for notational simplicity the case without feedback predictions).

min
U,t,τ

t

subject to




t −
∑s

i=1 τi (C(Axk|k + BU) − Yr)
T (U − Ur)

T 0
? Q−1 0 CG
? 0 R−1 0
0 ? 0 T


 � 0

EuU ≤ Fu

Ex(Axk|k + BU) + γ ≤ Fx
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5.3.3 Stability Constraints

Nominal MPC controllers are not stabilizing per se, but require additional tricks
to guarantee stability. Of course, uncertainty in the system will add additional
difficulties when we try to guarantee or establish stability.

Weakness of the Proposed Framework

Unfortunately, the proposed framework has a weakness that makes it hard to obtain
stability guarantees. Of course, to begin with, asymptotic stability can never be
asked for, since there are external unknown non-vanishing disturbances acting on
the system. The main flaw however is the use of a sufficient, not necessary, condition
to deal with the maximization in the minimax problems.

The stability theorem (4.2) is based on the idea that if we are able to satisfy
a terminal state constraint at time k, we will be able to satisfy it also at k + 1,
if the terminal state domain is suitably chosen according to the assumptions in
the theorem. Consider now the most common terminal state domain, an ellipsoid.
This means that we have a terminal state constraint of the type

xT
k+N |kPxk+N |k ≤ 1 ∀W ∈W

N

In our framework, we would take care of this constraint with a Schur complement
and application of Theorem 3.4, and obtain a sufficient condition.

The problem now is that feasibility of the semidefinite relaxation of the terminal
state constraint at time k, although it indeed implies feasibility at k + 1 for the
original problem, says nothing about whether our sufficient condition based on the
semidefinite relaxation will be feasible. The same problem applies to the use of the
minimax objective function as a Lyapunov function to prove stability.

Towards Stability Guarantees Anyway

Let us at least show that it is possible to derive a theorem to guarantee stability,
i.e., boundness of the states. The theorem is clearly overly conservative and should
probably not be used in practice. It should mostly be seen upon as a crowd pleaser
for the theoretically inclined readers.

Theorem 5.2 (Guaranteed stability)
Assume that there exists a linear state feedback uk = Lxk and an ellipsoid3

EP

such that, with uk = Lxk and xk ∈ EP , it holds that xk+1 ∈ EP ∀wk ∈ W.
Furthermore, Lxk ∈ U ∀xk ∈ EP and EP ⊆ X. Appending the minimax problem
(5.42) with the constraint xk+1|k ∈ EP and using feedback predictions based on L
guarantees stability if the problem is initially feasible for x0|0.

Proof The proof follows by induction. Assume the problem was feasible for xk−1|k−1.
Since the problem was feasible for xk−1|k−1, we know that xk|k ∈ EP . A feasible solution

3
EP is used throughout this thesis to denote ellipsoidal sets EP = {x : xT Px ≤ 1} (P � 0).
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at time k is V = 0. To see this, recall that the state predictions with feedback predictions
and V = 0 are given by xk+j+1|k = (A + BL)xk+j|k + Gwk+j|k. From the invariance
assumption on L and P , these predictions are contained in EP , guaranteeing feasibility
of state constraints and control constraints. The new constraint xk+1|k ∈ EP holds for
uk|k = Lxk|k by construction. Hence, the problem is feasible at time k. 2

To use this theorem, we append our semidefinite relaxation (5.42) with

xT
k+1|kPxk+1|k ≤ 1 ∀wk|k ∈W (5.45)

The way to take care of this constraint depends on the disturbance structure.
For wk|k ∈ W∞, it is both sufficient and necessary to check all the vertices

{w(1), w(2), . . . , w(2r)} of the unit cube W
N . This is easily seen using Theorem

4.1. We have wk|k ∈ Co{w(i)}, hence xk+1|k ∈ Co{Axk|k + Buk|k + Gw(i)}. The
function xT

k+1|kPxk+1|k is convex, so the theorem applies.

The condition (5.45) is efficiently written as 2r second order cone constraints.

||P 1/2(Axk|k + Buk|k + Gw(i))|| ≤ 1 (5.46)

Exponentially many constraints is of course a drawback, so the method only applies
to systems with few scalar disturbances. This is the price we have to pay to obtain
an exact condition.

The second case is wk ∈ W2. Apply a Schur complement on (5.45) and the
result is an uncertain LMI.

(
1 (Axk|k + Buk|k + Gwk|k)T

? P−1

)
� 0 ∀wk ∈W2 (5.47)

Apply Theorem 3.4 which now is both necessary and sufficient. Introduce a scalar
τ ∈ R+ and the theorem tells us that (5.45) is equivalent to feasibility of


1− τ (Axk|k + Buk|k)T 0

? P−1 G
0 ? τI


 � 0 (5.48)

To summarize; appending the semidefinite program (5.42) with the constraint
(5.48) (or (5.46) depending on the uncertainty structure) will guarantee stability,
assuming the problem is initially feasible for x0|0 and the matrix L is used to define
the feedback predictions.

All that has to be done now is to find an ellipsoid EP and a linear state feedback
matrix L satisfying the assumptions. This is a standard robust linear state feedback
problem, and the details can be found in Appendix 5.A.
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5.4 Simulation Results

We conclude this chapter with a couple of numerical experiments to study the
behavior of the proposed minimax controller. All controllers are implemented using
YALMIP and the semidefinite programs are solved using SeDuMi.

We start with an example to show how the minimax controller compares to a
nominal controller.

Example 5.1 (Comparison with nominal MPC)
This example is adapted from (Bemporad and Garulli, 2000). The system is de-
scribed with the following model.

xk+1 =
(

1.64 −0.79
1 0

)
xk +

(
1
0

)
uk +

(
0.25
0

)
wk

yk =
(
0.14 0

)
xk

The disturbance wk ∈ W∞ can be interpreted as an actuator disturbance. The
control objective is to transfer the output yk to the reference level 1, under the
control constraint |uk| ≤ 2 and an output constraint −1 ≤ pk ≤ 3 where

pk =
(
−1.93 2.21

)
xk

The open-loop step-response of the system can be seen in Figure 5.1. The system
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Figure 5.1: Open-loop step-response for the system. The output yk has an oscillatory
response, but the most important observation is the severe non-minimum phase behavior
of the constrained output pk.

exhibits a severe non-minimum phase behavior to the constrained output pk, and
this is the main difficulty when the system is controlled.
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From Figure 5.1, we conclude that a reasonable prediction horizon is N = 10. The
main objective is to control the output yk, so it was decided to use Q = 1 and
R = 0.01. The minimax controller (5.42) is implemented, with obvious changes
for the tracking formulation in Section 5.3.2. The feedback matrix L in (5.31) is
chosen as an LQ controller calculated using Q = R = 1. The motivation for this
choice will be discussed in Example 5.2. The simulation starts from x0 = 0, and
the disturbance wk was a random signal uniformly distributed between −1 and 1.
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Figure 5.2: Closed-loop response for nominal MPC and the proposed minimax controller.
The minimax controller satisfies the output constraints during the whole step-response,
in contrast to the nominal controller.

The closed-loop responses for the proposed minimax controller and a nominal MPC
controller are given in Figure 5.2. The minimax controller is successful in keeping
the constrained output pk within its limits, in contrast to the nominal controller4.
The price paid is a slower step-response in the controlled output yk.

Feedback predictions were added to the minimax controller in Section 5.3.1 to
reduce the level of conservativeness. Unfortunately, the choice of the feedback ma-
trix L in (5.31) is not obvious, and no simple guidelines are available. One might
believe that the feedback matrix from the related LQ problem would be a good
candidate, but this is not necessarily the case. The reason is that feedback predic-
tions introduce a trade-off between uncertainty in the future states and uncertainty
in the future control inputs. We illustrate these problems with an example.

4Feasibility was recovered by removing the first output constraint (i.e. the constraint on pk|k)
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Example 5.2 (Feedback predictions)
We continue on the same system as in Example 5.1. To see the impact of feedback
predictions, we create a number of minimax controllers, using feedback predictions
based on LQ controllers calculated with Q = 1 and R ranging from 0.001 to 10.
All other numerical data are the same as in Example 5.1
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Figure 5.3: The figure closed-loop responses for the minimax controller, using different
feedback predictions. The feedback predictions are based on LQ controllers, calculated
using Q = 1 and different values on the control weight.

Figure 5.3 illustrates the problems with feedback predictions. The minimax con-
trollers using feedback predictions based on aggressive LQ controllers (R small),
fails miserably. The reason is that the future control sequence becomes too un-
certain in the predictions. The steady-state control at the reference level yk = 1
is uk = 1. When the minimax controller approaches the steady-state level, the
predicted control input is approximately 1 plus uncertainty due to uncertain pre-
dictions. If the feedback controller has too large gain, the additional uncertainty
will be large and the worst-case control will exceed the upper bound on 2. The
only solution for the minimax controller is to position the output yk at a lower
level where the steady-state control input is lower.
On the other hand, making R large enough does not solve the problem either.
If R is chosen too large, the feedback controller will be cautious, and the result
is too uncertain state predictions. The predictions of the constrained variable pk



56 MPC for systems with additive disturbances

becomes too uncertain, and no control action can be taken without violating the
output constraints. The result is that the system gets stuck in the origin. This can
seen in Figure 5.3 for R = 10.
The problems with the parameterization of the feedback predictions have motivated
the work in Chapter 7.

For wk ∈ W∞, we can solve the minimax problem (5.10) exactly by brute-
force enumeration. Introducing the vertices of the set W

N allows us to write
W ∈ Co{W (1),W (2), . . . ,W (2Nr)}. Our predictions can then be written as

X = Axk|k + BU + GW ∈ Co{Axk|k + BU + GW (i)} (5.49)

Hence, the prediction set is convex. Since our quadratic performance measure is
convex, Theorem 4.1 tells us that we can find the maximum by looking at the
vertices of the prediction set. Our minimax problem (5.10) can thus be solved
exactly with the following program (for efficient implementation in SeDuMi, we
write the performance constraints using second order cone constraints)

min
U,t

t

subject to

∥∥∥∥∥∥
2Q1/2C(Axk|k + BU + GW (i))

2R1/2U
1− t

∥∥∥∥∥∥ ≤ 1 + t

U ∈ U
N ∀W ∈W

N

X ∈ X
N ∀W ∈W

N

(5.50)

Control and state constraints, feedback predictions and tracking formulations are
dealt with easily using the same methods as for the proposed minimax controller.
The details are omitted for brevity. Let us use this exact solution to evaluate the
quality of the approximation obtained using semidefinite relaxations.

Example 5.3 (Quality of semidefinite relaxations)
We continue on the same system as in the previous example, and implement both
our minimax controller (5.42), and a minimax controller based on the exact solution
(5.50). The numerical data is the same as in Example 5.1, except for one crucial
difference. The prediction horizon is now reduced to N = 6. The reason is that
the original horizon N = 10 gives a too large problem (recall that we have to
introduce 2N second order cone constraints in the exact solution given by (5.50)).
The closed-loop responses for the two controllers are depicted in Figure 5.4. From
the closed-loop responses, it seems like the semidefinite relaxation does a very god
job. The two controllers give essentially identical step-responses.
An alternative way to evaluate the quality of the semidefinite relaxation is to study
the value of the upper bound t in the minimax problem (5.42), and compare it to
the exact value obtained by solving (5.50). Let us denote the optimal value from
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Figure 5.4: Closed-loop response for the exact minimax MPC controller and the pro-
posed minimax controller based on semidefinite relaxations. The responses are essentially
indistinguishable.

the semidefinite relaxation tSDP and the value from the exact solution texact. A
reasonable way to compare these numbers is to look at the ratio α = tSDP

texact
. In

theory, this measure is always larger than or equal to 1. A small α indicates that the
semidefinite relaxation introduces little conservativeness, while a large α indicates
a poor approximation. When the closed-loop response for the proposed minimax
controller was calculated, the exact problem was also solved at each state. This
enabled us to calculate the quality measure α, and the result is depicted in Figure
5.5. The semidefinite relaxation never produced an upper bound on the worst-case
finite horizon cost that was more than 5 percent higher than the true cost. Notice
the extremely good quality on the approximation for the first 7 samples.

Of course, no general conclusions can be drawn from this single experiment. How-
ever, the numbers are consistent with other simulations that have been performed.
The semidefinite relaxation tends to give an upper bound somewhere between 0
and 10 percent higher than the true worst-case cost.
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Figure 5.5: The figure shows the ratio between the upper bound on the worst-case finite
horizon cost obtained with the semidefinite relaxation, and the exact worst-case finite
horizon cost



Appendix

5.A Robustly Invariant Ellipsoid

An ellipsoid EP is said to be robustly invariant with respect to disturbances wk ∈W

if xk+1 ∈ EP ∀xk ∈ EP , wk ∈W. In other words

xT
k+1Pxk+1 ≤ 1 (5.A.51a)

when

xT
k Pxk ≤ 1 (5.A.51b)

wk ∈ W (5.A.51c)

Assume to begin with that W = W2. Inserting the control law uk = Lxk gives the
closed-loop model xk+1 = (A + BL)xk + Gwk. The invariance constraint (5.A.51)
can be written as


xk

wk

1




T 
(A + BL)T P (A + BL) (A + BL)T PG 0

GT P (A + BL) GT PG 0
0 0 −1




xk

wk

1


 ≤ 0 (5.A.52a)

when


xk

wk

1




T 
0 0 0

0 I 0
0 0 −1




xk

wk

1


 ≤ 0

(5.A.52b)
xk

wk

1




T 
P 0 0

0 0 0
0 0 −1




xk

wk

1


 ≤ 0 (5.A.52c)

Straightforward application of the S-procedure (Theorem 3.3) yields a sufficient
condition for L to render the ellipsoid EP robustly invariant. We introduce two

59
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scalars τ1, τ2 ∈ R+ and obtain
(A + BL)T P (A + BL) (A + BL)T PG 0

GT P (A + BL) GT PG 0
0 0 −1


 �

τ1


0 0 0

0 I 0
0 0 −1


+ τ2


P 0 0

0 0 0
0 0 −1


 � 0 (5.A.53)

This is a bilinear matrix inequality (BMI) due to the multiplication of τ2 and P ,
but by fixating τ2, an LMI is obtained (if we assume for the moment that the
feedback matrix L is given). Optimization of P , or more precisely some measure
of P related to the size of the invariant ellipsoid EP , can therefore be done with
bisection in τ2. However, the BMI can be written in a better format. First, notice
that we can split the BMI into two constraints

τ1 + τ2 ≤ 1 (5.A.54a)(
τ2P 0
0 τ1I

)
−
(

(A + BL)T

GT

)
P
(
(A + BL) G

)
� 0 (5.A.54b)

A congruence transformation with
(

P−1 0
0 I

)
turns (5.A.54b) into

(
τ2P

−1 0
0 τ1I

)
−
(

P−1(A + BL)T

GT

)
P
(
(A + BL)P−1 G

)
� 0 (5.A.55)

Define W = P−1 and K = LP−1 and perform a Schur complement
 τ2W 0 WAT + KT BT

0 τ1I GT

AW + BK G W


 � 0 (5.A.56)

Obviously, we still have a BMI due to the product τ2W , but in the W variable two
things are gained. To begin with, a MAXDET problem can be solved (for fixed
τ2) to maximize the volume of the robustly invariant ellipsoid. Furthermore, the
matrix K can be a decision variable, hence allowing us to optimize the feedback L.

Control and state constraints have to be satisfied in the invariant ellipsoid. This
can be solved with Theorem 3.2. Consider the ith row in Euuk ≤ fu

max
xT

k Pxk≤1
(Eu)iuk = max

xT
k Pxk≤1

(EuL)ixk

=
√

(EuL)iP−1((EuL)i)T ≤ fi (5.A.57)

Squaring the constraint5 and applying a Schur complement yields(
((fu)i)2 (EuL)i

((EuL)i)T P

)
� 0 (5.A.58)

5We assume that we have symmetric constraints, which ensures fu ≥ 0. Otherwise, ellipsoidal
methods do not apply.
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A congruence transformation with
(

I 0
0 P−1

)
gives us an LMI in W and K

(
((fu)i)2 ((EuK)i)T

(EuK)i W

)
� 0 (5.A.59)

Doing the same procedure for the state constraints also yield an LMI. To sum-
marize, finding, e.g., a maximum volume6 invariant ellipsoid, with corresponding
linear feedback matrix L, is solved with

max
W,K,τ1,(τ2)

det W

subject to


 τ2W 0 WAT + KT BT

0 τ1I GT

AW + BK G W


 � 0

(
((fu)i)2 (EuK)i

((EuK)i)T W

)
� 0(

((fx)i)2 (Ex)i

((Ex)i)T W

)
� 0

(5.A.60)

The difference when we have wk ∈ W∞ instead is that we replace the term τ1I
with diag(τ) where τ ∈ R

r
+.

6The volume of EP is proportional to det P−1/2 =
√

det P−1 (Vandenberghe et al., 1998)
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6

Joint state estimation and

control in minimax MPC

In practice, the state estimate xk|k and the true state xk never coincide. Instead,
disturbed measurements are used to obtain a state estimate xk|k. This motivates
an extension of the minimax MPC controllers from Chapter 5.

Incorporating the state estimate in a minimax controller can essentially be
done in three ways. The first and most straightforward solution is to neglect the
estimation errors and just use the estimate xk|k as if it was the true state. If explicit
bounds on the state estimate errors can be derived, more advanced methods are
possible. The idea is to pose the minimax problem over both the disturbances and
the bounded estimation error. Using this strategy, the control input will depend
on how certain the current state estimate is, certainly a reasonable feature in a
robust control problem. The error bounds can be incorporated in the controller in
two ways, as described below.

In this chapter, the material in Chapter 5 is extended to cope with bounded
state estimate errors. The results are two-fold. To begin with, it is shown that
a priori bounds on estimation errors easily can be incorporated in the proposed
minimax MPC schemes. It is also shown how joint state estimation and minimax
MPC can be cast as a semidefinite program involving a (unfortunately) quadratic
matrix inequality. The nonconvex quadratic matrix inequality can be conserva-
tively approximated as a linear matrix inequality and thus enable an algorithm to
approximately solve the joint problem using semidefinite programming.

A related approach for minimax MPC with both estimation errors and distur-

63
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bances can be found in (Bemporad and Garulli, 2000). The difference compared
to the work in this chapter is the choice of state estimator and the performance
measure in the MPC controller, and the extension to joint state estimation and
control. The joint estimation and control problem does not seem to have been
addressed elsewhere in a minimax MPC framework.

6.1 Uncertainty Model

The class of systems addressed is linear discrete-time systems with external system
and measurement disturbances.

xk+1 = Axk + Buk + Gwk (6.1a)
yk = Cxk (6.1b)
hk = Chxk + Dhξk (6.1c)

Hence, the difference compared to Chapter 5 is the measurement hk. The distur-
bances are assumed to be unknown but bounded.

ξk ∈ Ξ = {ξ : ξT ξ ≤ 1} (6.2a)

wk ∈ W2 = {w : wT w ≤ 1} (6.2b)

This can be generalized to other models, such as wk ∈ W∞, but these generaliza-
tions are omitted for brevity.

Since only a disturbed output variable is measured, a state estimator has to be
used. Regardless of how this is done, the true state xk, the estimated state xk|k
and the state estimation error ek are related according to

xk = xk|k + ek (6.3)

The estimator used in this chapter gives a state estimate with a guaranteed ellip-
soidal bound on the estimation error.

eT
k Pkek ≤ 1 (6.4)

The matrix Pk is termed the confidence matrix and is an output from the state
estimation procedure, which now will be discussed in detail.

6.2 Deterministic State Estimation

What is an optimal state estimate in a minimax framework? Clearly, the best
choice is to find the smallest set Xk such that

xk ∈ Xk (6.5)
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can be guaranteed, given all inputs and measurements obtained since startup, and
some prior knowledge on the initial state x0 ∈ X0. Loosely speaking, the problem
is to find the solution to

min Size(Xk) given X0, u0, h1, u1, h2, . . . uk−1, hk

The crux is that this is not practically implementable, even for our simple model.
The problem is that the complexity of the set Xk grows when more measurements
are obtained (Schweppe, 1973).

The standard way to overcome this problem is to restrict Xk to have some pre-
defined geometry, such as ellipsoidal (Schweppe, 1968; Schweppe, 1973; El Ghaoui
and Calafiore, 1999) or parallelotopic (Chisci et al., 1996). Furthermore, a recursive
scheme is employed. Unfortunately, assuming Xk−1 to have a particular geometry
does not imply that Xk has the same geometry. Hence, by forcing Xk to be, e.g.,
an ellipsoid, some approximation will inevitably occur.

When this approximation is introduced, there will be some degree of freedom,
and it will be shown in this chapter how this degree of freedom can be used to
improve the performance in a minimax MPC controller.

6.2.1 Ellipsoidal State Estimates

An ellipsoidal approximation of the set Xk is used in this chapter. The ellipsoidal
state estimation problem can be stated as follows; given a guaranteed ellipsoidal
bound on the previous estimation error ek−1 = xk−1 − xk−1|k−1

xk−1 ∈ Xk−1 = {xk−1 : eT
k−1Pk−1ek−1 ≤ 1} (6.6)

and a new measurement hk, use the model (6.1) and the disturbance bounds (6.2)
to find a new state estimate guaranteed to satisfy

xk ∈ Xk = {xk : eT
k Pkek ≤ 1} (6.7)

The estimation problem can conceptually be cast as

min
Pk,xk|k

Size(Xk)

subject to xk = Axk−1 + Buk−1 + Gwk−1

xk ∈ Xk ∀xk−1 ∈ Xk−1, wk−1 ∈W2

hk = Chxk + Dhξk, ∀ξk ∈ Ξ

(6.8)

This problem has been addressed in essentially two different ways in the literature.

Ellipsoidal State Estimation using Ellipsoidal Calculus

Deterministic state estimation with ellipsoidal confidence regions can be viewed
upon as a geometric problem and solved using ellipsoidal calculus (Schweppe, 1968;
Schweppe, 1973; Kurzhanski and Vályi, 1997). Explicit expressions for feasible
xk|k and Pk can be derived using these methods, and some analytic expressions for
optimal choices in various measures are available.
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Ellipsoidal State Estimation using Semidefinite Programming

An alternative to ellipsoidal calculus is to address the optimization problem (6.8)
directly. The advantage with this approach is that more general results are pos-
sible, such as extensions to more advanced uncertainty models. Moreover, the
optimization approach fits better in our framework.

It will now be shown how (6.8) can be cast as a semidefinite program, and to
do this, we use the ideas in (El Ghaoui and Calafiore, 1999), with straightforward
modifications to fit the model (6.1).

The constraints in (6.8) are first written as an implication. A state estimate
xk|k and confidence matrix Pk are feasible if

eT
k Pkek ≤ 1 (6.9a)
when

eT
k−1Pk−1ek−1 ≤ 1 (6.9b)

wT
k−1wk−1 ≤ 1 (6.9c)

ξT
k ξk ≤ 1 (6.9d)
hk = Chxk + Dhξk (6.9e)
xk = Axk−1 + Buk−1 + Gwk−1 (6.9f)

As a first step towards a semidefinite program, a basis for all the involved variables
is defined. To this end, define the auxiliary variable z.

z =
(
xT

k−1 wT
k−1 ξT

k 1
)T (6.10)

This enables us to write

ek = Tek
z =

(
A G 0 Buk−1 − xk|k

)
z (6.11a)

ek−1 = Tek−1z =
(
I 0 0 −xk−1|k−1

)
z (6.11b)

hk − (Chxk + Dhξk) = Thk
z =

(
−ChA −ChG −E yk − ChBuk−1

)
(6.11c)

wk = Twk−1z =
(
0 I 0 0

)
(6.11d)

ξk = Tξk
z =

(
0 0 I 0

)
(6.11e)

1 = T1z =
(
0 0 0 1

)
(6.11f)

The implication (6.9) can now be written as

zT TT
ek

PkTek
z ≤ zT TT

1 T1z (6.12a)
when

zT TT
ek−1

Pk−1Tek−1z ≤ zT TT
1 T1z (6.12b)

zT TT
wk−1

Twk−1z ≤ zT TT
1 T1z (6.12c)

zT TT
ξk

Tξk
z ≤ zT TT

1 T1z (6.12d)

zT TT
hk

Thk
z = 0 (6.12e)
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Application of the S-procedure (Theorem 3.3) gives a sufficient condition for this
to hold. Introduce three non-negative scalars θe, θw and θξ to relax the three
inequalities, and the indefinite scalar θh is to relax the equality constraint1.

(TT
1 T1 − TT

ek
PkTek

) ≥ θe(TT
1 T1 − TT

ek−1
Pk−1Tek−1) + θw(TT

1 T1 − TT
wk−1

Twk−1)

+ θξ(TT
1 T1 − TT

ξk
Tξk

) + θhTT
hk

Thk
(6.13)

Define a matrix Γ to simplify notation.

Γ = TT
1 T1 − θe(TT

1 T1 − TT
ek−1

Pk−1Tek−1)

− θw(TT
1 T1 − TT

wk−1
Twk−1)− θξ(TT

1 T1 − TT
ξk

Tξk
)− θhTT

hk
Thk

(6.14)

The matrix equality (6.13) simplifies to

Γ− TT
ek

PkTek
� 0 (6.15)

A Schur complement gives the final expression(
Γ TT

ek

Tek
P−1

k

)
� 0 (6.16)

Having this sufficient condition is the first step in a state estimation procedure.
The next step is to select a particular solution xk|k and P−1

k . To do this, some
performance measure on P−1

k is minimized under the constraint (6.16). A typical
choice (El Ghaoui and Calafiore, 1999) is the trace, TrP−1

k .

min
P−1

k ,xk|k,θ
TrP−1

k

subject to
(

Γ TT
ek

Tek
P−1

k

)
� 0

(6.17)

The optimization problem can be simplified by eliminating the variable θh according
to (Boyd et al., 1994). For notational convenience, we omit this simplification.

6.3 Minimax MPC with State Estimation Errors

The goal in this section is to explain how the ellipsoidal state estimate described
in the previous section can be used in a minimax MPC controller.

The minimax problem can be cast in two different ways, depending on whether
it is assumed that the state estimate is available when the minimax problem is
solved, or if the estimation problem is solved jointly with the control problem.

The two problems are derived in a similar way and the obtained optimization
problems look almost the same, but the complexity in solving them differs sub-
stantially. We begin with the simple where the estimation problem and the control
problem are solved separately, and then extend this to the joint problems.

1Multipliers for equalities in the S-procedure do not have to be positive.
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Separate Estimation and Control

Assume that the estimation problem (6.17) has been solved and returned a state
estimate xk|k and a matrix Pk such that eT

k Pkek ≤ 1. Using the same notation as
in Chapter 5, the predicted output is given by

Y = CX (6.18a)
X = C(Axk + BU + GW )

= C(A(xk|k + ek) + BU + GW ) (6.18b)

The state estimation error can be written in terms of a normalized estimation error
zk (P−1/2

k denotes the symmetric square root of P−1
k )

ek = P
−1/2
k zk, zk ∈ Z2 = {zk : zT

k zk ≤ 1} (6.19)

Insert this definition of ek in (6.18) to obtain

X = Axk|k + BU +AP
−1/2
k zk + GW (6.20)

The minimax MPC problem is almost the same as the problem in Chapter 5,
except that estimation errors should be accounted for in the minimax formulation.

min
U

max
W,zk

Y TQY + UTRU

subject to U ∈ U
N ∀W ∈W

N , zk ∈ Z2

X ∈ X
N ∀W ∈W

N , zk ∈ Z2

W ∈ W
N

zk ∈ Z2

(6.21)

This can be solved using the same techniques as in Chapter 5. Rewriting the
problem with an epigraph formulation, applying a Schur complement on the per-
formance constraint, and separating uncertain and certain terms yield an uncertain
LMI.
t (C(Axk|k + BU))T UT

? Q−1 0
? 0 R−1


+


 0 0
CG CAP

−1/2
k

0 0


(W

zk

)(
1 0 0

)
+(?) � 0

(6.22)

Doing exactly as in Chapter 5, but replacing the matrix CG with
(
CG CAP

−1/2
k

)
and performing the relaxation with respect to

(
WT zT

k

)T ∈ W
N × Z2, gives the

following sufficient LMI.


t−
∑s+1

i=1 τi (C(Axk|k + BU))T UT 0 0
? Q−1 0 CG CAP

−1/2
k

? 0 R−1 0 0
0 ? 0 T 0
0 ? 0 0 Tz


 � 0 (6.23)
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Notice the new multiplier τs+1, and the matrix Tz = τs+1I
n×n, introduced during

the semidefinite relaxation of the normalized state estimation error zk.
The next step concerns the state constraints. These must be satisfied for all

possible disturbances and state estimation errors.

Ex(Axk|k + BU + GW ) + ExAP
−1/2
k zk ≤ Fx ∀W ∈W

N , zk ∈ Z2 (6.24)

This can also be solved using the methods in Chapter 5. To begin with, maximize
the left-hand side with respect to W . As in (5.20)-(5.25), a constant γ is calculated
and a new robustified constraint is obtained.

Ex(Axk|k + BU) + γ + ExAP
−1/2
k zk ≤ Fx ∀zk ∈ Z2 (6.25)

The next step is maximization of the left-hand side with respect to the estimation
error, i.e., the uncertain term ExAP

−1/2
k zk. Let (ExA)i denote the ith row of the

matrix ExA, and Theorem 3.2 yields

max
||zk||≤1

(ExA)iP
−1/2
k zk =

√
(ExA)iP

−1
k ((ExA)i)T = νi (6.26)

To summarize, the semidefinite relaxation of the minimax problem for systems
with external disturbances and a known ellipsoidal state estimation error bound is
given by the following semidefinite program.

min
U,t,τ,τz

t

subject to


t −

∑s
i=1 τi (C(Axk|k + BU))T UT 0 0

? Q−1 0 CG CAP
−1/2
k

? 0 R−1 0 0
0 ? 0 T 0
0 ? 0 0 Tz


 � 0

EuU ≤ Fu

Ex(Axk|k + BU) + γ + ν ≤ Fx

(6.27)

Joint Estimation and Control

The focus will now be turned to the main problem of this chapter, the joint solution
of the estimation and the control problem. The equations involved in this problem
can readily be obtained from the results above.

To begin with, the matrix inequality (6.23) is linear in xk|k and the matrix
P

−1/2
k . Furthermore, combining (6.26) and (6.25) shows that robust satisfaction of

the ith state constraint is guaranteed if

(Ex(Axk|k + BU))i + γi +
√

(ExA)iP
−1
k ((ExA)i)T ≤ (Fx)i (6.28)

This can be written as a second order cone constraint, linearly parameterized in
xk|k, P

−1/2
k and U .

||P−1/2
k ((ExA)i)T || ≤ (Fx)i − (Ex(Axk|k + BU))i − γi (6.29)
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Finally, the state estimation procedure constrains the feasible choices of xk|k
and Pk with the following matrix inequality.(

Γ TT
ek

Tek
P−1

k

)
=
(

Γ TT
ek

Tek
P

−1/2
k P

−1/2
k

)
� 0 (6.30)

The matrix Tek
is linearly parameterized in xk|k according to (6.11a). Unfortu-

nately, the state estimation inequality (6.30) is not linear in P
−1/2
k , but quadratic.

Anyway, define the joint estimation and minimax MPC problem (the variable ν is
only introduced for notational reasons and is of course eliminated in practice).

min
U,t,τ,xk|k,P

−1/2
k ,θ

t

subject to (6.23)
||P−1/2

k ((ExA)i)T || ≤ νi

Fx − (Ex(Axk|k + BU))− γ = ν
EuU ≤ Fu(

Γ TT
ek

Tek
P−1

k

)
� 0

(6.31)

This is a semidefinite problem with a bilinear matrix inequality (BMI). It is well
known that general semidefinite problems with BMIs are NP-hard (Safonov et al.,
1994), hence intractable for anything but trivial problems. The standard approach
is to resort to local schemes based on linearizations (Goh et al., 1994).

A Tractable Approximation of the Joint Problem

To obtain a tractable problem, a scheme based on successive linearizations is pro-
posed. Consider the following trivial inequality which holds for all compatible
matrices X and Y .

(X − Y )T (X − Y ) � 0 (6.32)

Expanding the square gives a lower bound on the squared matrix XT X.

XT X � XT Y + Y T X − Y T Y T (6.33)

This can be interpreted as a linearization of the bilinear matrix expression XT X
at the point Y .

Linearize P−1
k = P

−1/2
k P

−1/2
k in an arbitrary point S (ST = S ∈ R

n×n)

P−1
k � P

−1/2
k S + SP

−1/2
k − S2 (6.34)

Replacing the estimation BMI in (6.31) with the conservative approximation(
Γ TT

ek

Tek
P

−1/2
k S + SP

−1/2
k − S2

)
� 0 (6.35)
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will guarantee the original BMI to be satisfied. This follows immediately from the
lower bound (6.34).

(
Γ TT

ek

Tek
P−1

k

)
�
(

Γ TT
ek

Tek
P

−1/2
k S + SP

−1/2
k − S2

)
� 0 (6.36)

The linearization is now used to define the following approximation of the joint
estimation and control problem.

min
U,t,τ,xk|k,P

−1/2
k ,θ

t

subject to (6.23), (6.35)

||P−1/2
k ((ExA)i)T || ≤ νi

Fx − (Ex(Axk|k + BU))− γ = ν

EuU ≤ Fu

(6.37)

Clearly, the main problem now is to select the linearization point S. The perhaps
easiest solution is to solve the problem (6.17), and use the solution to define S. Of
course, this can be repeated in order to find a local minimum. Let us define this
with an algorithm.

Algorithm 6.1 (Local solution of joint estimation and control)

begin
Solve the estimation problem (6.17) to obtain an initial P

−1/2
k

repeat
Let S := P

−1/2
k

Linearize the BMI (6.30) using (6.35)
Solve semidefinite program (6.37)

until suitable stopping criteria satisfied

end

In practice, it is not be possible to perform many iterations, since each step consists
of solving a semidefinite program. However, simulations indicate that one iteration
suffice and give clear improvements compared to a minimax scheme where the
estimation and control problems are solved separately.
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6.4 Simulation Results

A simple numerical experiment is conducted to analyze the performance of the
proposed minimax controllers.

Example 6.1 (Joint estimation and control)
We continue with the same system as in Example 5.1, originally taken from (Be-
mporad and Garulli, 2000). Since this chapter focus on how the state estimation
error influence the minimax controller, we reduce the size of the disturbance sig-
nificantly, in order to isolate the effects from the state estimate errors. The model,
now with measurement errors, is given by

xk+1 =
(

1.64 −0.79
1 0

)
xk +

(
1
0

)
uk +

(
0.05
0

)
wk

yk =
(
0.14 0

)
xk

hk =
(
0.14 0

)
xk + 0.05ξk

All other numerical data and control objectives are the same as in Example 5.1,
except that no feedback predictions are used. The reason is that we try to make
the controllers as simple as possible to reduce the possible factors that influence
the results.
Three different controllers were implemented. In the first controller, denoted C0,
the state estimation is performed by solving (6.17), and the estimate is then used in
the minimax controller defined by (6.27). In controller C1, an initial state estimate
is found by solving (6.17), and the obtained confidence matrix is used to linearize
the joint problem in (6.37). In other words, C1 implements Algorithm 6.1 with
one iteration. A third controller C2 implements Algorithm 6.1 with two iterations.
Extension of the algorithms in this chapter to incorporate reference tracking follow
easily as in Section 5.3.2.
The three controllers were simulated 100 times for 25 samples, with different ini-
tial conditions, measurement error and disturbance realizations. The initial state
estimate was x0|0 = 0 and P0 = 4I, while the true initial state was uniformly dis-
tributed in the ellipsoid ||x0|| ≤ 0.25 (the numbers are chosen to enable comparison
with (Bemporad and Garulli, 2000)). Disturbances and measurement errors were
uniformly distributed.
The mean of the accumulated quadratic performance measure,

25∑
k=0

(Cxk − 1)T Q(Cxk − 1) + (uk − 1)T R(uk − 1)

was calculated and gave a cost 6.70 for C1, 5.63 for C1 and 5.39 for C2. The numbers
are not very impressive, but it should be mentioned that the improvements are
more pronounced in a model with larger external disturbances. However, C0 often
became infeasible for larger disturbances, so a comparison would not make any
sense.
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Figure 6.1 shows a simulation where the proposed joint estimation and control
strategy has improved the step response.
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Figure 6.1: Step-responses for different minimax controllers.

The reason for the improvement in this example is the output constraint. The
constrained output has a severe non-minimum phase behavior, as demonstrated
in Example 5.1. If the uncertainty in the state estimate is too large, the uncer-
tainty in the constrained output will force the controller to be cautious. Since the
limiting factor for performance is the output constraint, it is important that the
measurements are used to obtain an estimate that is certain along the constrained
output directions. This is done automatically in the joint approach, hence leading
to improved performance.
Figure 6.2 shows the evolution of the state estimate confidence regions for C1 (left)
and C0 (right). The soft-shaded slab indicates the admissible region for the output
constraint −1 ≤

(
−1.93 2.21

)
xk ≤ 3. The difference is not particularly large,

but one can see than the state estimates to the left are more elongated along the
constrained direction. This is the reason why C1 and C2 have managed to improve
the performance. Note that the state estimation procedure is not guaranteed to
generate a state estimate ellipsoid contained in the admissible set for the output
constraint.
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Figure 6.2: Confidence regions for state estimate, using joint state estimation and control
(C1, left) and separate estimation and control (C0, right).



7

On convexity of feedback

predictions in minimax MPC

Feedback predictions were introduced in Chapter 5.1 to reduce the level of conser-
vativeness in the proposed minimax controller. They were introduced as a tuning
knob in the controller to be decided off-line, but no guidelines were given, or exist
in the literature, on how to select these. The simulation examples indicated that
the choice was crucial for good performance of the minimax controller. Obviously,
something has to be done.

In this chapter, we change the definition of feedback predictions slightly, and
show that the new feedback prediction matrix can be incorporated as a decision
variable in the on-line optimization problem. The obtained optimization problems
are convex and fits nicely into the framework developed in earlier chapters. Un-
fortunately, the optimization problem grows rapidly, although polynomially, in the
system dimension, the number of constraints and the prediction horizon. To resolve
this problem, it is shown how the general solution can serve as a basis for off-line
calculations, and approximations with a reduced degree of freedom, but with much
better computational properties. Simulations indicate that these approximations
work very well.

To the author’s knowledge, on-line optimization of feedback predictions is a
completely novel idea and has never been proposed before in the literature.

75



76 On convexity of feedback predictions in minimax MPC

7.1 Feedback Predictions

The system we analyze is the same as in the previous chapters.

xk+1 = Axk + Buk + Gwk (7.1a)
yk = Cxk (7.1b)

The dominating approach in robust MPC synthesis is as we have seen to employ a
minimax strategy, i.e., minimization of a worst-case performance

min
u

max
w

`(xk|k, uk|k, xk+1|k, uk+1|k, . . . , xk+N−1|k, uk+N−1|k) (7.2)

A fundamental flaw with this formulation is the fact that the MPC controller
in reality applies feedback. This will make the minimax approach unnecessarily
conservative, since it has to find a single control sequence that works well in open-
loop for all admissible disturbance realizations.

A standard trick to reduce conservatism in minimax schemes is feedback pre-
dictions1(Bemporad, 1998; Schuurmans and Rossiter, 2000; Chisci et al., 2001).
The idea is to assume that at least some feedback will be employed. This can be
done by parameterizing the future control sequence in terms of the future states
and a new decision variable vk+j|k ∈ R

m,

uk+j|k = Lxk+j|k + vk+j|k (7.3)

The feedback matrix L is typically chosen off-line, or some heuristic procedure is
used to find a suitable L on-line. The predicted states when feedback predications
are used are given by

xk+j|k = (A + BL)jxk|k +
j∑

i=1

(A + BL)j−i(Bvk+i−1|k + Gwk+i−1|k) (7.4)

The influence from the disturbances to the predicted states can be reduced by plac-
ing the eigenvalues of (A + BL) appropriately. However, the feedback predictions
will transfer uncertainty to the predicted control sequence.

uk+j|k = L((A+BL)jxk|k+
j∑

i=1

L(A+BL)j−i(Bvk+i−1|k+Gwk+i−1|k))+vk+j|k

(7.5)

A small example illustrates this trade-off.

1Feedback predictions can also be used in nominal MPC in order to obtain better conditioned
problems. If perfect optimization however is assumed, feedback predictions cannot influence the
solution in the nominal case.
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Example 7.1 (Trade-off in feedback predictions)
The system is the same as in Example 5.1.
Examples of open-loop predicted step-responses with disturbances are shown in the
top left part of Figure 7.1. The predictions are highly uncertain and the output
fluctuates between 0.75 and 1.25 after the initial transient.
Closed-loop predicted step responses with a feedback matrix based on an LQ con-
troller with Q = 1 and R = 0.01 is shown in the bottom left figure. The uncertainty
in the output prediction has been significantly reduced. The steady-state output
can now be found between 0.95 and 1.05. The price paid for the reduced output un-
certainty is uncertainty in the input instead. The control input after the transient
now fluctuates between 0.7 and 1.3.
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Figure 7.1: Predicted step-responses for disturbed system. Top left figure shows the
uncertain output predictions when no feedback is applied (only the constant input shown
in top right figure). Bottom left figure shows the predictions when feedback predictions
are applied. The responses are much more certain, but the price paid is uncertainty in
the control signal (bottom right figure).
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The problems with feedback predictions can essentially be addressed in four
different ways.

• Select L off-line by trial and error and numerous simulations.

• Use heuristics to find suitable L on-line at each sample instant.

• Optimize L on-line.

• Abandon feedback predictions and solve the underlying closed-loop minimax
MPC problem instead (see below).

It will be shown in this chapter that with a slightly different parameterization of
the control sequence, some minimax problems with on-line optimization of L can
be cast as convex programs.

7.2 Closed-loop Minimax MPC

As we stated earlier, finding an open-loop control sequence for the finite horizon
problem is a bad idea, since this control sequence has to cope with all possible
disturbance realizations. In a closed-loop minimax MPC approach, one would
assume instead that the future control uk+1 is calculated optimally over the horizon
N − 1 first when xk+1 is available. The problem to solve in closed-loop minimax
MPC is thus

min
uk|k

max
wk|k

· · · min
uk+N−1|k

max
wk+N−1|k

`(xk|k, uk|k, . . . , xk+N−1|k, uk+N−1|k) (7.6)

This type of minimax MPC has been addressed in, e.g., (Lee and Yu, 1997) and
(Scokaert and Mayne, 1998). Some formulations can be solved with enumerative
schemes. An example illustrates these methods best.

Example 7.2 (Closed-loop minimax MPC)
We are given a linear system with one scalar disturbance wk ∈W∞, i.e., |wk| ≤ 1.
Moreover, the performance measure ` is convex. Theorem 4.1 implies that the
maximum of ` is attained at a vertex of the disturbance set. This means that only
predictions obtained with wk = ±1 are interesting. These disturbances will be
denoted extreme disturbances.
The minimax problem can be solved using direct enumeration as follows. No matter
what the disturbance wk will be, the first term in the control sequence has to be
decided at time k, so the extreme disturbance and control sequences begin like

{1} , {uk|k} (7.7a)
{−1} , {uk|k} (7.7b)
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There are two possible values of xk+1 (depending on wk). Therefore, we have two
possible optimal control inputs at k + 1. Hence, the possible extreme disturbances
and control sequences are

{1, 1} , {uk|k, u
(1)
k+1|k} (7.8a)

{1,−1} , {uk|k, u
(1)
k+1|k} (7.8b)

{−1, 1} , {uk|k, u
(2)
k+1|k} (7.8c)

{−1,−1} , {uk|k, u
(2)
k+1|k} (7.8d)

Now, uk+2 is calculated first when xk+2 is available. Once again, we have 2 different
transitions from xk+1 to xk+2, and have to define a control element for each possible
xk+2 (see Figure 7.2).

{1, 1, 1} , {uk|k, u
(1)
k+1|k, u

(1)
k+2|k} (7.9a)

{1,−1, 1} , {uk|k, u
(1)
k+1|k, u

(2)
k+2|k} (7.9b)

{−1, 1, 1} , {uk|k, u
(2)
k+1|k, u

(3)
k+2|k} (7.9c)

{−1,−1, 1} , {uk|k, u
(2)
k+1|k, u

(4)
k+2|k} (7.9d)

{1, 1,−1} , {uk|k, u
(1)
k+1|k, u

(1)
k+2|k} (7.9e)

{1,−1,−1} , {uk|k, u
(1)
k+1|k, u

(2)
k+2|k} (7.9f)

{−1, 1,−1} , {uk|k, u
(2)
k+1|k, u

(3)
k+2|k} (7.9g)

{−1,−1,−1} , {uk|k, u
(2)
k+1|k, u

(4)
k+2|k} (7.9h)

The maximum of the performance measure is found along some of these worst-case
predictions. A closed-loop minimax MPC problem with N = 3 can therefore be
solved with the following program.

min
u,t

t

subject to `(xk|k, uk|k, u
(1)
k+1|k, x

(1)
k+1|k, u

(1)
k+2|k, x

(1)
k+2|k) ≤ t

`(xk|k, uk|k, u
(1)
k+1|k, x

(1)
k+1|k, u

(2)
k+2|k, x

(2)
k+2|k) ≤ t

`(xk|k, uk|k, u
(2)
k+1|k, x

(2)
k+1|k, u

(3)
k+2|k, x

(3)
k+2|k) ≤ t

`(xk|k, uk|k, u
(2)
k+1|k, x

(2)
k+1|k, u

(4)
k+2|k, x

(4)
k+2|k) ≤ t

(7.10)

To summarize; for the closed-loop minimax MPC problem with N = 3, a con-
trol sequence has to be assigned for every possible extreme disturbance realization
{wk, wk+1} (the last disturbance wk+2 cannot influence the control sequence, and
xk+3|k is not used in the performance measure). The result is 4 possible control
sequences (7.9a-7.9d) with 7 control variables (uk|k, u

(1)
k+1|k, u

(2)
k+1|k, u

(1)
k+2|k, u

(2)
k+2|k,
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u
(3)
k+2|k and u

(4)
k+2|k). Furthermore, since there are 4 possible worst-case disturbance

realizations, there will be 4 state trajectories. Figure 7.2 illustrates the explosion
in possible trajectories and introduced control variables.
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Figure 7.2: The figure shows the exponential explosion in the number of disturbance
realizations and corresponding control sequences that have to be defined to solve closed-
loop minimax MPC using straightforward enumeration.

In the general case with q extreme values on an additive disturbance wk, there
will be qN−1 disturbance sequences and (1 + q + q2 + . . . + qN−1) control variables
(Scokaert and Mayne, 1998). To solve the general closed-loop minimax problem,
we would enumerate all disturbance realizations with the corresponding control
sequences and state trajectories, and pick the control sequence that minimized the
worst-case cost.

It is easy to realize that this will only work for small p and N . As an example,
assuming p = 4 (wk two-dimensional with upper and lower bound) and N = 10
would give us 262144 different realizations with 349525 different control variables
of dimension m. Clearly an intractable problem already for this small example.

The reason we looked at this solution to the minimax problem for the finite
horizon MPC problem is that we will see some similarities with this solution and
the feedback parameterization we are going to propose, the optimal solution is
parameterized in the future unknown disturbance sequence. Keep this is mind and
the results in the next section will seem much more intuitive.
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7.3 A Linear Parameterization of U

In this section, we introduce a new parameterization of the control sequence. Recall
the definition of the predicted states from Section 5.3.1.

X = Axk|k + BU + GW (7.11)

Feedback predictions in the form uk+j|k = Lxk+j|k + vk+j|k were written in a more
compact form using a vectorized variable V and a block diagonal matrix L (see
(5.33)).

U = LX + V (7.12)

This standard parameterization will not be used in this chapter and is only intro-
duced to simplify the interpretation of the parameterization that will be defined
later. To motivate the introduction of a new parameterization, recall that we were
able to solve for U and X, with Ω = (I − BL)−1.

X = Ω(Axk|k + BV + GW ) (7.13a)
U = LΩ(Axk|k + BV + GW ) + V (7.13b)

The problem is that the mapping from L and V to X and U is nonlinear, hence
optimization over both L and V is likely to cause problem. At least, it is not obvious
how this parameterization can be incorporated in a standard convex optimization
problem.

Let us look at bit closer on the parameterized control sequence.

U = (LΩ(Axk|k + BV ) + V ) + LΩGW (7.14)

It is composed of one certain part, LΩ(Axk|k + BV ) + V , and one mapping from
the disturbances to the control sequence, LΩGW . Important to remember is that
the matrix LΩG has a causal structure, i.e. uk+j|k is only affected by wk+i|k, i < j.

The findings motivate us to try an alternative parameterization.

U = LW + V (7.15a)

L =




0 0 . . . 0
L10 0 . . . 0
L20 L21 . . . 0
...

...
. . .

...
L(N−1)0 L(N−1)1 L(N−1)(N−2) 0


 (7.15b)

The control sequence is now parameterized directly in the uncertainty. The matrix
Lij ∈ R

m×r describes how uk+i|k uses wk+j|k. Note that the parameterization is
causal in the same sense as the standard parameterization (7.12). Inserting the
parameterization yields

X = Axk|k + BV + (G + BL)W (7.16a)
U = LW + V (7.16b)
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The mapping from L and V to X and U is now bilinear. This is the main idea
in this work, and it will allow us to formulate a number of convex minimax MPC
problems (with polynomial complexity in the prediction horizon N and system
dimensions).

7.3.1 Connections to Closed-loop Minimax MPC

At a first look, (7.15) might seem suspicious. How can we parameterize the control
sequence in terms of an unknown future disturbance realization?

Compare it to the closed-loop minimax MPC solution. In that approach, we
have one control sequence for each disturbance realization. The basic idea is that
we assume an optimal choice over the reduced horizon once xk+1 is available. What
we have here is basically a sub-optimal version of the closed-loop minimax solution.
Instead of having an optimal control sequence for each worst-case disturbance re-
alization, we assume that we will not be optimal in the future over the reduced
horizon, but will at least have different solutions (linearly dependent) for different
disturbance realizations. In other words, our minimax MPC algorithm is based on
a reduced degree of freedom solution of the closed-loop solution.

7.4 Minimax MPC is Convex in L and V

In the previous section, a parameterization of the future control sequence was
proposed. It will now be shown that this parameterization allows us to solve some
minimax MPC problems with on-line optimization of feedback predictions using
convex programming.

7.4.1 Minimum Peak Performance Measure

A commonly used performance measure in minimax MPC is minimization of the
worst-case deviation along the predicted trajectory (Campo and Morari, 1987;
Zheng, 1995; Oliviera et al., 2000). Of course, the results here can be generalized to
deviation from a reference trajectory, but this is omitted to keep notation simple.
The problem can be stated as

min
u

max
w

max
j

||yk+j|k||∞
subject to uk+j|k ∈ U ∀w ∈W

xk+j|k ∈ X ∀w ∈W

wk+j|k ∈ W

(7.17)

Rewrite to a compact epigraph formulation by noting that max
j
||yk+j|k||∞ = ||Y ||∞.

Furthermore, introduce the proposed feedback predictions and vectorize the control
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and state constraints.

min
V,L,t

t

subject to ||C(Axk|k + BV + (G + BL)W )||∞ ≤ t ∀W ∈W
N

Eu(V + LW ) ≤ Fu ∀W ∈W
N

Ex(Axk|k + BV + (G + BL)W ) ≤ Fx ∀W ∈W
N

(7.18)

The peak constraint is equivalent to two sets of linear inequalities

C(Axk|k + BV ) + C(G + BL)W ≤ t1 ∀W ∈W
N (7.19a)

−C(Axk|k + BV )− C(G + BL)W ≤ t1 ∀W ∈W
N (7.19b)

To satisfy these uncertain linear inequalities, the same approach as in Section
5.2.1 can be used. For w ∈ W∞, Theorem 3.1 states (in a vectorized form) that
max
|x|≤1

Px = |P |1. Hence, the uncertain constraints with w ∈W∞ are satisfied if

C(Axk|k + BV ) + |C(G + BL)|1 ≤ t1 (7.20a)
−C(Axk|k + BV ) + |C(G + BL)|1 ≤ t1 (7.20b)

To take care of these constraints using linear programming, we need to bound the
absolute value of the matrix C(G + BL) from above. This is done by defining a
matrix variable Υ

C(G + BL) ≤ Υ (7.21a)
−C(G + BL) ≤ Υ (7.21b)

and the peak constraint is equivalent to

C(Axk|k + BV ) + Υ1 ≤ t1 (7.22a)
−C(Axk|k + BV ) + Υ1 ≤ t1 (7.22b)

The same method can be applied to state and control constraints and gives a new
matrix variable Ω and the constraints(

Ex(Axk|k + BV )
EuV

)
+ Ω1 ≤

(
Fx

Fu

)
(7.23a)(

Ex(G + BL)
EuL

)
≤ Ω (7.23b)

−
(
Ex(G + BL)
EuL

)
≤ Ω (7.23c)

To summarize, the minimum peak problem with element-wise bounded distur-
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bances and feedback predictions is solved with the following linear program.

min
V,L,t,Ω,Υ

t

subject to C(Axk|k + BV ) + Υ1 ≤ t1
−C(Axk|k + BV ) + Υ1 ≤ t1

C(G + BL) ≤ Υ
−C(G + BL) ≤ Υ(

Ex(Axk|k + BV )
EuV

)
+ Ω1 ≤

(
Fx

Fu

)
(
Ex(G + BL)
EuL

)
≤ Ω

−
(
Ex(G + BL)
EuL

)
≤ Ω

(7.24)

The case w ∈W2 can also be dealt with analytically, but require some additional
notation, and will generate a more complex optimization problem. Define to begin
with a partitioning in the same way as in Section 5.2.1.

C(G + BL) =




υT
1

υT
2
...


 , υT

i =
(
υT

i1 υT
i2 . . . υT

iN

)
(7.25a)

(
Ex(G + BL)
EuL

)
=




ωT
1

ωT
2
...


 , ωT

i =
(
ωT

i1 ωT
i2 . . . ωT

iN

)
(7.25b)

Maximizing the uncertainties in the linear inequalities can now be done using the
same technique as in Section 5.2.1. However, the vectors ωij and υij depend on L
so the expression (5.28) cannot be evaluated. Instead, we are forced to introduce
matrices Ω and Υ together with large number of second order cone constraints.

||ωij || ≤ Ωij (7.26a)
||υij || ≤ Υij (7.26b)

The robustified linear inequalities can with these variables be written as

C(Axk|k + BV ) + Υ1 ≤ t1 (7.27a)
−C(Axk|k + BV ) + Υ1 ≤ t1 (7.27b)(
Ex(Axk|k + BV )

EuV

)
+ Ω1 ≤

(
Fx

Fu

)
(7.27c)

The minimum peak problem with w ∈ W2 and feedback predictions is thus
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solved with the following second order cone program.

min
V,L,t,Ω,Υ

t

subject to C(Axk|k + BV ) + Υ1 ≤ t1
−C(Axk|k + BV ) + Υ1 ≤ t1(
Ex(Axk|k + BV )

EuV

)
+ Ω1 ≤

(
Fx

Fu

)
||ωij || ≤ Ωij

||υij || ≤ Υij

(7.28)

The derived problems (7.24) and (7.28) can be solved with standard linear
programming or second order cone programming solvers, just as when L is fixed.
This means that the introduction of L as a free variable not has complicated the
problem in terms of conceptual complexity. However, the number of introduced
variables and constraints is huge. This will be discussed further in Section 7.5
where cheaper parameterizations are introduced.

7.4.2 Quadratic Performance Measure

The second class of minimax MPC we address is a formulation with the standard
quadratic performance measure. This problem was addressed in Chapter 5, and
the optimization problem is formulated in Equation (5.4).

The solution in Chapter 5 was based on a semidefinite relaxation of the following
uncertain LMI. 

 t Y T UT

Y Q−1 0
U 0 R−1


 � 0 ∀W ∈W

N (7.29)

Insert our new definition of Y and U , and separate certain and uncertain terms.
t (C(Axk|k + BV ))T V T

? Q−1 0
? 0 R−1


+


 0
C(G + BL)
L


W

(
1 0 0

)
+ (?) � 0 (7.30)

This uncertain LMI be dealt with using the same semidefinite relaxation as in
Chapter 5. The outcome is a set of multipliers τ ∈ R

s
+ (where s is N or Nr

depending on the uncertainty structure W), the associated diagonal matrix T , and
a sufficient condition for the uncertain LMI (7.29) to hold.


t−
∑s

i=1 τi (C(Axk|k + BV ))T V T 0
? Q−1 0 C(G + BL)
? 0 R−1 L
0 ? ? T


 � 0 (7.31)

Remarkably, the semidefinite relaxation of the minimax problem is linear in L.



86 On convexity of feedback predictions in minimax MPC

We note that any linear state or control constraint can be taken care of using the
methods described in the previous section, i.e., the problem will only be augmented
with a set of linear or second order cone inequalities. Our solution to the minimax
problem is thus given by

min
V,L,t,Ω,τ

t

subject to (7.31)
(7.23) or (7.26a), (7.27c)

(7.32)

The semidefinite program to solve the semidefinite relaxation of a minimax MPC
problem with feedback predictions has obviously not changed much, compared to
the results in Chapter 5. The main difference lies in the many linear or second
order constraints that are added, and the huge amount of additional variables that
have to be introduced.

7.5 Alternative Parameterizations

The main problem with the minimax formulations (7.24), (7.28) and (7.32) is the
excessive amount of decision variables and constraints.

The reason is, to begin with, the high-dimensional parameterization of the
matrix L. The full parameterization is given by

L =




0 0 . . . 0
L10 0 . . . 0
L20 L32 . . . 0
...

...
. . .

...
L(N−1)0 L(N−1)2 L(N−2)(N−1) 0


 (7.33)

The number of free variables in this matrix alone is

mr(N − 1) + mr(N − 2) + . . . + mr =
mr

2
N(N − 1) (7.34)

In addition to this, the matrices Ω and Υ introduce another large set of variables.
Note however that many of the variables and constraints are redundant. For

instance, the matrix C(G + BL) is lower block triangular, so Ω can also be lower
block triangular. These issues will not be dealt with here. The software used to im-
plement the algorithms, YALMIP and SeDuMi, take care of redundant variables
and constraints automatically. Furthermore, the notation would be unnecessarily
detailed.

Clearly, something has to be done if we want to obtain problems that can be
used in practice. It could be argued that the minimax problem for w ∈ W∞ in
Section 7.4.1 is tractable since extremely efficient solvers for large-scale linear pro-
grams are available, and solvers exploiting structure in related MPC and minimax
MPC problems have been developed (Rao et al., 1998; Vandenberghe et al., 2002).
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This does not hold for the problem in Section 7.4.2, since a huge mixed semidefinite
and second order cone problem has to be solved. Note though, that the dimension
of the matrix constraint (7.31) is unchanged compared to Chapter 5.

To find a cheaper parameterization, let us first recall a standard feedback pre-
diction (i.e. parameterization in X, which we denote with subscript X)).

LX =




L 0 . . . 0

0 L
. . .

...
...

. . . . . . 0
0 . . . 0 L


 = ⊕N

j=1L (7.35)

It was previously shown that this gives the following nonlinear parameterization

U = LX(I − BLX)−1(Axk|k + BV + GW ) + V (7.36)

Comparing this with our parameterization U = LW + V , we see that we would
have had to obtain the following parameterization to have the same feedback from
the disturbances.

L = LX(I − BLX)−1G (7.37)

This matrix does not have the simple block diagonal structure as the matrix LX ,
so we are forced to over-parameterize L in order to obtain standard feedback pre-
dictions. Motivated by this, let us look at some ways to obtain a cheaper parame-
terization of L.

Exploiting Toeplitz Structure in LX(I − BLX)−1G

The first thing to notice is that the matrix LX(I − BLX)−1G, with LX defined
according to (7.35), has a lower block triangular Toeplitz structure. This follows
from (7.5). Comparing (7.33) and (7.5) shows that Lij = L(A+BL)i−1−jG makes
L and LX(I − BLX)−1G identical.

This means that only N − 1 different matrices Lij are needed to recover the
matrix LX(I−BLX)−1G. A more efficient parameterization is thus given by (with
the new decision variable Lj ∈ R

m×r)

L =




0 0 0 . . . 0
L1 0 0 . . . 0
L2 L1 0 . . . 0
...

...
. . . . . .

...
LN−1 LN−2 . . . L1 0


 (7.38)

This parameterization requires only mr(N − 1) variables. Obviously, a clear
improvement to the initial parameterization, but still an over-parameterization
compared to mn variables needed to define LX in a standard state feedback pa-
rameterization (7.35).
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Linearization of LX(I − BLX)−1G

Assuming a reasonably well working feedback matrix L0
X is available, a viable

approach might to linearize the nonlinear expression (7.37) and use a first order
approximation as a new feedback matrix.

The new decision variable is a standard feedback matrix L ∈ R
m×n. This

matrix defines the block diagonal feedback matrix LX = ⊕N
1 L. A first order

approximation of (7.37) is given by2

L = LX(I − BLX)−1G
' L0

XΩ−1
0 G + (LX − L0

X)Ω−1
0 G + L0

XΩ−1
0 B(LX − L0

X)Ω−1
0 G (7.39)

The parameterization (7.39) is, by construction, linear in LX , hence the methods
derived in this chapter are applicable.

Linear Combinations

Another approach worth trying is to determine a sequence of feedback predictions
off-line,

Li = Li
X(I − BLi

X)−1G i = 1 . . . q (7.40)

and then parameterize the on-line feedback prediction as a linear combination of
these pre-calculated feedback predictions

L =
q∑

i=1

αiLi (7.41)

The weights α ∈ R
q are the only free variables in the feedback prediction matrix.

A related idea was used in (Bemporad, 1998). A set of feedback predictions was
defined off-line and the on-line MPC problem was augmented with an outer loop.
For each pre-defined feedback prediction, a minimax MPC problem was solved,
and the solution to the problem that gave lowest worst-case cost was applied to
the system.

Structure in Ω and Υ

The lower block triangular Toeplitz structure revealed in LX(I −BLX)−1G can be
found also in the matrices C(G + BL) and Ex(G + BL) (assuming L has a block
diagonal Toeplitz structure as in (7.38), (7.39) and (7.41)). This means that much
cheaper parameterizations of the matrices Ω and Υ are possible. The details are
omitted for brevity.

2Use Sherman-Morrison-Woodbury formula, (I − (X + ∆))−1 = ((I − X) − ∆)−1

= (I −X)−1 + (I −X)−1∆(I − (I −X)−1∆)−1(I −X)−1 ' (I −X)−1 + (I −X)−1∆(I −X)−1

for small ∆
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7.6 Simulation Results

To start with, we return to the first example in Chapter 5 to see if we could have
done any better.

Example 7.3 (Example 5.1 revisited)
In Example 5.2, a feedback matrix was chosen rather arbitrarily as an LQ controller
designed with Q = R = 1. The question that now arise is whether this could have
been done better, or if the LQ controller does a good job.
A minimax controller based on (7.32), with obvious changes for a reference tracking
formulation, was implemented and applied to the system in Example (5.1). The
original controller from the example was also implemented and simulated using the
same disturbance realization. The results are given in Figure 7.3.
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Figure 7.3: The optimized feedback matrix does not improve performance.

The results indicate that no improvements have been obtained. This is both good
news and bad news. It is good news in the sense that we obviously made a good
choice in Example 5.2, and it seems like fixed feedback predictions indeed can do
a good job. On the other hand, it is bad news in light of this chapter. The results
developed here are seemingly to no use.

Of course, the results in the example above cannot be generalized. Practice has
shown that feedback predictions calculated from LQ controllers often work well for
stable low-order systems, but it is easy to construct examples where fixed feedback
predictions are hard to choose off-line.
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Example 7.4 (Unstable third-order system)
The system is given by 3

xk+1 =


2.938 −0.7345 0.25

4 0 0
0 1 0


xk +


0.25

0
0


uk +


0.0625

0
0


wk

yk =
(
−0.2072 0.04141 0.07256

)
xk

The input disturbance satisfies |wk| ≤ 1.
The control objective is to keep the output yk as close as possible to the reference
value 1, but at the same time never exceed this level. The input is also constrained
|uk| ≤ 1. Since the main objective is to balance the output close to the constraint
level, the weight matrices are chosen as Q = 1 and R = 0.01. The prediction
horizon was N = 10. The proposed minimax controller with free feedback predic-
tions was implemented, together with a number of standard minimax controllers
from Chapter 5.1. These controllers used fixed feedback matrices defined using LQ
controllers with control weights ranging from 10−3 to 104. The results are given in
Figure 7.4. The performance is substantially improved for the new minimax con-
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Figure 7.4: Closed-loop response with the proposed parameterization of the feedback
prediction. Dashed lines represent closed-loop responses from minimax controllers using
fixed feedback matrices defined using LQ controllers with different control weights ranging
from 10−3 to 104

3Discretized version (zero-order hold, sample-time 1 second) of the system
0.252(−2s+1)

s(s2+0.252)
.
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troller. The output yk is stationed around 0.95, while the best minimax controller
with a fixed feedback matrix settles at an output level around 0.85.

The improvement using the proposed parameterization of U is obvious, but the
price is high in computational burden, due to the large number of decision variables.
Let us therefore evaluate the approximations introduced in Section 7.5.

Example 7.5 (Alternative parameterizations)
Four different ways to parameterize the feedback prediction matrix have been pro-
posed in this chapter. To test these methods, four controllers are implemented.

C1: Full parameterization (7.15b).

C2: Toeplitz-like parameterization (7.38)

C3: Linearized parameterization (7.39). The feedback prediction matrix LX is
linearized around an LQ controller with Q = R = 1.

C4: Weighted parameterization (7.41). The matrices used to define the feedback
matrices are LQ controllers with Q = 1 and R = 0.01, 0.1, 1, 10 and 100.

Applying these controllers on the system in Example 7.4 gives the step-responses
shown in Figure (7.5). The results are encouraging. The reduced degree of freedom
in the parameterizations has not influenced the performance particularly.
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Figure 7.5: Closed-loop responses with different parameterizations. Complete step-
responses in the left figure while the right figure is zoomed around the reference level
yk = 1. The full parameterization performs best, but the difference is very small compared
to the approximations.
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The ultimate test is to see how the proposed controller compares to the exact
solution to the closed-loop minimax MPC problem, given by the optimization prob-
lem (7.6). Define the extreme realizations W ∈ Co{W (1),W (2), . . . ,W (2N−1)} and
corresponding control realizations U (i) (see Figure 7.2). The closed-loop minimax
problem (7.6), applied to our minimax formulation, can then be written as.

min
Ui,t

t

subject to
∥∥∥∥Q1/2C(Axk|k + BU (i) + GW (i))

R1/2U (i)

∥∥∥∥ ≤ t

EuU (i) ≤ Fu

Ex(Axk|k + BU (i) + GW (i)) ≤ Fx

(7.42)

Example 7.6 (Comparison with closed-loop minimax solution)
Once again, we return to the system in Example 7.4. All numerical data is the
same, except for the prediction horizon N which now decreased to N = 7. The
reason is the exponential explosion of the number of variables and constraints,
discussed in Section 7.2. The closed-loop step responses are given in Figure 7.6.
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Figure 7.6: Step-responses for proposed minimax controller with on-line optimized feed-
back predictions, and the exact closed-loop minimax MPC controller. The closed-loop
behavior is essentially the same.

As one can see in the figure, the performance of the two controllers are almost
identical. The results are very encouraging, considering that two approximations
are involved in our minimax controller (the semidefinite relaxation and the linear
parameterization of U).
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A stochastic interpretation of

minimax MPC

The aim of this chapter is to show a structural similarity between two, at a first
glance very different, approaches to MPC. To be more precise, to show a connec-
tion between stochastic risk-sensitive controllers and the deterministic minimax
controllers introduced in previous chapters.

So why is this of interest? To begin with, it is intriguing from a mathematical
point of view that the connections exist, and the connections can hopefully, in the
end, help to deepen our understanding of the two approaches. A more aesthetic
reason is that the results might calm the reader with a preference for stochastic and
an aversion against deterministic unknown-but-bounded assumptions, or the other
way around. All results in the previous chapters can just as well be interpreted in
a stochastic framework.

Connections between deterministic worst-case and stochastic risk-sensitive ap-
proaches have been discovered for various problems and are well known properties.
Connections between H∞-control and risk-sensitive control are firmly established
in (Glover and Doyle, 1988), and were discussed already in (Jacobson, 1977). The
results are however quite different to ours since they address (mainly) infinite hori-
zon problems with induced energy norms, and design linear feedback controllers,
in contrast to the framework here with amplitude bounded disturbances, control
and state constraints, finite horizon performance measures, and semidefinite relax-
ations.

93
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8.1 Deterministic and Stochastic Models

The class of systems we address is the same as before, constrained linear discrete-
time systems with external disturbances.

xk+1 = Axk + Buk + Gwk (8.1a)
yk = Cxk (8.1b)

The two approaches we compare use different ways to model the external distur-
bance wk. Basically, we are comparing a stochastic framework with independent
Gaussian disturbances wk ∈ WN = N (0, I) and the deterministic, unknown-but-
bounded, assumption wk ∈W2 or wk ∈W∞.

Of course, it is assumed that the measurement error model, if there is any, is
of corresponding type. However, we will not explicitly work with the estimation
part so we do not address this issue. Instead, we assume the following model of
the estimation error.

xk = xk|k + P
−1/2
k zk (8.2)

The expression P
−1/2
k zk hence denote the (unknown) state estimation error. The

two different models of the state estimate error are

zk ∈ ZN = N (0, I) (8.3a)
zk ∈ Z2 = {z : ||z|| ≤ 1} (8.3b)

This corresponds to a normal distributed estimation error with covariance matrix
P−1

k , typically obtained using a Kalman filter or the corresponding risk-sensitive
filter (Hassibi et al., 1999), or a guaranteed estimation error eT

k Pkek ≤ 1, obtained
using ellipsoidal state estimation, see Section 6.2.1.

8.2 Risk and Minimax Performance Objectives

The objective function used in MPC is typically a finite horizon quadratic perfor-
mance measure.

Jk =
N−1∑
j=0

yT
k+j|kQyk+j|k + uT

k+j|kRuk+j|k (8.4)

Since y·|k is uncertain due to both state estimation error and future disturbances,
this has to be addressed in some way. The classical approach is to assume that
the estimation error and the external disturbances are Gaussian, and minimize the
expected value of (8.4)

min
u

EJk, zk ∈ ZN , w ∈WN (8.5)
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It is well known and easily shown that this is equivalent to a problem without
estimation error and external disturbances, i.e., the control law will be identical to
the nominal MPC controller in Chapter 2.

The standard approach to robustify nominal MPC is to employ a minimax
strategy, i.e., optimize worst-case performance. In the previous chapters, we have
derived methods for this and showed that, e.g., the problem

min
u

max
zk,w

Jk, zk ∈ Z2, w ∈W2 (8.6)

gives rise to a problem that can be solved with semidefinite programming.
It will be shown that the proposed deterministic worst-case approach has con-

nections to a stochastic approach, so called risk-sensitive control (Jacobson, 1977;
Whittle, 1981). The idea in risk-sensitive control is to introduce a scalar risk-
parameter1 θ and minimize

min
u

2
θ

log Ee
θ
2 Jk , zk ∈ ZN , w ∈WN (8.7)

A controller using a positive θ is said to be risk-sensitive, or risk-averse. A con-
troller using θ = 0 is called risk-neutral, whereas a negative θ gives an ’optimistic’
or risk-willing controller. A risk-willing controller essentially assumes that future
disturbances will be benign to the system. Note that if θ is chosen too large, the
problem will break down and the expectation will be infinite.

By letting θ approach zero, the nominal MPC problem is recovered. This is
most easily seen using a Taylor expansion of the performance measure.

2
θ

log Ee
θ
2 Jk ≈ EJk +

θ

4
E(Jk −EJk)2 (8.8)

This expression also reveals a crucial property of the risk-sensitive performance
measure; higher order moments are included. The practical implication of this is
that one would expect the risk-sensitive controller to give a closed-loop system with
smaller peaks on output and input variables.

Despite the awkward looking performance measure (8.7), it can be shown that
the risk-sensitive controller for an unconstrained linear system with Gaussian dis-
turbances leads to a linear state feedback controller (Jacobson, 1977). However, in
this work, we are interested in the constrained case and the relations to minimax
control, so these results are not of much help for us.

Note that we are not addressing exactly the same problem as in (Jacobson,
1977) and (Whittle, 1981). The formulation here assumes that no measurements
are obtained in the future, i.e., an open-loop performance criteria is minimized.
The reason is that the minimax formulation uses an open-loop formulation.

1For notational convenience we have changed the sign on the risk factor compared to standard
notation (Whittle, 1981)
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8.3 Minimax MPC is Risk-averse

This section will present the main result, a connection between the risk-sensitive
MPC controller and the minimax MPC in Chapter 6.

The notation used is the same as in Chapter 5 and 6. To begin with, define
an extended disturbance with the stacked future process disturbances W and the
current (normalized) state estimation error zk.

Z =
(
WT zT

k

)T ∈ N (0, I) (8.9)

Define K =
(
G AP−1/2

)
and introduce the state and output predictions.

Y = CX (8.10a)
X = Axk + BU + GW

= A(xk|k + P−1/2zk) + BU + GW
= Axk|k + BU +KZ (8.10b)

To simplify notation in the following sections, let QC = CTQC. The finite horizon
quadratic performance measure (8.4) can then be written as

Jk = Y TQY + UTRU = XTQCX + UTRU (8.11)

8.3.1 Risk-sensitive MPC

Inserting Jk in the risk-sensitive optimization problem yields

U = arg min
U

2
θ

log Ee
θ
2 ((Axk|k+BU+KZ)T QC(Axk|k+BU+KZ)+UT RU) (8.12)

The performance measure can be rewritten by pulling out the deterministic part
from the expectation, and we obtain

(Axk|k + BU)TQC(Axk|k + BU) + UTRU

+
2
θ

log Ee
θ
2 (ZT KT QCKZ+2ZT KT QC(Axk|k+BU)) (8.13)

The expected value of a function f(z) is given by Ef(z) =
∫

Rn f(z)pz(z) dz where
pz(z) is the probability density function (PDF). A Gaussian variable z ∈ R

n with
mean z̄ and covariance P has the following PDF.

pz(z) =
1

(2π)n/2(detP )1/2
e−

1
2 (z−z̄)T P−1(z−z̄) (8.14)
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Using this, we can calculate the expectation w.r.t Z ∈ N (0, I) (let n momentarily
denote the dimension of the vector Z).

Ee
θ
2 (ZT KT QCKZ+2ZT KT QC(Axk|k+BU))

=
1

(2π)n/2

∫
Rn

e
θ
2 (ZT KT QCKZ+2ZT KT QC(Axk|k+BU))e−

1
2 ZT Z dZ

=
1

(2π)n/2

∫
Rn

e−
1
2 ZT (I−θKT QCK)Z+θZT KT QC(Axk|k+BU) dZ (8.15)

To simplify notation, introduce the matrixM and the vector S

M = I − θKTQCK, S = θKTQC(Axk|k + BU) (8.16)

and note that the final expression in (8.15) can be written as

1
(2π)n/2

∫
Rn

e−
1
2 ZT MZ+ZT S dZ (8.17)

Completing the squares yields

1
(2π)n/2

∫
Rn

e−
1
2 (Z−M−1S)T M(Z−M−1S)+ 1

2 ST M−1S dZ (8.18)

Pull out the constant term, multiply and divide with (detM−1)1/2

e
1
2 ST M−1S(detM−1)1/2

(2π)n/2(detM−1)1/2

∫
Rn

e−
1
2 (Z−M−1S)T M(Z−M−1S) dZ (8.19)

This expression contains an integrated PDF for a variable Z ∈ N (M−1S,M−1).
A PDF integrates to 1, so the expression simplifies to

e
1
2 ST M−1S(detM−1)1/2 (8.20)

Insert this expression in (8.13) and the objective function is

(Axk|k + BU)TQC(Axk|k + BU) + UTRU +
2
θ

log(e
1
2 ST M−1S(detM−1)1/2)(8.21)

The following expression is obtained after some simplifications.

(Axk|k + BU)TQ(Axk|k + BU) + UTRU +
1
θ
STM−1S +

1
θ

log detM−1 (8.22)

By inserting the definition of S, removing all constant terms and rearranging the
position of θ, minimization of the risk-sensitive performance measure (8.22) boils
down to the following optimization problem.

U = arg min
U

(Axk|k + BU)TQC(Axk|k + BU) + UTRU

+ (Axk|k + BU)TQCK
(1
θ
I −KTQCK

)−1KTQC(Axk|k + BU) (8.23)
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Remarkably, we still have a quadratic program with the same complexity as the
nominal MPC problem. The difference compared a nominal MPC problem is that
the state weight QC has been replaced with

QC +QCK
(1
θ
I −KTQCK

)−1KTQC (8.24)

or equivalently, that the original output weight Q has been changed to

Q+QCK
(1
θ
I −KTQCK

)−1KTCTQ (8.25)

The calculations above were performed under the assumption that the matrix M
was positive definite (the expectation would be infinite otherwise). For this to hold,
θ has to be strictly smaller than the largest eigenvalue of the matrix KTQCK. Note
that this is in some sense an indication that the risk-parameter θ not is as universal
as one would expect, since it is model dependent.

8.3.2 Minimax MPC

Let us now go back to the minimax MPC problem that we have addressed in
previous chapters.

U = arg min
U

max
Z

Y TQY + UTRU

A semidefinite relaxation gave a semidefinite program where an upper bound t was
minimized, subject to the following LMI (and additional linear constraints).


t−
∑s

i=1 τi (C(Axk|k + BU))T UT 0
C(Axk|k + BU) Q−1 0 CK

U 0 R−1 0
0 (CK)T 0 T


 � 0 (8.26)

This is the formulation that would be used to solve the optimization problem, since
(8.26) is an LMI in U , t and the multipliers τ . However, the aim here is to show
connections with risk-sensitive control. To do this, rewrite the LMI using a Schur
complement and pose the problem as minimization of t subject to

(C(Axk|k + BU)T )(Q−1 − CKT −1(CK)T )−1C(Axk|k + BU) + UTRU ≤ t−
s∑

i=1

τi

Apply the Sherman-Morrison-Woodbury formula (Golub and van Loan, 1996)

(Q−1 − CKT −1(CK)T )−1 = Q+QCK
(
T − (CK)TQCK

)−1(CK)TQ (8.27)

and obtain the equivalent constraint

(Axk|k + BU)TQC(Axk|k + BU) + UTRU

+ (Axk|k + BU)TQCK
(
T − KTQCK

)−1KTQC(Axk|k + BU) ≤ t−
s∑

i=1

τi (8.28)
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Hence, our minimax controller is defined by the following optimization problem.

U = arg min
U,τ

s∑
i=1

τi + (Axk|k + BU)TQC(Axk|k + BU) + UTRU

+ (Axk|k + BU)TQCK
(
T − KTQCK

)−1KTQC(Axk|k + BU) (8.29)

After comparing this with the final optimization problem for the risk-sensitive
approach (8.23), the connections are obvious.

Only Estimation Error

In the case when we have ellipsoidal estimation errors zk ∈ Z2, and neglect external
disturbances, we have Z = zk and K = AP−1/2. Furthermore, there is only
one multiplier (s = 1) and T is diagonal T = τI. If we now compare the risk-
sensitive optimization problem (8.23) and the minimax problem (8.29), we see that
τ plays the role of an inverse risk-parameter, and the minimax controller can be
interpreted as a controller that minimizes a risk-sensitive performance measure,
with an additional penalty, the τ -term, against using a too small risk-parameter.
(recall that a large τ corresponds to a small θ and a less risk-averse controller.)

General Case

In the general case, the matrix T is no longer a scaled identity matrix, but a
diagonal matrix, with a structure depending on whether state estimation errors
are addressed or not, and the set W. In this case, we can interpret the risk-
sensitive solution as an approximate solution to the minimax problem where we
conservatively have forced all τ -variables to be identical, and fixed this value.

8.3.3 State and Input Constraints

The discussion above has been concentrating on the relationship between the ob-
jective functions in nominal MPC, risk-sensitive MPC, and minimax MPC. It turns
out that robust constraint satisfaction in minimax MPC also can be given a stochas-
tic interpretation. Let us for notational simplicity concentrate on the case without
state estimation error.

It was shown in Section 5.2.1 that robust state constraints ExX ≤ Fx ∀W ∈W

could be written as ExX + γ ≤ Fx. Depending on the type of uncertainty, γ is
calculated as

γi = ||ωi||1 (8.30)

or

γi =
N∑

j=1

||ωij || (8.31)
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for w ∈W∞ and w ∈W2 respectively. The vectors ωi and ωij where defined from
a partition of the matrix ExG

ExG =




ωT
1

ωT
2
...


 , ωT

i =
(
ωT

i1 ωT
i2 . . . ωT

iN

)
(8.32)

This partition allowed us to write each row in ExGW as

(ExGW )i = ωT
i W =

N∑
j=1

ωT
ijwk+j−1|k (8.33)

If we would have had a stochastic model w ∈ WN , it holds that the scalar
ωT

ijwk+j−1|k ∈ N (0, ωT
ijωij) = N (0, ||ωij ||2). This means that ||ωij || is the standard

deviation of each stochastic term added to the nominal part of the constraint, hence
the term (8.31) corresponds to a sum of the standard deviations from the uncertain
term (note, it is not the standard deviation of the sum of the uncertainties). A
similar interpretation can be given for (8.30). It can be seen as the sum of the
standard deviations of the uncertainties coming from each element of w ∈WN .



9

Efficient solution of a minimax

MPC problem

An underlying idea in the previous chapters has been that once a convex opti-
mization problem is obtained, we rest assured and consider the problem solved,
since convex problems can be solved relatively efficiently. While standard general-
purpose solvers might suffice for rapid prototyping of algorithms and testing small-
scale problems, they loose much performance due to their generality.

The semidefinite programs derived in previous chapters have structure that
can be exploited to improve computational efficiency in a solver. This includes
sparseness, diagonal blocks, linear constraints and easily obtained initial solutions,
just to mention a few.

In this chapter, we study computational aspects of solving the semidefinite
programs. A dedicated solver is developed for one of the semidefinite relaxations
in Chapter 5, and compared with general-purpose semidefinite solvers. It is found
that the developed solver is capable of solving the minimax problems much more
efficiently by exploiting the inherent structure. The computational improvements
are essentially the result of two features of the proposed solver; efficient calculation
of the Hessian, and the decision to work only in the primal space.

101
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9.1 The Semidefinite Program

The following semidefinite program was derived in Section 5.2.1 to solve a semidef-
inite relaxation of a minimax MPC problem.

min
U,t,τ

t

subject to




t−
∑s

i=1 τi (C(Axk|k + BU))T UT 0
C(Axk|k + BU) Q−1 0 CG

U 0 R−1 0
0 (CG)T 0 T


 � 0

EuU ≤ Fu

Ex(Axk|k + BU) + γ ≤ Fx

(9.1)

To simplify notation, it is assumed that T = diag(τ) = ⊕N
i=1τi. This corresponds

to scalar disturbances w ∈W∞ in the minimax problem.
The first step towards an efficient solver is to rewrite the problem slightly. To

begin with, introduce an additional set of decision variables Y , and add the con-
straint Y = Axk|k +BU to the semidefinite program. This might sound inefficient,
but it will simplify many calculations and enable us to derive a compact expres-
sion for the Hessian later. Furthermore, perform a variable change and introduce
t̃ = t−

∑s
i=1 τi. The new problem is

min
U,Y,t̃,τ

t̃ +
∑s

i=1 τi

subject to




t̃ Y T UT 0
Y Q−1 0 CG
U 0 R−1 0
0 (CG)T 0 T


 � 0

Y = C(Axk|k + BU)
EuU ≤ Fu

Ex(Axk|k + BU) + γ ≤ Fx

(9.2)

This is the semidefinite program addressed in this chapter. The most important
properties are summarized below.

• The LMI is relatively sparse since Q and R typically are diagonal and T
always is diagonal.

• The variables (Y,U, t̃, τ) all enter in at most two elements in the semidefinite
constraint. This follows from treating both Y and U as variables.

• The free variables enter in an arrow structure (in first row, first column, and
in the diagonal).

• The only thing that changes between different sample instants is xk|k in the
linear constraints.
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The question is if any of these properties can be exploited to develop an efficient
solver, and to what extent this will improve computational performance.

Standard Problem

To simplify notation further, introduce the following standard problem.

min
x

cT x

subject to F (x) =


x1 xT

2 0
x2 Φ H
0 HT diag(x3)


 � 0

Ex− f = 0
Cx− d ≥ 0

(9.3)

The matrices Φ and H are constant matrices, x1 is a scalar, while x2 and x3 are
column vectors. Define x =

(
x1 xT

2 xT
3

)T . The problem (9.2), and many of the
MPC controllers in the previous chapters, can readily be cast in this form.

9.2 Solving Semidefinite Programs

The huge interest in LMIs and semidefinite programming comes from the fact that
the optimization problems are convex, and thus can be solved be solved relatively
efficiently. Consider the following standard semidefinite program.

min
x

cT x

subject to F (x) = F0 +
∑m

i=1 Fixi � 0
(9.4)

The prevailing approach today to solve this semidefinite program is to use primal-
dual algorithms. General-purpose solvers using this type of algorithms include,
among others, (Vandenberghe and Boyd, 1998; Borchers, 1999; Sturm, 1999; Toh
et al., 1999; Yamashita et al., 2002).

A primal-dual solver works with the Karush-Kuhn-Tucker (KKT) conditions of
the semidefinite program. It can be shown, under fairly weak assumptions (Boyd
and Vandenberghe, 2002), that the primal variable x is optimal if and only if there
exist a dual matrix Z such that

F (x) � 0 (9.5a)
Z � 0 (9.5b)

ZF (x) = 0 (9.5c)
TrFiZ = ci (9.5d)

A primal-dual solver typically performs better than a primal solver for general
problems, since the dual variable can be used to obtain better search directions.
The price paid is the increased number of variables and constraints.
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There are however cases when a primal solver is preferred. Our problem is one
instance that probably is more efficiently addressed with a primal algorithm. The
reason is that the matrix F (x) is structured and relatively sparse, whereas the dual
matrix Z is completely dense. This has a large impact on the effectiveness of a
primal-dual solver. For instance, sparsity in F (x) makes it easy to check the con-
straint F (x) � 0, whereas the constraint Z � 0 requires much more computational
effort. This is the motivation for the decision to implement a primal solver.

9.3 Semidefinite Programming with SUMT

A simple way to solve constrained optimization problems is to minimize, for de-
creasing values of a barrier parameter µ, the original objective function appended
with a barrier function on the inequality constraints. This approach is called se-
quential unconstrained minimization technique (SUMT) (Fiacco and McCormick,
1968). Primal-dual algorithms can often be interpreted in terms of primal barrier
algorithms (Nocedal and Wright, 1999), but the difference is that a primal barrier
algorithm has no help from a dual variable to, for example, find good search direc-
tions and update the barrier parameter µ. Nevertheless, our solver will be based
on a simple primal SUMT strategy, for reasons given in the previous sections.

The problem to solve is a mixed linear and semidefinite program with linear
equality constraints.

min
x

cT x

subject to F (x) � 0
Ex− f = 0
Cx− d ≥ 0

(9.6)

Appending the objective function with the logarithmic barriers log detF (x) and∑
log(Cx−d) yields the merit function (summation operator without index means

summation of all elements).

f(x, µ) = cT x− µ log detF (x)− µ
∑

log(Cx− d)

Some notation is introduced for future reference.

f(x, µ) = cT x− µφ(x)
φ(x) = φS(x) + φL(x)

φS(x) = log detF (x)

φL(x) =
∑

log(Cx− d)

The problem to solve for decreasing values of µ in the SUMT algorithm is

min
x

f(x, µ)

subject to Ex− f = 0
(9.7)
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Minimization (for a fixed µ) is typically done with a Newton method. A Newton
method means that the function f(x, µ) is approximated with a quadratic model

f(x + p, µ) ' f(x, µ) + bT p +
1
2
pT Hp (9.8)

The quadratic model is obtained from a second order Taylor expansion of the merit
function

b = ∇xf(x, µ) (9.9a)

H = ∇2
xxf(x, µ) (9.9b)

A suitable search direction is found by minimizing the approximate model, subject
to the linear equality constraints. This can be stated as an equality constrained
quadratic program.

min
p

bT p + 1
2pT Hp

subject to Ep = 0
(9.10)

When the search direction p is found, a line search is performed to minimize the
merit function along the search direction. A step is then taken and the procedure
is repeated until an (approximate) optimum is found for the current µ. The barrier
parameter µ is then decreased and a new unconstrained optimization problem is
solved. This is repeated until a solution is obtained for a sufficiently small µ.

The verbally explained algorithm can be put in the following algorithmic format
(Fiacco and McCormick, 1968; den Hertog, 1994).

Algorithm 9.1 (SUMT)

Given : Strictly feasible initial iterate x, initial barrier parameter µ > 0, barrier
update parameter θ ∈ (0, 1), proximity parameter η ∈ (0, 1) and desired
accuracy ε > 0.

begin
repeat

Update barrier parameter µ := θµ

repeat
Calculate Hessian H and gradient b
Calculate search direction p
Calculate suitable step length r
Update x := x + rp

until pT Hp ≤ η

until µ ≤ ε
4n

end

This algorithm will be used to solve our semidefinite program. The following sec-
tions will go through the different steps in detail, and then show how we can exploit
structure in our semidefinite program to perform some of the steps more efficiently.
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9.3.1 Analytic Expression of Gradient and Hessian

To find the search direction, the Hessian and gradient of the barrier φ(x) are needed.
For the barrier function φS(x) = log detF (x) where

F (x) = F0 +
m∑

i=1

xiFi, Fi ∈ R
n×n (9.11)

the gradient and Hessian are given by (Vandenberghe and Boyd, 1996)

(∇xφS(x))i = TrF (x)−1Fi (9.12a)

(∇2
xxφS(x))ij = − TrF (x)−1FiF (x)−1Fj (9.12b)

For a general dense unstructured problem, computing the Hessian can become a
major bottleneck, since the complexity is O(n3m+n2m2)1. However, by exploiting
the simple structure on Fi in our semidefinite constraint, we can significantly reduce
the amount of work. In fact, the analytic expression below is one of the main
contributor to the performance gains we will see compared to existing software.

Define the inverse of F (x) (the partition means that sizes of corresponding
blocks are the same, i.e., ν has the same dimension as G etc.).

F (x)−1 =


x1 xT

2 0
x2 Φ H
0 HT diag(x3)




−1

=


 γ α τ

αT Ω ν
τT νT Γ


 (9.13)

By exploiting the structure of the matrices Fi, it is possible to derive (see the
appendix) the following expressions for the gradient and Hessian of φS(x) (◦ denotes
Hadamard product)

∇xφS(x) =


 γ

2αT

diag(Γ)


 (9.14a)

∇2
xxφS(x) = −


 γ2 2γα τ ◦ τ

2γαT 2(γΩ + αT α) 2ν diag(τ)
(τ ◦ τ)T 2diag(τ)νT Γ ◦ Γ


 (9.14b)

Note that the Hessian can be assembled using only O(n2) operations. It should
however be kept in mind that the inverse of F (x) is needed. This is an O(n3)
operation, and we will later see that this is the main bottleneck of the solver.

The gradient and Hessian of the barrier function φL(x) for the linear constraints
are easily calculated. Introduce the inverted slacks

ti =
1

(Cx− d)i
(9.15a)

T = diag(t) (9.15b)
1m matrix multiplications of n × n matrices have to be done. Moreover, m(m + 1)/2 inner

products between n × n matrices are calculated. Since a matrix multiplication is an O(n3)
operation and inner product O(n2), the total complexity of the compilation is O(mn3 + n2m2)
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The gradient and Hessian of φL(x) are (Nocedal and Wright, 1999)

∇x(φL(x)) = CT t (9.16a)

∇2
xx(φL(x)) = − CT T 2C (9.16b)

Adding the gradient and Hessian of the objective function cT x, φS(x) and φL gives
the gradient b and Hessian H of the merit function f(x, µ).

b = c− µ


 γ

2αT

diag(Γ)


− µCT t (9.17a)

H = µ


 γ2 2γα τ ◦ τ

2γαT 2(γΩ + αT α) 2ν diag(τ)
(τ ◦ τ)T 2diag(τ)νT Γ ◦ Γ


+ µCT T 2C (9.17b)

9.3.2 Solving the Equality Constrained QP

The Hessian H and gradient b are used to define the equality constrained QP
(9.10). By introducing a Lagrange multiplier λ, the KKT conditions for optimality
are (Nocedal and Wright, 1999).

(
H ET

E 0

)(
p
λ

)
= −

(
b
0

)

Depending on the structure on E and H, different strategies can be used to solve
this KKT system. In the null space method (Nocedal and Wright, 1999), we first
calculate an orthogonal complement2 E⊥, the null space basis matrix, and solve a
linear equation.

ET
⊥HE⊥v = −ET

⊥b

The Newton step in the original variable x is recovered with

p = E⊥v

It will be clear later that the null space strategy indeed is suitable for our problem.

9.3.3 Line Search

Once a search direction p is found, a line search is performed to find a suitable step
length r ≥ 0. A line search means that we try to (approximately) minimize a merit
function, here f(x, µ), along the search direction p, while taking the inequality
constraints into account (the linear equality constraint is satisfied by construction

2EE⊥ = 0 and E⊥ full rank
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along the search direction). Hence, the line search problem is

min
r

cT (x + rp)− µφ(x + rp)

subject to F (x + rp) � 0
C(x + rp)− d ≥ 0

The line search procedure can typically be divided into two parts. First, the largest
possible step length rmax with respect to the constraints is calculated. Finding this
step length is typically a computationally expensive procedure in a semidefinite
solver, due to the semidefinite constraint F (x + rp) � 0. In a second step, the
merit function is minimized over r ∈ (0, rmax). The minimization does not have
to be exact. Instead, one can use algorithms that guarantee the step to yield
a sufficiently large decrease in the merit function to obtain convergence of the
Newton method. One such algorithm is Armijo’s backtracking algorithm (Nocedal
and Wright, 1999).

Algorithm 9.2 (Armijo backtracking)

Given : αA ∈ (0, 1) and βA ∈ (0, 1)

begin
r := rmax

while f(x + rp, µ)− f(x, µ) > rαAbT p
r := βAr

end
end

To find the maximal step length and evaluate the function f(x + rp, µ) during the
Armijo backtracking procedure, two approaches have been implemented. The first
approach, used in e.g. (Rendl et al., 1995) and (Vandenberghe and Boyd, 1996) is
an exact but possibly expensive method based on an eigenvalue decomposition of
F (x), while the second approach is an approximate but hopefully efficient method
based on Cholesky factorizations of F (x) and backtracking.

Line Search using Eigenvalue Decomposition

From linearity of F (x) and invariance of eigenvalues with respect to a congruence
transformation, we have that the following three conditions are equivalent (with R
denoting the Cholesky factor of F (x), F (x) = RT R)

F (x + rp) � 0⇔
F (x) + r(F (p)− F0) � 0⇔

I + rR−T (F (p)− F0)R−1 � 0
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If we let λS denote the eigenvalues of R−T (x)(F (p)− F0)R−1 (or equivalently the
generalized eigenvalues of (F (p) − F0, F (x))), it follows that the largest possible
step length with respect to the matrix inequality is given by

rS =

{
1

|min(λS)| min(λS) < 0

∞ min(λS) ≥ 0

The largest possible step with respect to the linear inequality is easily derived
(recall the definition of T in Equation (9.15))

C(x + rp)− d ≥ 0⇔
Cx− d + rCp ≥ 0⇔

1 + rTCp ≥ 0

Hence, with λL = TCp the following step length is obtained.

rL =

{
1

|min(λL)| min(λL) < 0

∞ min(λL) ≥ 0

Typically, one should not go all the way to the border of the feasible set (in fact, we
must not since the calculations above require F (x) � 0 and Cx− d > 0). Instead,
we take a damped step by introducing γS ∈ (0, 1) and γL ∈ (0, 1). Furthermore,
a Newton method should eventually take unit steps, so r is never allowed to be
larger than 1. Combining the constraints on r gives us

rmax = min(γSrS , γLrL, 1) (9.18)

To evaluate the merit function, or more importantly f(x + rp)− f(x) which is
used in the Armijo backtracking algorithm, the previously calculated generalized
eigenvalues are re-used.

φS(x + rp) = log det(F (x) + r(F (p)− F0))
= log detRT (I + rR−T (F (p)− F0)R−1)R
= log det(I + rR−1(F (p)− F0)R−T ) + log detF (x)

= log
∏

(1 + rλS) + log detF (x)

=
∑

log(1 + rλS) + log detF (x)

The barrier for the linear constraints can be simplified in the same way.

φL(x + rp) =
∑

log(C(x + rp)− d)

=
∑

log(1 + rλL) +
∑

log det(Cx− d)

The decrease f(x + rp, µ)− f(x, µ) simplifies to

f(x + rp, µ)− f(x, µ) = rcT p− µ
∑

log(1 + rλS)− µ
∑

log(1 + rλL)

This expression can be used in Algorithm 9.2. Notice that f(x + rp)− f(x) can be
evaluated with O(n) operations, so the backtracking procedure will be extremely
cheap computationally.
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Line Search using Cholesky Factorizations

One of the most efficient ways to check if a matrix is positive definite is to check if
it is possible to perform a Cholesky factorization. This can be used to determine a
feasible step length with respect to the semidefinite constraint. Start with a step
length r, try to factorize F (x + rp), if it fails, decrease r and try again.

An algorithm to find a feasible step length rS with respect to the semidefinite
constraint can thus be summarized as follows.

Algorithm 9.3 (Cholesky backtracking)

Given : βC ∈ (0, 1)

begin
rS := min(1, γLλL)
[R, failed] := Cholesky(F (x + rSp)
while failed

rS := βCrS

[R, failed] := Cholesky(F (x + rSp))
end

end

Notice that we initialized the step length to the largest step length with respect
to the linear inequalities. The reason is that the final step length, when both the
semidefinite constraint and the linear constraint are taken into account, cannot be
larger than min(rL, rS).

If the Newton step p is a good search direction, both in direction and length, a
feasible rS is hopefully found in a few iterations. The Cholesky factorization is an
O(n3) operation for dense matrices (Golub and van Loan, 1996), so the algorithm
will only be efficient if the number of iterations stay low throughout all Newton
iterations. Note that the Cholesky factorization does not have be completed when
the matrix not is positive definite. Instead, the algorithm can stop immediately
when a so-called negative pivot is found. Worst-case complexity is however still
O(n3). For details on how a Cholesky factorization is computed, see (Golub and
van Loan, 1996).

After finding a feasible step length rS with respect to the semidefinite constraint,
we set rmax = rS . This means that we do not scale rS with a damping parameter
λS as we did before. The reason is that the Cholesky factor of F (x + rSp) will be
used later in the Armijo backtracking algorithm. With rmax = λSrS , we would
have been forced to calculate a new factorization of F (x+λSrSp). By construction,
F (x + rSp) is positive definite, so the step length will never take us all the way to
the border of the feasible set.

Finally, f(x + rp, µ)− f(x, µ) is needed the Armijo backtracking. The problem
is to calculate the term log det F (x + rp). In the previous section, we solved this
efficiently by re-using the generalized eigenvalues. This cannot be done now.
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Instead, we are forced to calculate the determinant explicitly. An efficient way
to calculate the determinant of a matrix is to use triangular factorizations (Higham,
1996). For a Cholesky factorization F (x+ rp) = RT R, the determinant is given by

log det(F + rp) = log detRT R

= log(det R)2

= log(
n∏

i=1

Rii)2

= 2
n∑

i=1

log Rii (9.19)

This can be used in the Armijo backtracking algorithm. Notice that f(x, µ) can
be saved from the previous Newton iteration, and does not have to be re-computed.

Algorithm 9.4 (Cholesky based Armijo backtracking)

Given : αA ∈ (0, 1) and βA ∈ (0, 1)
begin

r := rmax

while cT (x+pr)−µ2
∑n

i=1 log Rii−µ
∑

log(C(x+rp)−d)−f(x, µ) > rαAbT p
r := rβA

R := Cholesky(F (x + rp))
end

end

If the sufficient decrease condition is fulfilled in the first iteration, the computational
cost will be O(n), since the already computed Cholesky factor R is used. If it fails,
backtracking is needed and new Cholesky factorizations are calculated until the
step is sufficiently small to yield a sufficient decrease.

The final Cholesky factor can be used to calculate the inverse of F (x+rp) which
is needed in the next iterate to calculate the gradient and Hessian of the logarithmic
barrier. The standard way to calculate the inverse of a positive definite matrix F
is to calculate the Cholesky factorization F = RT R, solve the triangular system
RX = I, and set F−1 = XXT (Higham, 1996). The performance gain compared to
the command inv in MATLAB is however small. The main computational burden
lies in the backsolve and matrix multiplication step, and not in the factorization of
the sparse matrix F (x).

9.4 Tailoring the Code for MPC

The semidefinite solver derived in the previous section can be improved upon,
by exploiting structure in the problem that comes from the underlying problem
formulation, minimax MPC.
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Recall that the variables in the MPC problem (9.2) relate to the variables in
the general problem (9.3) as

x1 = t̃, x2 =
(

Y
U

)
, x3 = τ

Φ =
(
Q−1 0

0 R−1

)
, H =

(
CG
0

)

9.4.1 Feasible Initial Iterate

Finding a feasible initial iterate can be done at a low computational cost. A Schur
complement on the LMI in (9.3) transforms the constraints to

x1 ≥ xT
2 (Φ−Hdiag(x3)−1HT )−1x2

Φ−Hdiag(x3)−1HT � 0
x3 ≥ 0

Cx− d ≥ 0
Ex− f = 0

In the minimax MPC problem, there are only linear constraints on x2 (since x1

and x3 correspond to the auxiliary variables t̃ and τ .) Due to this separation, the
following scheme can be used to find a feasible starting point

Algorithm 9.5 (Feasible initial iterate in minimax MPC)

Given : ρ > 1

Off-line
Find a vector x3 > 0 such that Φ − Hdiag(x3)−1HT � 0. This is always
possible by choosing x3 large enough since Φ � 0.

On-line

1 Find x2 strictly satisfying the linear constraints. The cost to do this is
relatively small since we can use linear programming. Keep in mind that
this step is necessary also in a nominal MPC formulation when a standard
quadratic programming solver is used.

2 Given x2 and x3, let x1 > ρ(xT
2 (Φ−Hdiag(x3)−1HT )−1x2).

9.4.2 Finding E⊥
The matrix E⊥ can essentially be obtained in two ways. The first and most obvious
approach is to perform, e.g., a singular value decomposition and use this to calculate
an orthonormal basis E⊥. However, in some cases it is beneficial to exploit the
structure in E.
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The equality constraint Ex = f is introduced to take care of the constraint
Y = C(Axk|k + BU), so E is given by

E =
(
0 I −CB 0

)
A natural choice of independent variables are t̃, U and τ and a basis for the null
space of E is then given by

E⊥ =




1 0 0
0 CB 0
0 I 0
0 0 I


 (9.20)

The advantage with this choice is that E⊥ tends to be sparser than the orthonormal
basis, see Figure 9.1 for a typical example.
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Figure 9.1: The figure shows the sparsity pattern for E⊥ calculated with a singular value
decomposition (left) and Equation (9.20) (right).

The block structure on E⊥ defined with (9.20) allows us to calculate the pro-
jected Hessian ET

⊥HE⊥ and gradient ET
⊥b more efficiently.

ET
⊥∇2

xxφSE⊥ = −(?)T


γ2 2γα τ ◦ τ

? 2(γΩ + αT α) 2ν diag(τ)
? ? Γ ◦ Γ






1 0 0(
0
0

) (
CB
I

) (
0
0

)
0 0 I




= −




γ2 2γα

(
CB
I

)
τ ◦ τ

? 2
(
CB
I

)T

(γΩ + αT α)
(
CB
I

)
2
(
CB
I

)T

ν diag(τ)

? ? Γ ◦ Γ


(9.21)
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The projected gradient simplifies to

∇xφS =




γ

2
(
CB
I

)T

αT

diag(Γ)


 (9.22)

The calculation of the projected Hessian and gradient originating from the linear
constraints, ET

⊥CT T 2CE⊥ and ET
⊥CT t, can be simplified by calculating the matrix

ET
⊥CT off-line.

Note that E⊥ does not depend on the current state xk, so if the orthonormal
basis is chosen, it can be calculated off-line.

9.4.3 Exploiting Sparseness

Needless to say, sparseness should be exploited whenever possible. For the MPC
application, sparseness arises in E⊥ (as we saw above) and in C, which typically is
extremely sparse. It is of paramount importance to exploit this in the calculations.

Additional performance gains can be obtained by applying a row and column
permutation on the sparse matrix F (x) before the Cholesky factorizations are per-
formed in Algorithms 9.3 and 9.4. A straightforward Cholesky factorization of
F (x) gives a Cholesky factor R with a large number of nonzero elements (so-called
fill-in). A reordering reduces the number of nonzero elements, and thus the com-
putational cost, substantially. Figure 9.2 shows a typical example of the impact of
a reordering.
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Figure 9.2: The figure shows the sparsity pattern for the Cholesky factor of F (x) without
reordering (left) and with symmetric minimum degree reordering (right).

The permutation can be calculated off-line since the sparsity pattern of F (x) is
the same all the time (assuming the decision variables to be nonzero). There are
numerous ways to derive a permutation. The algorithm that worked best for our
purpose turned out to be symmetric minimum degree permutation, called symmmd
in MATLAB.
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9.4.4 Scaling Barrier for Linear Inequalities

During the development of the code, it turned out that the algorithm sometimes
suffered from numerical problems (yielding slow convergence in the Newton itera-
tions) when many linear control and state constraints were included.

To solve these issues, the following simple but surprisingly efficient heuristic
was employed. Instead of using the same barrier parameter on the semidefinite
constraint and the linear constraints, a parameter γ ∈ (0, 1) was introduced and
the merit function was changed to

f(x, µ) = cT x− µφS(x)− µγφL(x)

In other words, the influence of the linear constraints is decreased in the logarithmic
barrier function. At a first glance, it might be believed that the same effect should
be possible to obtain by multiplying C and d with some small (<< 1) constant.
This is however not the case since log det γ(Cx− d) = log(γ) + log det(Cx− d), so
a simple constraint scaling does not have any effect. The changes in the code for
this heuristic are immediate, so the details are omitted for brevity.

9.4.5 Exploiting Diagonal Terms

The matrix F (x) has free variables along the diagonal (x1 and x3). This can be
exploited when we are looking for a suitable step length since we now that these
diagonal elements have to be positive for F (x) to be positive definite.

To this end, partition the step p in the same way as x, i.e. p =
(
p1 pT

2 pT
3

)T
and define λD1 = p1

x1
and λD3 = p3

x3
(element-wise division). Maximal step length

with respect to the diagonal elements is rD = min(rD1, rD3) where

rD1 =

{
1

|min(λD1)| λD1 < 0

∞ min(λL) ≥ 0
(9.23a)

rD3 =

{
1

|min(λD3)| min(λD1) < 0

∞ min(λL) ≥ 0
(9.23b)

The new bound on r can be used in the Algorithm 9.3 by changing the first step
to rS = min(1, γLrD, γLrL).

9.5 Application to Other Minimax Problems

The solver has been developed for the simplest minimax problem possible, but it
can easily be extended to solve some of the extensions in Chapter 5.

Feedback Predictions

The changes when feedback predictions are applied are that Y now contains the
matrix Ω, Y = CΩ(Axk|k + BV ), and U is replaced with LΩ(Axk|k + BV ) + V ).
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Define the variables Y , V and U , and the LMI in the semidefinte program (5.42)
can be written in the standard form with

x2 =
(

Y
U

)
,H =

(
CΩG
LΩG

)

The equality constraints are

Y = CΩ(Axk|k + BV )
U = LΩ(Axk|k + BV ) + V

Having both U and V is unnecessary (and does not fit the standard model). The
variable V can be eliminated

V = (I + LΩB)−1(U − LAxk|k) (9.24)

and we obtain the original single linear equality constraint between Y and U

Y = C(Axk|k + BU)

Hence, the only difference lies in the constant matrix H.

Tracking

The only difference in the tracking formulation (5.45) is the constant terms Yr and
Ur. These do not affect any crucial parts of the solver since they only enter in the
term F0 of the matrix F (x).

Norm-bounded Disturbance

The largest difference occurs if we want to use the solver for the disturbance model
w ∈ W2. This model gives a matrix T with blocks of scaled identity matrices,
T = ⊕N

i=1τiI
r×r. A simple way to account for this extension is to work with a

matrix T = ⊕Nr
i=1τi and add additional linear equality constraints on τ (i.e. x3) to

impose the required structure.
Of course, if maximal performance is wanted, the only solution is to derive

explicit expressions for the Hessian and gradient with the new structure on T .

9.6 Computational Results

To evaluate the performance of the proposed solution strategy, a number of test
problems will be solved. To be able to draw any conclusions from the results, we
will also solve the problems using standard SDP solvers, both primal-dual solvers
and a primal solver.
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9.6.1 Test Strategy

The systems that will be used to create the minimax problems is discretized versions
(zero-order hold, sampling time 1s) of a second order system, parameterized in a
damping parameter ξ.

y(t) =
0.04

p2 + 0.4ξp + 0.04
(u(t) + 0.25w(t)), w ∈W∞ (9.25)

The minimax MPC problem (5.4) is solved using the semidefinite program (9.1).
The performance weights in the MPC controller are Q = R = 1, and the system is
constrained with |uk| ≤ 1 and |yk| ≤ 5.

The test problems are generated by choosing the damping parameter ξ randomly
between 0 and 1. The state xk is also generated randomly, with the restriction
that the minimax problem is feasible. Infeasible problems are not of interest since
infeasibility detection is taken care of by the linear programming solver used in
Algorithm 9.5.

For each horizon length N = 5, 10, . . . , 70 we create 10 test cases with different
initial states xk and damping parameters ξ, and calculate the average CPU-time3

required to solve each minimax problem. The solver is implemented in MATLAB.
If not stated otherwise, the parameters in the solver are µ0 = 1, θ = 0.1, η = 0.9,

γ = 0.1, ε = 10−4, γS = 0.9, γL = 0.9, αA = 0.3, βA = 0.7 and βC = 0.5.
A feasible initial iterate was found using Algorithm 9.5. The algorithm used

ρ = 2 and the initial value on τ (x3) was τi = 10 (turned out to be feasible for
all generated systems). These values were chosen without any deeper thought and
more problem-dependent choices are likely to give better performance.

9.6.2 Impact of Line Search Method

The first and most important experiment is to study which of the two line search
methods that perform best; the method based on an eigenvalue decomposition, or
the algorithm based on Cholesky factorizations.

Figure 9.3 reveals that the approximate method using Cholesky factorizations
outperforms the exact method based on eigenvalues. The solutions obtained from
the two methods are almost always identical up to 8-9 digits, so there is no loss
from an accuracy point of view to use the approximate method based on Cholesky
factorizations. Since the Cholesky based algorithm performed so well, it is used in
the remaining experiments.

9.6.3 Impact of E⊥
As a second experiment, we study the impact of the matrix E⊥. The results
in Figure 9.4 reveal that the performance gains are minor for small problems.
Large-scale problems do however benefit from the structured and sparser null space
matrix.

3MatLab 6.5, SUN ULTRA10 with a 300MHz processor and 128MB memory



118 Efficient solution of a minimax MPC problem

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

N

t (sec)

Eigenvalue decompostion
Cholesky backtracking

Figure 9.3: The line search procedure based on Cholesky factorizations is approximately
50 percent faster than the approach based on an eigenvalue decomposition.

9.6.4 Impact of γ

Without any theoretical motivation, a slightly nonstandard barrier was introduced
to account for the linear constraints. The idea was to reduce the size of the barrier
function for the linear constraints, compared to the barrier for semidefinite con-
straint, by multiplying the barrier for the linear constraints with a constant γ < 1.
The same experiments as above were conducted, but now comparing the situation
γ = 1 (standard) and γ = 0.1 (scaled barrier). The results are presented in Figure
9.5. The modified barrier function gave an average improvement of approximately
25 percent.

9.6.5 Profiling the Code

To find the most computationally expensive parts of the algorithm, the code was
profiled in MATLAB.

A test case with N = 50 was solved and profiled. Since we earlier found that
best performance was obtained with the Cholesky based line search, the structured
null space matrix E⊥ and the scaled barrier for the linear inequalities, this setup
was used also here.

The relative CPU-time spent during the iterations is illustrated in the pie chart
in Figure 9.6. Approximately 40 percent of the CPU-time is spent on calculating the
inverse of F (x). Hence, this has to be considered the main bottleneck in the code.
As expected, assembling the Hessian and gradient (H and b) is relatively cheap.
Note that this part includes the projection (9.21) on the equality constraints. The
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Figure 9.4: The figure shows the performance gains of a structures null space matrix
E⊥ derived from the problem formulation instead of using an SVD decomposition of E to
calculate E⊥. The gain is minor for short horizons, but increase with increasing problem
size.

large portion of unspecified CPU-time in the field Others can mainly be attributed
to code overhead in MATLAB, such as function calls.

9.6.6 Comparison with DSDP, SeDuMi and SDPT3

Finally, let us compare the computational results with those obtained with three of
the most efficient general-purpose SDP solvers available, DSDP (Benson and Ye,
2001), SeDuMi (Sturm, 1999) and SDPT3 (Toh et al., 1999).

The tolerance in the solvers was set to 10−4. Other settings were left unaltered
in all solvers. No uniform improvement could be obtained, neither in performance
or in robustness, by changing the default parameter choices. Furthermore, DSDP,
SDPT3 and SeDuMi can use warm-starts. However, this was not used since initial
experiments, using the initial solution from Algorithm 9.5, showed no uniform
performance gains.

The same problems as above were solved and the computational results are
reported in Figure 9.7. The poor performance of SeDuMi (version 1.05R4) and
SDPT3 (version 3.0) were expected. SeDuMi and SDPT3 are based on primal-
dual algorithms, and consequently have to introduce a dual variable for the semidef-
inite constraint. This variable is dense, hence dense algebra has to be used. Another
reason for the poor performance is the Hessian assembly. SeDuMi and SDPT3

do not exploit the low rank properties of the involved matrices, but only exploit
sparseness.
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Figure 9.5: The CPU-time was uniformly lower when a scaled barrier was used on the
linear constraints.

The poor performance of DSDP (version 4.5) is a surprise. DSDP is a primal
algorithm (in our notation) and does not have to introduce any dense dual variable.
Furthermore, the main idea in DSDP is to exploit low rank structure of the matrices
Fi. Despite these promising features, DSDP was not competitive for the problems
that were solved. The reason for the poor performance seems to lie in the linear
constraints. Without linear constraints, the performance was excellent and DSDP

was most often as fast or even faster than the proposed SUMT solver. However,
when linear constraints were added, the performance often deteriorated. Recall
that the linear constraints caused some trouble also in our SUMT solver, but not
by far as drastic, and the problem was essentially resolved by the scaled barrier.

Finally, it should be mentioned that DSDP, SeDuMi and SDPT3 are (at least
partially) implemented in C, whereas the proposed solver was implemented entirely
in MATLAB.
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Figure 9.6: Relative CPU-time spent on different steps in the solver. The main bottle-
neck in the code is the inversion of the matrix F (x).
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Figure 9.7: Comparison between the proposed solver, the primal solver DSDP and the
primal-dual solvers SeDuMi and SDPT3.



Appendix

9.A Hessian and Gradient of log det F (x)

To obtain a simple notation in the derivation of the gradient and Hessian of the
logarithmic barrier function log detF (x), we introduce a matrix S with

S = F (x)−1 =


x1 xT

2 0
x2 Φ H
0 HT diag(x3)




−1

=


 γ α τ

αT Ω ν
τT νT Γ




Furthermore, x =
(
x1 xT

2 xT
3

)T where x1 ∈ R, x2 ∈ R
nx2 and x3 ∈ R

nx3 . Since
x1 and x3 are located on the diagonal, and x2 is located in the first row and column
of F (x), we have that the basis matrices of F (x) is given by

F0 =


0 0 0

0 Φ H
0 HT 0


 (9.A.26a)

F1 = e1e
T
1 (9.A.26b)

Fi = e1e
T
i + eie

T
1 (2 ≤ i ≤ 1 + nx2) (9.A.26c)

Fi = eie
T
i (2 + nx2 ≤ i ≤ 1 + nx2 + nx3) (9.A.26d)

Evaluating (9.12) gives us the gradient and the Hessian of φS(x) = log detF (x).

9.A.1 Gradient

Gradient w.r.t x1

TrSF1 = TrSe1e
T
1 = eT

1 Se1

Gradient w.r.t x2

TrSFi = TrS(e1e
T
i + eie

T
1 ) = 2eT

1 Sei, (2 ≤ i ≤ 1 + nx2)
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Gradient w.r.t x3

TrSFj = TrS(eje
T
j ) = eT

j Sej , (2 + nx2 ≤ j ≤ 1 + nx2 + nx3)

Compiling the Gradient

Careful inspection of the indices and relating to the partition of S reveals that the
gradient can be written compactly as

∇φS(x) =


 −γ
−2αT

−diag(Γ)




9.A.2 Hessian

Hessian w.r.t x1

−TrSF1SF1 = −Se1e
T
1 Se1e

T
1 = −(eT

1 Se1)2

Hessian w.r.t x1 and x2

−TrSF1SFi = −TrSe1e
T
1 S(e1e

T
i + eie

T
1 )

(
2 ≤ i ≤ 1 + nx2

)
= −2(eT

i Se1)(eT
1 Se1)

Hessian w.r.t x1 and x3

−TrSF1SFj = −TrSe1e
T
1 Seje

T
j

(
2 + nx2 ≤ j ≤ 1 + nx2 + nx3

)
= −(eT

1 Sej)2

Hessian w.r.t x2

−TrSFiSFj = −TrS(e1e
T
i + eie

T
1 )S(e1e

T
j + eje

T
1 )

(
2 ≤ i ≤ 1 + nx2

2 ≤ j ≤ 1 + nx2

)
= −2((eT

1 Se1)(eT
i Sej) + (eT

1 Sei)(eT
1 Sej))

Hessian w.r.t x2 and x3

−TrSFiSFj = −TrS(e1e
T
i + eie

T
1 )S(eje

T
j ),

(
2 ≤ i ≤ 1 + nx2

2 + nx2 ≤ j ≤ 1 + nx2 + nx3

)
= −2(eT

i Se1)(ejSei)
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Hessian w.r.t x3

−TrSFiSFj = −TrS(eie
T
i )S(eje

T
j ),

(
2 + nx2 ≤ i ≤ 1 + nx2 + nx3

2 + nx2 ≤ j ≤ 1 + nx2 + nx3

)
= −(eT

i Sej)2

Compiling the Hessian

Straightforward but tedious compilation yields the following expression for the
Hessian (◦ denotes the element-wise Hadamard product)

∇2φS(x) = −


 γ2 2γα τ ◦ τ

2γαT 2(γΩ + αT α) 2ν diag(τ)
(τ ◦ τ)T 2diag(τ)νT Γ ◦ Γ






10

MPC for systems with uncertain

gain

In this chapter, we do not use the disturbance model that has been addressed in
previous chapters. Instead of bounded external disturbances, we now focus on
systems with uncertainties in the system model. To be more specific, this chapter
assumes uncertainties in the gain, i.e., in the B matrix.

The main goal of this chapter is the same as in Chapter 5. It is shown how
a minimax MPC problem with quadratic performance measure can be addressed
using robust semidefinite programming.

The model and the main result in this chapter are in principle special cases
of the more general theory that will be presented in the next chapter. However,
several simplifications can be done due to the special structure in the model used
in this chapter. This will enable much more efficient implementations.

10.1 Uncertainty Model

A problem setup that has been used in many approaches to robust MPC is models
with an uncertain B matrix1. Introduce a time-varying uncertainty ∆k and write

1An alternative formulation is to use an uncertain C matrix. The differences are minor.
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this as

xk+1 = Axk + B(∆k)uk (10.1a)
yk = Cxk (10.1b)

The model has most often been polytopic, B ∈ Co{B(1), . . . , B(q)} (Campo and
Morari, 1987; Zheng and Morari, 1993; Oliviera et al., 2000). In this work however,
we turn our attention to a norm-bounded uncertainty model (Boyd et al., 1994).

B(∆k) = B0 + B1∆kB2, ∆k ∈∆ (10.2a)

∆ = {∆ ∈ R
n∆×m∆ :

∥∥∆∥∥ ≤ 1} (10.2b)

The uncertainty is thus the norm-bounded matrix ∆k. More details and discussion
about this model can be found in Section 10.4.

10.2 Minimax MPC

The goal in this chapter is to solve the minimax MPC problem with a quadratic
performance measure and robust satisfaction of constraint.

min
u

max
∆

∑N−1
j=0 yT

k+j|kQyk+j|k + uT
k+j|kRuk+j|k

subject to uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆
∆k+j|k ∈ ∆

(10.3)

Earlier work related to (10.3) differ from our approach in that they typically
assume linear performance measures and polytopic models. The reason is that
the maximization in the optimization problem then can be done analytically, and
the result is a linear program, see , e.g., (Campo and Morari, 1987; Zheng and
Morari, 1993; Oliviera et al., 2000). Of course, as we saw in Chapter 4, there are
approaches that can cope with the above minimax problem, but they do not exploit
the inherent structure that arise from the gain uncertainty assumption. Instead,
they concentrate on general uncertain systems.

10.2.1 Semidefinite Relaxation of Minimax MPC

We proceed as usual and introduce a vectorized notation. To do this, define

B0 =




0 0 0 . . . 0
B0 0 0 . . . 0

AB0 B0 0 . . . 0
...

. . . . . . . . .
...

AN−2B0 . . . AB0 B0 0


 , B1 =




0 0 0 . . . 0
B1 0 0 . . . 0

AB1 B1 0 . . . 0
...

. . . . . . . . .
...

AN−2B1 . . . AB1 B1 0




B2 = ⊕N
j=1B2

∆N = ⊕N−1
j=0 ∆k+j|k ∈∆N = ∆× . . .×∆
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These matrices and the block diagonal structure of ∆N enables the following com-
pact notation (with additional variables defined as in Chapter 5).

Y = CX (10.4a)

X = Axk|k + (B0 + B1∆NB2)U (10.4b)

Bounding the Performance Measure

As a first step, introduce the epigraph form of the optimization problem and define
the problem that we wish to address with a semidefinite relaxation.

min
U,t

t

subject to Y TQY + UTRU ≤ t ∀∆N ∈∆N

U ∈ U
N ∀∆N ∈∆N

X ∈ X
N ∀∆N ∈∆N

(10.5)

Applying as Schur complement on the first constraint takes us to the matrix space.
 t Y T UT

Y Q−1 0
U 0 R−1


 � 0 ∀∆N ∈∆N (10.6)

Insert the definition Y = C(Axk|k + (B0 + B1∆NB2)U), and separate certain and
uncertain terms in the matrix inequality
t (C(Axk|k + B0U))T UT

? Q−1 0
? 0 R−1


+


 0
CB1

0


∆N

(
B2U 0 0

)
+ (?) � 0 ∀∆N ∈∆N

Direct application of Theorem 3.4 gives a multiplier τ ∈ R
N
+ and the matrices

T = ⊕N
1 τjI

m∆×m∆ and S = ⊕N
1 τjI

n∆×n∆ , and a sufficient condition for (10.6) to
hold. 


t (C(Axk|k + B0U))T UT UTBT

2

? Q−1 − CB1SBT
1 CT 0 0

? 0 R−1 0
? 0 0 T


 � 0 (10.7)

The next step is the state constraints.

Robust Constraint Satisfaction

Robust satisfaction of state constraints is also easy to handle, although the matter is
a bit more intricate than robust constraint satisfaction for the models with external
disturbances in Chapter 5
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Writing the linear constraints with U and ∆N inserted gives the linear inequal-
ities that should hold for all possible uncertainty realizations.

Ex(Axk|k + (B0 + B1∆NB2)U) ≤ Fx ∀∆N ∈∆N (10.8)

Partition B1 into N block rows

B1 =




0 0 0 . . . 0
B1 0 0 . . . 0

AB1 B1 0 . . . 0
...

. . . . . . . . .
...

AN−2B1 . . . AB1 B1 0


 =

(
H0 H1 . . . HN−1

)
(10.9)

Separate the certain and the uncertain terms of the constraint, and use the matrix
H and the structure of B2 and ∆N to expand the vectorized uncertainty

Ex(Axk|k + B0U) +
N−1∑
j=0

ExHj∆k+j|kB2uk+j|k ≤ Fx (10.10)

The complicating thing here is that the expression is bilinear in the uncertainty
and the decision variable U .

Let us for the moment look at a single row in the constraint (with (·)i denoting
the ith row).

(Ex(Axk|k + B0U))i +
N−1∑
j=0

(ExHj)i∆k+j|kB2uk+j|k ≤ (Fx)i (10.11)

The problem now is to maximize the sum with respect to ∆N . The following
theorem enables this.

Theorem 10.1
Let the vectors x and y and the matrix ∆ be of compatible sizes. It then holds
that

max
||∆||≤1

xT ∆y = ||x||||y|| (10.12)

Proof Follows from Schwarz inequality (aT b)2 ≤ ||a||2||b||2, with equality if a and b are
parallel. Hence, equality when ∆ is chosen so that x and ∆y are parallel. 2

Maximization of (10.11) can now be done by letting (ExHj)i play the role of
xT and B2uk+j|k the role of y. Application of the theorem requires the Euclidean
norm of the vectors B2uk+j|k. This is solved by introducing a new decision variable
κ ∈ R

N and N second order cone constraints.

||B2uk+j|k|| ≤ κj+1 (10.13)
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Since ||B2uk+j|k|| now is smaller than κj+1, the ith state constraint (10.11) is
guaranteed to hold if

(Ex(Axk|k + B0U))i +
N−1∑
j=0

||(ExHj)i||κj+1 ≤ (Fx)i (10.14)

Define a matrix Ωi(j+1) = ||(ExHj)i||, and all robustified state constraints are
efficiently written as

Ex(Axk|k + B0U) + Ωκ ≤ Fx (10.15)

Hence, robust satisfaction of the linear state constraints requires the same amount
of linear constraints as original nominal constraints, but need N additional second
order cone constraints and N new variables. The last conclusion is important; no
matter how many nominal linear constraints there are, the number of additional
variables and second order cone constraints remain constant. Notice also that the
second order cone constraints are of low dimension. This is important from a
computational efficiency point of view.

Final Problem

The results obtained at this point enable us to state the main result of this chapter.
The semidefinite relaxation of the minimax MPC problem (10.5) is given by the
following semidefinite program.

min
U,t,τ,κ

t

subject to




t (C(Axk|k + B0U))T UT UTBT
2

? Q−1 − CB1SBT
1 CT 0 0

? 0 R−1 0
? 0 0 T


 � 0

Ex(Axk|k + B0U) + Ωκ ≤ Fx

||B2uk+j|k|| ≤ κj+1

EuU ≤ Fu

(10.16)

Simplification of the Semidefinite Program

The optimization problem just derived can be simplified, from a computational
efficiency point of view2.

Assume for the moment that Q−1 − CB1SBT
1 CT is positive definite. A Schur

complement on the LMI in (10.16) gives the constraint (to save space, we locally
2The statements that follow are valid if we assume that second order cone constraints are to

be preferred against the corresponding formulation using LMIs. This is the case for the solvers
used in this thesis to solve the mixed semidefinite and second order cone programs (Toh et al.,
1999; Sturm, 1999)
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use the incorrect notation Y = C(Axk|k + B0U))

Y T (Q−1 − CB1SBT
1 CT )−1Y + UTRU + UTBT

2 T −1B2U ≤ t (10.17)

This can, with the new scalar decision variables tx, tu and tδ, be written as

tx + tu + tδ ≤ t (10.18a)

Y T (Q−1 − CB1SBT
1 CT )−1Y ≤ tx (10.18b)

UTRU ≤ tu (10.18c)

UTBT
2 T −1B2U ≤ tδ (10.18d)

The most efficient way to implement the constraint (10.18b) is probably in the
original LMI format.3 (

tx (C(Axk|k + B0U))T

? Q−1 − CB1SBT
1 CT

)
� 0 (10.19)

The control cost constraint (10.18c) can be implemented as a second order cone
constraint ∥∥∥∥2R1/2U

1− tu

∥∥∥∥ ≤ 1 + tu (10.20a)

The third constraint (10.18d) requires a bit more thought. Of course, one simple
solution is to apply a Schur complement and go back to an LMI.(

tδ UTBT
2

B2U T

)
� 0 (10.21)

However, it can be implemented more efficiently. To begin with, note that the block
diagonal structures of T and B2 allow the following expansion of the left-hand side
of (10.18d).

UTBT
2 T −1B2U =

N−1∑
j=0

uT
k+j|kBT

2 (τj+1I)−1B2uk+j|k (10.22)

Add an upper bound on the terms in the sum (redefine the scalar tδ to a vector of
length N instead, tδ ∈ R

N )

uT
k+j|k

BT
2 B2

τj+1
uk+j|k ≤ tδj+1 (10.23)

3The constraint is referred to as a matrix fractional constraint in the literature (Nesterov and
Nemirovskii, 1993; Lobo et al., 1998). These constraints can in some cases be rewritten to second
order cone constraints. The problem we have does however not seem to fulfill the requirements
for this transformation to be applicable.
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Multiply with the positive scalar τj to obtain a so called rotated Lorentz cone
constraint (sometimes referred to as a hyperbolic constraint (Lobo et al., 1998))∥∥B2uk+j|k

∥∥2 ≤ tδj+1τj+1 (10.24)

This can easily be shown to be equivalent to the following second order cone con-
straint ∥∥∥∥ 2B2uk+j|j

tδj+1 − τj+1

∥∥∥∥ ≤ tδj+1 + τj+1 (10.25)

If we once again summarize our results, we find that a more efficient formulation
of the problem (10.16) is given by

min
U,tx,tu,tδ,τ,κ

tx + tu +
∑N

j=1 tδj

subject to
(

tx (C(Axk|k + B0U))T

? Q−1 − CB1SBT
1 CT

)
� 0∥∥∥∥2R1/2U

1− tu

∥∥∥∥ ≤ 1 + tu∥∥∥∥ 2B2uk+j|j
tδj+1 − τj+1

∥∥∥∥ ≤ tδj+1 + τj+1

Ex(Axk|k + B0U) + Ωκ ≤ Fx

||B2uk+j|k|| ≤ κj

EuU ≤ Fu

(10.26)

Connections to Nominal MPC

One of the nice features with the proposed solution is that the obtained optimiza-
tion problem can be intuitively interpreted to some extent.

Recall that our optimization program minimized the following expression, with
Y once again denoting the nominal predictions C(Axk|k + B0U),

Y T (Q−1 − CB1SBT
1 CT )−1Y + UTRU + UTBT

2 T −1B2U (10.27)

This means that for fixed T , we are solving a nominal problem with new weights

Q ← (Q−1 − CB1SBT
1 CT )−1 (10.28a)

R ← R+ BT
2 T −1B2 (10.28b)

Hence, the difference is, to begin with, the additional weight BT
2 T −1B2 on the

control sequence. By recalling the block diagonal definition of B2 and T , it follows
that there is an additional weight on uk+j|k proportional to τ−1

j .
The modified state weight is a bit less intuitive to analyze. However, we begin

by applying the Sherman-Morrison-Woodbury formula to obtain

(Q−1 − CB1SBT
1 CT )−1 = Q+QCB1(S−1 − BT

1 CT QCB)−1BT
1 CTQ (10.29)
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For small τ (large S−1), this is approximately equal to Q + QCB1SBT
1 CTQ. Of

course, these calculations only hold if the optimal τ indeed is small. However, the
purpose of these calculations is only to give a flavor of what happens. The control
weight is inversely proportional to τ , while the output weight is proportional to τ
(this can be seen immediately in (10.28a), but the first order expression is more
intuitive).

Important to realize is that both weights are increased, i.e., the regularization
of the MPC solution is not done merely by, e.g., increasing the control weight and
effectively turning of the controller. We can also see that the adjustment of the
weights depend on both the system model and the original weights. Moreover,
the new output weight Q will not be block diagonal anymore, i.e., cross terms are
introduced in the output weight. The control weight R will however remain block
diagonal.

10.3 Extensions

For the proposed framework to be interesting, it is important that standard exten-
sions to nominal MPC can be applied also to our minimax controller. Indeed, this
is the case, as we will show with a couple of examples.

First, it should be mentioned that feedback predictions are impossible in the
proposed minimax controller. The reason is that feedback predictions destroy the
main feature exploited in this chapter; linearity between the uncertainty and pre-
dicted states. Linearity enabled the compact expression for the predictions (10.4)
and the analytic maximization of the uncertainty in the state constraints (10.11).
This drawback is not a particular problem for our solution, but holds for all ap-
proaches that exploit the linearity, e.g., (Campo and Morari, 1987; Zheng and
Morari, 1993; Oliviera et al., 2000).

10.3.1 Output Gain Uncertainty

Changing the location of the uncertainty to the output gain can be done without
much effort. Consider a system of the form

xk+1 = Axk + Buk (10.30a)
yk = (C0 + C1∆kC2)xk ||∆k|| ≤ 1 (10.30b)

Defining matrices C0 = ⊕N
j=1C0, C1 = ⊕N

j=1C1 and C2 = ⊕N
j=1C2 gives the pre-

diction Y = (C0 + C1∆NC2)(Axk|k + BU). All results in the chapter can then be
recovered by merely replacing C(Axk|k + B0U) with C0(Axk|k + BU), B2U with
C2(Axk|k +BU) and B1 with C1. Some minor changes have to be done to take care
of output constraints, but the details are omitted for brevity.
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10.3.2 Disturbances and Estimation Errors

The results in this chapter can be extended to incorporate the material in Chapter
5 and 6. Adding external disturbances to the model yields

Y = C(Axk|k + B0U + B1∆NB2 + GW ) (10.31)

Combining (5.24), (5.29), (10.13) and (10.16) leads to the following semidefinite
program to solve the semidefinite relaxation of a minimax problem over the uncer-
tainties ∆N and W (with TW , S∆ and T∆ being the diagonal matrices defined by
the vectors τW and τ∆, obtained during the relaxation procedure)

min
U,t,τW ,τ∆,κ

t

subject to


t − 1T τW (C(Axk|k + B0U))T UT UT BT

2 0

? Q−1 − CB1S∆BT
1 CT 0 0 (CG)T

? 0 R−1 0 0
? 0 0 T∆ 0
0 ? 0 0 TW


 � 0

Ex(Axk|k + B0U) + Ωκ + γ ≤ Fx

||B2uk+j|k|| ≤ κj+1

EuU ≤ Fu

An ellipsoidal state estimator for this class of systems can be designed using the
theory in, e.g., (El Ghaoui and Calafiore, 1999), hence allowing us to extend the
results to incorporate a bounded state estimation error.

10.3.3 Stability Constraints

The minimax scheme in this chapter suffers from the same problems as the con-
troller in Chapter 5. Due to the sufficient but not necessary nature of the semidef-
inite relaxation, guaranteeing stability turns out to be much harder than in the
nominal case, or in an approach based on the exact minimax solution. See Section
5.3.3 for a more detailed discussion on why the relaxation complicates matters.

Instead of developing a stability theory based on Theorem 4.2, we revert to a
weaker result using explicit contraction constraints. As in Chapter 5, we give a hint
on how stability can be obtained, but the results are overly conservative and only
included for completeness. No state constraints are allowed, and to begin with, an
asymptotically stable open-loop system is assumed.

Theorem 10.2 (Guaranteed stability, open-loop stable systems)
Assume that there exists matrices P, S � 0 such that

AT PA− P � −S (10.32)

Furthermore, X = R
n and 0 ∈ U. Appending the minimax MPC problem (10.16)

with the contraction constraint

xT
k+1|kPxk+1|k − xT

k|kPxk|k ≤ −xT
k|kSxk|k ∀∆k ∈∆ (10.33)

will guarantee asymptotic stability.
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Proof Follows trivially. The assumption (10.32) implies that uk|k = 0 satisfies the
contraction constraint 10.33. Since 0 ∈ U and there are no state constraints, this is
always a feasible solution. The remaining N − 1 control inputs can be chosen arbitrarily
with U ∈ U

N . Asymptotic stability follows from the contraction constraint. 2

Generalization to unstable systems can be done by introducing an additional
constraint on the initial state.

Theorem 10.3 (Guaranteed stability, general systems)
Assume that there exists matrices P, S � 0 and a linear state feedback L such
that

(A + (B0 + B1∆B2L))T P (A + (B0 + B1∆B2L))− P � −S ∀∆ ∈∆ (10.34)

Furthermore, assume X = R
n and Lxk ∈ U ∀xk ∈ EP . Appending the minimax

MPC problem (10.16) with the contraction constraint

xT
k+1|kPxk+1|k − xT

k|kPxk|k ≤ −xT
k|kSxk|k ∀∆k ∈∆ (10.35)

will guarantee asymptotic stability if the initial state satisfies x0|0 ∈ EP .

Proof Follows by induction. Assume the problem was feasible for xk−1|k−1. The con-
traction constraint then guarantees xk|k ∈ EP . The choice uk|k = Lxk|k is feasible with
respect to the control constraints from the assumptions. This choice also satisfies the
contraction constraint (10.35) due to (10.34). Hence, the problem is feasible for xk|k.
Asymptotic stability follows from the contraction constraint. 2

The contraction constraints (10.33) and (10.35) can be incorporated into our
framework by first applying a Schur complement(

xT
k|kPxk|k − xT

k|kSxk|k (Axk|k + (B0 + B1∆kB2)uk|k)T

? P−1

)
� 0 ∀∆k ∈∆

Robust satisfaction of this LMI can be solved using Theorem 3.4. Crucial to note is
that Theorem 3.4 is both sufficient and necessary in this case, since we only have one
unstructured uncertainty. Introduce the scalar multiplier τ , and the semidefinite
relaxation gives (compare (10.6) and (10.7))

xT
k|kPxk|k − xT

k|kSxk|k (Axk|k + B0uk|k)T (B2uk|k)T

? P−1 − τB1B
T
1 0

? 0 τI


 � 0

Adding this LMI to the minimax problem (10.16) will guarantee asymptotic sta-
bility, since the constraint is equivalent to the contraction constraints (10.33) and
(10.35) which always are feasible.

All that is left is to find the matrices P , S and L. This is a standard robust
feedback problem. Multiply (10.34) from left and right with the matrix W = P−1,
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define K = LW , and apply a Schur complement. This gives us the following
uncertain LMI.

W (AW + (B0 + B1∆kB2)K)T W
? W 0
? 0 S−1


 � 0 ∆k ∈∆ (10.36)

Separating certain and uncertain terms, and applying Theorem 3.4 for the single
unstructured uncertainty ∆k gives a necessary and sufficient LMI in W , K and τ




W (AW + B0K)T W (B2K)T

? W − τB1B
T
1 0 0

? 0 S−1 0
? 0 0 τI


 � 0 (10.37)

Satisfaction of the control constraints in EP is solved using the same methods as
in Appendix 5.A and the result is a set of LMIs

(
((fu)i)2 (EuK)i

((EuK)i)T W

)
� 0 (10.38)

A semidefinite program can now be defined to find, e.g., a maximum volume ellip-
soid EP . See Appendix 5.A for a similar result.

10.4 Models with Uncertain Gain

In this section, we will try to convince the reader that the framework with a norm-
bounded uncertainty indeed is a reasonable model. Some extensions are pointed
out and it is briefly discussed how the models can be obtained.

Several Uncertainty Blocks

The framework in this chapter can without too much effort be extended to models
with several uncertainty blocks.

B(∆k) = B0 +
q∑

i=1

Bi
1∆

i
kBi

2, ||∆i
k|| ≤ 1 (10.39)

The only complication with this model is that the stability theory in Section 10.3.3
fail. The reason is that there are several uncertainty blocks in the prediction of
xk+1|k, hence, the semidefinite relaxation of the contraction constraint will not be
necessary for the contraction constraint to be feasible. The extended model can be
used to model some parametric (scalar) uncertainties.
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Example 10.1 (Parametric model)
Consider the following model with scalar parametric uncertainties.

B(∆k) =
(

1 + ∆1
k 2 + ∆1

k + ∆2
k

3 4 + ∆2
k

)
, |∆i

k| ≤ 1 (10.40)

This can be written as

B(∆k) =
(

1 2
3 4

)
+
(

1
0

)
∆1

k

(
1 1

)
+
(

1
1

)
∆2

k

(
0 1

)
(10.41)

Unfortunately, general parametric models cannot be modeled using this type of
model. A simple counter-example is the following model

B(∆k) =
(

1 + ∆k 0
0 1 + ∆k

)
, |∆k| ≤ 1 (10.42)

Since ∆i
k are scalars in the parametric models, the products Bi

1∆
i
kBi

2 all have rank
1. Hence, the uncertainties must enter as rank-1 perturbations.

Approximating Polytopic Models with Norm-bounded Models

An alternative to formulating parametric models in the form (10.39) is to con-
servatively approximate them as a simple norm-bounded model. The following
algorithm has been proposed (Boyd et al., 1994). Assume a polytopic model.

B ∈ Co{B(1), B(2), . . . , B(q)} (10.43)

For fixed x, the matrix B maps x to a vector y

y = Bx ∈ Co{B(1)x,B(2)x, . . . , B(q)x} = Co{y(1), y(2), . . . , y(q)} (10.44)

This set should be contained in the set that x would be mapped to if a norm-
bounded model had been used instead.

y = (B0 + B1∆B2)x, ||∆|| ≤ 1 (10.45)

With η = ∆B2x, this can be written as

y = B0x + B1η (10.46)

The polytopic set is contained if each vertex, B(i)x, is in the set defined by the
norm-bounded uncertainty (which is convex). In other words, for each vertex y(i),
it should be possible to write

y(i) = B0x + B1η, ηT η ≤ xT BT
2 B2x (10.47)
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If B1 is assumed to be invertible, it holds that η = B−1
1 (B(i)−B0)x. The inequality

in (10.47) thus implies

(B(i) −B0)T B−T
1 B−1

1 (B(i) −B0) ≤ BT
2 B2 (10.48)

Define Z = B1B
T
1 and Y = BT

2 B2, and a Schur complement yields

(
Y (B(j) −B0)T

(B(j) −B0) Z

)
� 0 (10.49)

At this point, any size or gain-related measure (Tr(·), || · ||,...) on Z and Y can be
minimized. Notice that the procedure does not uniquely define B1 and B2. As an
example, if B2 is a column-vector, Y will be a scalar and there will be infinitely
many B2 such that BT

2 B2 = Y .

Identifying B0, B1 and B2 from experimental data

Let us just sketch how a model of our type can be obtained from input-output data.
Given a data-set zN = {u1, u2, . . . , uN , y1, y2, . . . , yN}, the problem is to identify
suitable matrices A, B0, B1, B2 and C.

To begin with, identify a nominal model A, B0 and C using any preferred
method (Ljung, 1999), and calculate the output error residuals ek. for this model.

xk+1 = Axk + Buk (10.50a)
yk = Cxk + ek (10.50b)

In a second step, assume that the residuals can be modeled by an FIR model of
order M with a norm-bounded uncertainty.

ek = (B0 + B1∆kB2)Uk, ||∆k|| ≤ 1 (10.51a)

Uk =
(
uT

k−1 uT
k−2 . . . uT

k−M

)T (10.51b)

Identifying a model of this type is outlined in (Calafiore et al., 2002). When this has
been completed, a system with a known A matrix and norm-bounded uncertainty
in the B matrix can be obtained with a suitable parallel connection of the two
linear systems.
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10.5 Simulation Results

To evaluate the performance of the minimax controller, we conclude the chapter
with a couple of numerical experiments.

Example 10.2 (Comparison with nominal MPC)
The system under consideration is a double integrator with an uncertain gain and
zero location.

xk+1 =
(

1 0
1 1

)
xk + Buk

yk =
(
0 1

)
xk

where

B ∈ Co{B(1), B(2), B(3), B(4)} = Co{
(

1.50
0.75

)
,

(
1.50
0.25

)
,

(
0.50
0.75

)
,

(
0.50
0.25

)
}(10.52)

The polytopic model on B has to be converted to a norm-bounded model. This is
done using the approach described in Section 10.4 and gives

B0 =
(

1.0
0.5

)
, B1 =

(
0.61 0
0 0.43

)
, B2 =

(
0.71
0.71

)
(10.53)

Our goal is to control the output yk under the control constraint |uk| ≤ 1. A natural
tuning is thus to put a substantial weight on yk in the performance measure. It
was decided to use Q = 1 and R = 0.01, and a prediction horizon N = 15.
As a first experiment, we test a severely upsetting uncertainty realization.

B =




B(4) uk > 0

B(1) uk ≤ 0

(10.54)

The can be interpreted as a system with a sign dependent gain,

B = B0(1− 0.5sign(uk)) (10.55)

Closed-loop responses for the proposed minimax controller and a nominal MPC
controller, with initial condition x0 =

(
0 5

)T and the uncertainty realization
(10.54), are given in Figure 10.1. The nominal MPC controller fails completely,
while the minimax controller gives a reasonable response, albeit slow.
Of course, the aggressive tuning is doomed to give a nominal controller with poor
robustness. A natural solution is thus to detune the nominal controller. After some
trial and error, R = 100 gives a nominal controller with performance comparable
to the minimax controller. The response is given Figure 10.2, together with the
response for the minimax controller using R = 0.01 as before.
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Figure 10.1: Closed-loop responses for minimax MPC controller and nominal MPC
controller with control weight R = 0.01. The aggressive tuning gives poor robustness in
the nominal controller.
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Figure 10.2: The performance of the nominal controller can be improved by increasing
the control weight to R = 100.

Hence, by tuning the nominal controller carefully, it is possible to obtain acceptable
performance. This might seem to invalidate the work in this chapter. However,
the idea with robust control is that the tuning variables should reflect the control
objective, and robustness should be built-in. Given a new uncertainty model, it
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should not be necessary to redesign the controller.
Finally, Figure 10.3 shows the response for a random uncertainty realization.

5 10 15 20 25 30

−1

0

1

2

3

4

5

k

y
k

Minimax
Nominal (R=100)
Nominal (R=0.01)

Figure 10.3: Closed-loop responses under random uncertainty realization. The price
paid for improved robustness against worst-case uncertainties is a slower system.

A minimax problem with a polytopic uncertainty model can be solved with a
straightforward enumeration technique. For B ∈ Co{B(1), . . . B(q)}, it is readily
shown that the predictions are given by X ∈ Axk|k +Co{B(1)U, . . . ,B(qN )U}, with
B(i) defined as in (2.10), but with different combinations of B matrices along the
prediction horizon. This means that the minimax problem (10.5) can be solved
with (write the problem as a second order cone program to allow for efficient
implementation).

min
U,t

t

subject to

∥∥∥∥∥∥
2Q1/2C(Axk|k + B(i)U)

2R1/2U
1− t

∥∥∥∥∥∥ ≤ 1 + t

EuU ≤ Fu

Ex(Axk|k + B(i)U) ≤ Fx

(10.56)

An interesting question now is how the proposed minimax controller compares to
the exact solution. In other words, how efficient are the semidefinite relaxations
that have been used in this chapter. A simple example illustrates this.
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Example 10.3 (Quality of relaxations)
The system is essentially the same as in Example 10.2, except for a different un-
certainty structure.

B ∈ Co{
(

1.5
0.75

)
,

(
0.5
0.25

)
} (10.57)

Moreover, the horizon was reduced to N = 8. The motivation for these changes
is that the original problem is intractable for an enumerative solution approach (it
would require 415 ' 109 second order cone constraints).
The polytopic model (10.57) can be written as a norm-bounded model with

B0 =
(

1
0.5

)
, B1 =

(
0.5
0.25

)
, B2 = 1 (10.58)

The same numerical experiments as in the previous example were carried out,
using both the proposed minimax controller based on semidefinite relaxations, and
a controller based on the exact solution (10.56). Surprisingly, the responses were
identical in all simulations. The quality measure α = tsdp

texact
(see Example 5.3 for a

detailed explanation) was evaluated during the simulation of the proposed minimax
controller, and the results from one of the simulations is presented4 in Figure 10.4.
The numbers indicate that the upper bound on the worst-case cost, obtained using
the semidefinite relaxation, never was more than 2 percent larger than the true
worst-case cost. Note that the upper bound was tight in 13 out of 15 samples.

4Only the numbers for the first 15 samples are presented. The state had then converged to the
origin, and the values of tsdp and texact were so small that the numerical precision in the solver
SDPT3 made a comparison irrelevant.
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Figure 10.4: The figure shows the ratio between the upper bound on the worst-case
finite horizon cost obtained with the semidefinite relaxation, and the exact worst-case
finite horizon cost. The upper bound is never more than 2 percent larger than the true
value.
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MPC for LFT systems

To incorporate uncertainties in the A matrix, the simple model in Chapter 10 with
an uncertain B matrix is extended to a more general linear fractional transforma-
tion (LFT) model.

The minimax finite horizon problem with a quadratic performance has been
addressed before, but most often with polytopic models (Schuurmans and Rossiter,
2000; Casavola et al., 2000). The motivation for using polytopic models is that the
problem can be solved exactly by straightforward enumeration. The drawback
is that the resulting optimization problems have exponential complexity in the
number of uncertainties and the prediction horizon. LFT models have also been
addressed frequently in the minimax MPC literature, but most often along the
lines of (Kothare et al., 1994) where no finite horizon cost is included. A recent
approach with LFT models and a finite horizon cost is proposed (Casavola et al.,
2002b). The method is related to the work introduced in this chapter, in the sense
that it uses the S-procedure to approximately perform the maximization in the
minimax problem. However, the derived optimization problems in (Casavola et al.,
2002b) are nonconvex, and further off-line approximations and heuristics have to
be introduced to obtain tractable problems.

The novelty of the work introduced in this chapter is that we derive a polyno-
mially growing convex formulation of the (conservative approximation of) minimax
MPC problem with a finite horizon quadratic performance measure.

143
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11.1 Uncertainty Model

The goal in this chapter is to apply minimax MPC to uncertain systems described
by a linear fractional transformation (LFT)

xk+1 = Axk + Buk + Gpk (11.1a)
zk = Dxxk + Duuk + Dppk (11.1b)
pk = ∆kzk, ||∆k|| ≤ 1 (11.1c)
yk = Cxk (11.1d)

A more general model with uncertainties in the C matrix (and a direct term D) can
also be dealt with using the methods in this chapter. However, to obtain a notation
similar to the notation used in earlier chapters, we refrain from these extensions.

The variables pk ∈ R
l and zk ∈ R

q are auxiliary variables generated by the
actual uncertainty ∆k. Eliminating pk and zk reveals a model with both dynamic
uncertainty and gain uncertainty.

xk+1 = (A + G(I −∆kDp)−1∆kDx)xk + (B + G(I −∆kDp)−1∆kDu)uk

yk = Cxk

Of course, it is assumed that the model is well-posed so that the indicated inverse
exists for all ||∆k|| ≤ 1.

The fact that there is uncertainty in the dynamics complicates things severely.
To understand this, consider a prediction of xk+2.

xk+2 = (A + G(I −∆k+1Dp)−1∆k+1Dx)(A + G(I −∆kDp)−1∆kDx)xk + . . .

The uncertainties enter the prediction in a highly nonlinear fashion. If there only
would be uncertainty in the gain (Dx = Dp = 0), the prediction would simplify to

xk+2 = A2xk + A(B + G∆kDu)uk + (B + G∆k+1Dx)uk+1

In this case, the uncertainties enter linearly. Due to this, models with uncertainty
in the gain only have been studied rather extensively. Solutions (with varying
level of efficiency and conservativeness) to a number of minimax MPC problems
for systems with uncertain gain have been proposed (Campo and Morari, 1987;
Zheng, 1995; Lee and Cooley, 1997; Oliviera et al., 2000). The linearity is of course
why we managed to develop our minimax controller in Chapter 10.

11.2 LFT Model of Predictions

As we saw earlier, the predictions of xk+j|k depend in a nonlinear fashion on the
future uncertainties ∆N (see Section 10.1 for a definition of ∆N ). By writing the
predictions in an implicit way, it is possible to show that these can be written
as an LFT. Of course, this comes as no surprise since each one-step prediction is
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defined using an LFT, and a multi-step prediction is in principle a series connection
of several LFTs, which also is an LFT (Zhou et al., 1995). However, to easily
incorporate the LFT in our minimax MPC problem we must obtain a compact
expression of this LFT.

To enable the derivation of the LFT model of the predictions, we first introduce
vectorized versions of the auxiliary variables zk+j|k and pk+j|k.

P =
(
pT

k|k pT
k+1|k . . . pT

k+N−1|k
)T

(11.2a)

Z =
(
zT
k|k zT

k+1|k . . . zT
k+N−1|k

)T

(11.2b)

With these variables, the following relationships hold (note that X appears on both
sides of (11.3b)).

Y = CX (11.3a)
X = AX + BU + GP + b (11.3b)
Z = DxX +DuU +DpP (11.3c)

P = ∆NZ (11.3d)

The variables X, U and ∆N and the matrix C are defined as in previous chapters.
The matrices A, B, G, Dx, Du and Dp are defined as (notice the crucial difference
on A, B and G, compared to the notation used in previous chapters)

A =
(

0 0
⊕N−1

j=1 A 0

)
, B =

(
0 0

⊕N−1
j=1 B 0

)
, G =

(
0 0

⊕N−1
j=1 G 0

)
(11.4a)

Dx = ⊕N
j=1 Dx, Du = ⊕N

j=1Du, Dp = ⊕N
j=1Dp (11.4b)

b =
(
xT

k|k 0 . . . 0
)T

(11.4c)

The equations in (11.3) implicitly define X, and it will now be shown how to obtain
an explicit expression for X in terms of U and ∆N . From (11.3b) we have

X = (I −A)−1(BU + GP + b) (11.5)

Insert this into (11.3c)

Z = Dx(I −A)−1(BU + GP + b) +DuU +DpP (11.6)

and insert this expression into (11.3d)

P = ∆N (Dx(I −A)−1(BU + GP + b) +DuU +DpP ) (11.7)

Solve this equation to obtain P

P = (I −∆N (Dx(I −A)−1G +Dp))−1∆N (Dx(I −A)−1(BU + b) +DuU + c)
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Define Ω = (Dx(I−A)−1G+Dp), insert the expression for P into (11.5), and solve
for X.

X = (I −A)−1(BU + b + G(I −∆NΩ)∆N (Dx(I −A)−1(BU + b) +DuU)) (11.8)

This can be written as an LFT

X = X̃ + Λ(I −∆NΩ)−1∆NΨ (11.9)

with the following definitions

X̃ = (I −A)−1(BU + b) (11.10a)

Λ = (I −A)−1G (11.10b)

Ψ = Dx(I −A)−1(BU + b) +DuU (11.10c)

Use (I −∆NΩ)−1∆N = ∆N (I − Ω∆N )−1 and write the LFT as

X = X̃ + Λ∆N (I − Ω∆N )−1Ψ (11.11)

This expression will be used in a minimax MPC problem.

11.3 Minimax MPC

As usual, our goal is solve the quadratic performance minimax MPC problem

min
u

max
∆

∑N−1
j=0 yT

k+j|kQyk+j|k + uT
k+j|kRuk+j|k

subject to uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆
∆k+j|k ∈ ∆

(11.12)

which we vectorize and write as an uncertain program in an epigraph form

min
U,t

t

subject to Y TQY + UTRU ≤ t ∀∆ ∈∆N

U ∈ U
N ∀∆N ∈∆N

X ∈ X
N ∀∆N ∈∆N

(11.13)

Bounding the Performance Measure

Apply a Schur complement on the performance constraint, plug in the definition
of X and separate certain and uncertain terms.

 t (CX̃)T UT

CX̃ Q−1 0
U 0 R−1


+


0

Λ
0


∆N (I − Ω∆N )−1

(
Ψ 0 0

)
+ (?) (11.14)
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This uncertain LMI can be dealt with using Theorem 3.5. The semidefinite re-
laxation gives τ ∈ R

N
+ and the associated matrices S = ⊕N

j=1τiI
l×l and T =

⊕N
j=1τjI

q×q. The sufficient LMI in Theorem 3.5 simplifies to


t (CX̃)T UT ΨT

CX̃ Q−1 − CΛSΛTCT 0 −CΛSΩT

U 0 R−1 0
Ψ −ΩSΛTCT 0 T − ΩSΩT


 � 0 (11.15)

The LMI has almost the structure as the LMIs we derived in Chapter 5 and 10,
so at this point, LFT models do not seem to introduce any additional problems.
However, state constraints are not as efficiently dealt with as in previous chapters.

Robust Constraint Satisfaction

Recall the state constraints, which with our LFT can be written as

Ex(X̃ + Λ∆N (I − Ω∆N )−1Ψ) ≤ Fx ∀∆N ∈∆N (11.16)

Multiplying this expression with 2 and rearranging terms slightly reveals that the
ith constraint can be written in a format suitable for Theorem 3.5.

(2(Fx − X̃))i − (Ex)i(Λ∆N (I − Ω∆N )−1Ψ)− (?) ≥ 0

Application of Theorem 3.5 gives a sufficient condition for robust satisfaction of
the state constraints.(

2(Fx − X̃)i − (Ex)iΛSΛT ((Ex)i)T ΨT − (Ex)iΛSΩT

? T − ΩSΩT

)
� 0 (11.17)

Note that the matrices S and T do not have to be defined using the same multiplier
τ as we have for the relaxation of the performance constraint. Instead, new mul-
tipliers can be introduced for each linear constraint to obtain a less conservative
relaxation.

It should now be obvious that state constraints are much more expensive when
we have an LFT model, than the case with additive disturbances (linear state
constraints were transformed to new linear state constraints), and the model with
uncertain gain (linear state constraints were transformed to new linear state and N
second order cones using N new variables). Now, assuming q linear state constraints
at each time, we are forced to introduce Nq additional LMIs and, if we want to
have an as efficient relaxation as possible, Nq multipliers of dimension N1.

The constraints can be taken care of slightly more efficiently if the constraints
are symmetric, i.e., they can be written as

−Fx ≤ Ex(X̃ + Λ∆N (I − Ω∆N )−1Ψ) ≤ Fx (11.18)
1This is not entirely true. Relaxation of a state constraint on xk+j|k need only q multipliers

of dimension j, since xk+j|k only depends on ∆k+i|k, i < j. However, to keep notation clear, we

omit these details. The result is anyway that we need O(N2q) variables all together
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If we look at each row separately, we can square the constraint to obtain

((Ex)i(X̃ + Λ∆N (I − Ω∆N )−1Ψ))2 ≤ ((Fx)i)2 (11.19)

A Schur complement and separation of certain and uncertain terms yield(
((Fx)i)2 (Ex)iX̃

? 1

)
+
(

0
(Ex)iΛ

)
∆N (I − Ω∆N )−1

(
Ψ 0

)
+ (?) � 0 (11.20)

This time, Theorem 3.5 simplifies to
((Fx)i)2 (Ex)iX̃ ΨT

? 1− (Ex)iΛSΛT ((Ex)i)T −(Ex)iΛSΩT

? ? T − ΩSΩT


 � 0 (11.21)

Hence, we have half as many LMIs and multipliers compared to the case when
symmetry in the constraints is neglected.

Final Problem

At this point, we are ready to summarize our findings and present the main result
of this chapter. A semidefinite relaxation of the minimax problem (11.12) is given
by the following semidefinite program.

min
U,t,τ

t

subject to




t (CX̃)T UT ΨT

? Q−1 − CΛSΛTCT 0 −CΛSΩT

? 0 R−1 0
? ? 0 T − ΩSΩT


 � 0

(11.17) or (11.21)

(11.22)

Notice that we have not explicitly written anything about whether different mul-
tipliers are used for the relaxations of the uncertain constraints. This is a design
issue, and is a way to trade performance for a more efficient implementation.

11.4 Extensions

The framework easily allows extensions, and the most important ones will now be
discussed.

11.4.1 Feedback Predictions

To reduce conservativeness, feedback predictions are vital. Recall the implicit
model we worked with earlier.

X = AX + BU + GP + b (11.23a)
Z = DxX +DuU +DpP (11.23b)
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Incorporating a parameterization U = LX + V gives

X = (A+ BL)X + BV + GP + b (11.24a)
Z = (Dx +DuL)X +DuV +DpP (11.24b)

Repeating the calculations in Section 11.2 gives us an LFT for X and U .(
X
U

)
=
(

X̃

LX̃ + V

)
+
(

Λ
LΛ

)
∆N (I − Ω∆N )−1Ψ (11.25)

with the following definitions

X̃ = (I − (A+ BL))−1(BV + b) (11.26a)

Λ = (I − (A+ BL))−1G (11.26b)

Ψ = (Dx +DuL)(I − (A+ BL))−1(BV + b) +DuV (11.26c)

Ω = (Dx +DuL)(I − (A+ BL))−1G +Dp (11.26d)

It can easily be shown that the semidefinite relaxation (11.15) is changed to


t (CX̃)T V T ΨT

CX̃ Q−1 − CΛSΛTCT 0 −CΛSΩT

V 0 R−1 − LΛSΛTLT −LΛSΩT

Ψ −ΩSΛTCT −ΩSΛTLT T − ΩSΩT


 � 0 (11.27)

Additionally, the control constraints are mapped into state constraints

EuU ≤ Fu ⇔ Eu(LX̃ + V + LΛ∆N (I − Ω∆N )−1Ψ) ≤ Fu (11.28)

These are readily taken care of using the same techniques as in the previous section.
Depending on whether we have asymmetric or symmetric constraints, we obtain(

2(Fu − LX̃ − V )i − (Ex)iLΛSΛTLT ((Ex)i)T ΨT − (Eu)iLΛSΩT

? T − ΩSΩT

)
� 0(11.29)

or 
((Fx)i)2 (Eu)i(LX̃ + V ) ΨT

? 1− (Eu)iLΛSΛTLT ((Eu)i)T −(Eu)iLΛSΩT

? ? T − ΩSΩT


 � 0 (11.30)

For future reference, we define the problem

min
V,t,τ

t

subject to (11.27)
(11.29) or (11.30)
(11.17) or (11.21)

(11.31)

Once again, we stress that the definition of the multipliers τ is rather loose.
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11.4.2 Stability Constraints

Unfortunately, we are still stuck with the main flaw in the framework that prevents
us from using the strong stability theory in Theorem 4.2. See Section 5.3.3 on how
the use of merely sufficient semidefinite relaxations complicates the stability theory.

However, as in the previous chapters, we point out one possible strategy to ob-
tain a control law with guaranteed stability. As before, we use a simple contraction
approach.

Theorem 11.1
Assume there exist a linear feedback uk = Lxk and matrices P, S � 0 such that

xT
k+1Pxk+1 − xT

k Pxk ≤ −xT
k Sxk ∀||∆k|| ≤ 1 (11.32)

Furthermore, Lx ∈ U ∀x ∈ EP and EP ⊆ X. Appending the semidefinite program
(11.31) with the contraction constraint xT

k+1|kPxk+1|k −xT
k|kPxk|k ≤ −xT

k Sxk and

using feedback predictions L = ⊕N
1 L guarantees asymptotic stability if x0|0 ∈ EP .

Proof The result follows by induction. Assume that the problem was feasible for k − 1,
and xk−1|k−1 ∈ EP . The contraction constraint then ensures that xk|k ∈ EP . At time k,
a feasible solution is V = 0. To see this, we recall that this choice gives us xk+j+1|k =
(A + BL)xk+j|k + Gpk+j|k. According to the assumptions, the ellipsoid EP is invariant
with this control law, hence all predictions are contained in EP . From the assumptions, we
also know that all state constraints and control constraints are satisfied with this control.
The contraction constraint is satisfied with uk|k = Lxk|k according to the assumptions on
P and L in (11.32). Finally, asymptotic stability follows immediately from the contraction
constraint. 2

Finding a pair L and P can be done using standard theory on robust linear state
feedback. See Appendix 11.A for details.

The contraction constraint can be taken care of by first noting that the LFT
model (11.1) and uk|k = Lxk|k + vk|k, after eliminating zk|k and pk|k, gives the
following one-step prediction.

xk+1|k = (A + BL)xk|k + Bvk|k + G∆k(I −Dp∆k)−1((Dx + DuL)xk|k + Duvk|k)

Using this together with a Schur complement on (11.32) transforms the contrac-
tion constraint to an uncertain LMI. (for notational purposes, introduce a variable
sk|k = (Dx + DuL)xk|k + Duvk|k)

(
xT

k|kPxk|k − xT
k|kSxk|k ((A + BL)xk|k + Bvk|k)T

? P−1

)
+(

0
G

)
∆k(I −Dp∆k)−1

(
sk|k 0

)
+ (?) � 0 (11.33)
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Since we only have one uncertainty, Theorem 3.5 can be used to obtain an equivalent
condition. To this end, introduce a multiplier τ and the result is our contraction
constraint written as an LMI in τ and vk|k.


xT

k|kPxk|k − xT
k|kSxk|k ((A + BL)xk|k + Bvk|k)T sT

k|k
? P−1 − τGT GT −τGDT

p

? ? τ(I −DpD
T
p )


 � 0(11.34)

11.4.3 Optimized Terminal State Weight

The main drawback of the framework that we have is the lack of necessity in
the semidefinite relaxations. This makes it hard to use Theorem 4.2 and related
methods to obtain a controller with stability guarantees. However, nothing prevents
us from taking a more pragmatic approach and use the ideas to create a controller
without guaranteed stability2, but with very good performance in practice. To this
end, introduce a terminal state weight xT

k+N |kPxk+N |k and an ellipsoidal terminal
state domain XT = EW−1 (the definition with W−1 simplifies the derivation).

min
u,W,P

max
∆

∑N−1
j=0 yT

k+j|kQyk+j|k + uT
k+j|kRuk+j|k + xT

k+N |kPxk+N |k

subject to uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆

xk+N |k ∈ XT ∀∆ ∈∆
∆k+j|k ∈ ∆

(11.35)

For fixed P and W , the extension is straightforward. The quadratic state constraint
is taken care of using a Schur complement and a semidefinite relaxation.

The case when P and W are decision variables in the optimization problem is
more interesting. The idea is to optimize P and W so that xT

k+N |kPxk+N |k is an
upper bound on the worst-case infinite horizon cost when a linear state feedback
controller is used inside the invariant terminal state domain EW−1 (compare with
Theorem 4.2 and the discussion in the end of Section 2.5.1).

Unfortunately, the problem above cannot be solved as stated with free P and
W . Instead, we solve an approximation where we maximize with respect to ∆
independently over the finite horizon performance measure and the terminal state
weight3. This will of course be conservative, but it will allow us to use the basic
ideas in (Kothare et al., 1996).

2The results can be used together with explicit contraction constraints to guarantee stability.
The extension is straightforward but omitted for brevity. The important feature here is the
incorporation of optimized terminal state weights.

3We replace maxx(f(x) + g(x)) with maxx f(x) + maxx g(x)
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Introducing a standard vectorized notation and epigraph formulation yields

min
U,t,γ

t + γ

subject to Y TQY + UTRU ≤ t ∀∆ ∈∆N

xT
k+N |kPxk+N |k ≤ γ ∀∆ ∈∆N

xT
k+N |kW−1xk+N |k ≤ 1 ∀∆ ∈∆N

U ∈ U
N ∀∆N ∈∆N

X ∈ X
N ∀∆N ∈∆N

(11.36)

The idea in (Kothare et al., 1996) is to assume that a linear state feedback controller
uk+j|k = Lxk+j|k is applied beyond the finite horizon4. The worst-case infinite
horizon cost using this control law is bounded by xT

k+N |kPxk+N |k. Furthermore,
all state and control constraints are assumed to hold in the terminal state domain
EW−1 , and EW−1 is invariant with respect to the linear feedback controller and the
uncertainties.

Following the ideas in (Kothare et al., 1996) gives us a sufficient condition on
P , W and L for this to hold. The result is a set of LMIs in the variables γ, W and
K, and a scalar multiplier τ ∈ R+


W (AW + BK)T WCT KT (DxW + DuK)T

? W − τGGT 0 0 −τGDT
p

? 0 γQ−1 0 0
? 0 0 γR−1 0
? ? 0 0 τ(I −DpD

T
p )


 � 0 (11.37a)

(
((fu)i)2 (EuK)i

((EuK)i)T W

)
� 0 (11.37b)(

((fx)i)2 (Ex)i

((Ex)i)T W

)
� 0 (11.37c)

The derivation follows easily from (Kothare et al., 1996) and can be found in
Appendix 11.B

The proof relies upon the (conservative) parameterization W = γP−1. With
this reduced degree of freedom, the bound on the infinite horizon cost and the
terminal constraint are jointly taken care of with one uncertain LMI(

1 xT
k+N |k

xk+N |k W

)
� 0 ∀∆N ∈∆ (11.38)

A slight notational problem now is that xk+N |k is not defined in X. However, all
we have to do is to define the matrices A, B and so on for the horizon N + 1, and
extract the last n rows. Doing this gives us (compare notation with (11.11)).

xk+N |k = x̃k+N |k + ΛN∆N (I − ΩN∆N )−1ΨN (11.39)
4Note though that the horizon was N = 0 in (Kothare et al., 1996)
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The uncertain LMI (11.38) can now readily be written as an LMI with LFT un-
certainty. Application of Theorem 3.5 gives a new set of multipliers τ ∈ R

N+1
+ ,

related matrices S and T , and a sufficient condition for (11.38) to hold.
1 x̃T

k+N |k ΨT
N

? W − ΛNSΛT
N −ΛNSΩT

N

? ? T − ΩNSΩT
N


 � 0 (11.40)

To summarize, we have the following problem.

min
V,t,τ,γ,W,K

t + γ

subject to (11.15) or (11.27)
(11.37)
(11.40)

(11.17) or (11.29)

(11.41)

Note that the methods used to derive the LMIs for the terminal state cost and
terminal state weight are based on ellipsoidal calculus. As stated earlier, ellipsoidal
calculus is best suited when we have symmetric constraints. For that reason, only
those alternatives are stated in the optimization problem. The alternatives in the
problem correspond to whether feedback predictions are used or not. Notice also
that we have only included one set of multipliers τ . Of course, different multipliers
can be used for the performance constraint, state and control constraints, the
terminal state constraint and the LMIs related to W and K. Again, this is a
trade-off between control performance and computational efficiency.

11.5 Simulation Results

The example is taken from (Schuurmans and Rossiter, 2000)

Example 11.1 The system is given by

xk+1 =
(

1 0.1
0 1.1 + 0.1δk

)
+
(

0
0.0787

)
uk, |δk| ≤ 1

yk =
(
1 0

)
This can be written as an LFT with

A =
(

1 0.1
0 1.1

)
, B =

(
0

0.0787

)
, G =

(
0

0.1

)
, Dx = 1, Du = 0, Dp = 0

The task is to design a minimax controller with Q = 1 and R = 0.01, subject to
the control constraint |uk| ≤ 2. The initial condition is x0 =

(
1 0

)T
As a first experiment, we implement the minimax controller (11.41) without any
feedback predictions, for horizons N = 0, 1, 3 and 5.
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To compare our results with those reported in (Schuurmans and Rossiter, 2000),
we use the same uncertainty realization, δk = − sin(0.1k). The system is simulated
for k = 0, . . . , 50 and the accumulated cost

∑50
k=0 yT

k Qyk + uT
k Ruk is calculated.

Note that the case N = 0 corresponds to the controller in (Kothare et al., 1996).
The CPU-time used for this controller will be used as a reference when we evaluate
the computational efficiency of our semidefinite relaxations. The results are given
in Table 11.1 and Figure 11.1.

Horizon Accumulated cost Relative CPU-time
0 18.3 1
1 10.8 1.5
3 9.0 1.9
5 12.6 2.6

Table 11.1: The table shows the performance of the minimax controller for a number of
different horizons. Note that the performance deteriorates for N = 5. The reason is the
absence of feedback predictions.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

k

y
k

N=0
N=1
N=3
N=5

Figure 11.1: Step-responses for minimax controller without feedback predictions. Us-
ing a finite horizon cost makes the controller less conservative, but the lack of feedback
predictions seems to limit the effectiveness of using a long horizon.

Already a horizon N = 1 gives a substantial performance improvement compared
to the case N = 0. From a computational point of view, we see that the overhead
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of using a longer horizon is modest. The scheme in (Schuurmans and Rossiter,
2000), based on enumeration, was reported to give a 40-fold increase in CPU-time
for the case N = 5, compared to N = 0. This sounds reasonable since there are
25 different uncertainty realizations. The controller in (Schuurmans and Rossiter,
2000) obtained an accumulated cost of 8.8 for N = 5 (with feedback predictions).
Our poor performance for N = 5 is due to the absence of feedback predictions. As
a second test, we employ feedback predictions, with L chosen as an LQ controller
calculated with Q = 1, R = 0.01, and the nominal model A.
When we use feedback predictions, the control constraints are mapped into state
constraints which are taken care of using the semidefinite relaxations (11.30). There
is a trade-off between quality in the relaxations, and the number of variables we
introduce. One approach is to use the same multipliers on all control constraints.
This scheme will be called the cheap version. Another approach is to use different
multipliers on each constraint. We will denote this approach the full version.
With feedback predictions, a longer horizon can be used. We perform simulations
with N = 1, 3, 5, 10 and 15, using the two approaches described above to define
the multipliers.

Horizon Accumulated cost Relative computation time
1 (cheap) 10.7 1.6
3 (cheap) 9.1 1.9
5 (cheap) 9.0 2.6
10 (cheap) 9.6 7.4
15 (cheap) 10.1 23.1

1 (full) 11.0 1.6
3 (full) 9.0 2.0
5 (full) 8.7 2.8
10 (full) 8.5 8.7
15 (full) 8.5 22.6

Table 11.2: The table shows the performance of the minimax controllers for a number
of different horizons when feedback predictions are used. The label cheap means that one
set of multipliers is used for all semidefinite relaxations of control constraints, whereas
full denotes that separate multipliers are introduced for each constraints.

From Table 11.2, we see that the cheap parameterization is rather competitive in
terms of performance. However, surprisingly, the number of variables used for the
semidefinite relaxations does not seem to be that important. The CPU-time used
is almost the same for the two approaches. Note however that this effect most
likely depends on which solver is used.
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Figure 11.2: Minimax controllers using feedback predictions. The use of a finite horizon
cost improves the performance, and the feedback predictions are successful in reducing
conservativeness, hence making long horizons applicable.



Appendix

11.A Contraction Constraint

Inserting uk = Lxk and eliminating the variables pk and zk gives

xk+1 = ((A + BL) + G(I −∆kDp)−1∆k(Dx + DuL))xk (11.A.42)

The contraction constraint (11.32) thus holds if

((A + BL) + G(I −∆kDp)−1∆k(Dx + DuL))T P (?)− P � −S (11.A.43)

Multiply from left and right with W = P−1, define K = LP−1, and apply a Schur
complement.

W (AW + BK + G(I −∆kDp)−1∆k(DxW + DuK))T W
? W 0
? 0 S−1


 � 0

(11.A.44a)

Application of Theorem 3.5 gives an LMI in W , K and τ .


W (AW + BK)T W (DxW + DuK)T

? W − τGGT 0 −τGDT
p

? 0 S−1 0
? ? 0 τ(I −DpD

T
p )


 � 0 (11.A.45a)

Sufficient conditions for Lx ∈ U and EP ∈ X are (see Appendix 5.A)(
((fu)i)2 (EuK)i

((EuK)i)T W

)
� 0 (11.A.46a)(

((fx)i)2 (Ex)i

((Ex)i)T W

)
� 0 (11.A.46b)

The LMIs above can be used to optimize, e.g., the volume of the ellipsoid EP . See
Appendix 5.A.
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11.B Terminal State Weight and Constraints

The problem is to find matrices W, P � 0 and a matrix L such that xT
k Pxk ≤ γ is

an upper bound on
∑∞

j=0 yT
k+jQyk+j+uT

k+jRuk+j when the control law uk = Lxk is
used. Moreover, the control law should be feasible with respect to all constraints in
the invariant ellipsoid EW−1 = {x : xT W−1x ≤ 1}, i.e., xk+1 ∈ EW−1∀xk ∈ EW−1 ,
Lx ∈ U ∀x ∈ EW−1 and EW−1 ⊆ X.

The function xT
k Pxk is an upper bound on the worst-case infinite horizon cost

if

xT
k+1Pxk+1 − xT

k Pxk ≤ −yT
k Qyk − uT

k Ruk ∀||∆k|| ≤ 1 (11.B.47)

Use (11.A.42) and this constraint is equivalent to the following matrix inequality.

((A + BL) + G(I −∆kDp)−1∆k(Dx + DuL))T P (?)− P � −CT QC − LT RL

Multiply from left and right with γP−1. Introduce the (reduced degree of freedom)
parameterization W = γP−1 and define K = LW . A Schur complement yields


W (AW + BK + G(I −∆kDp)−1∆k(DxW + DuK))T WCT KT

? W 0 0
? 0 γQ−1 0
? 0 0 γR−1


 � 0

(11.B.48a)

Application of Theorem 3.5 gives an LMI in W , K, γ and τ .


W (AW + BK)T WCT KT (DxW + DuK)T

? W − τGGT 0 0 −τGDT
p

? 0 γQ−1 0 0
? 0 0 γR−1 0
? ? 0 0 τ(I −DpD

T
p )


 � 0 (11.B.49a)

Invariance of EW−1 follows immediately from the contraction constraint (11.B.47).
Finally, constraint satisfaction EuLx ≤ fu and Exx ≤ fx in EW−1 follow from

Appendix 5.A. (
((fu)i)2 (EuK)i

((EuK)i)T W

)
� 0 (11.B.50a)(

((fx)i)2 (Ex)i

((Ex)i)T W

)
� 0 (11.B.50b)
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Summary and Conclusions on

minimax MPC

The previous chapters have introduced a number of approaches to incorporate
uncertainty in MPC. It has been advocated that semidefinite relaxations enable
a general framework to cope with finite horizon minimax MPC problems with
quadratic performance measures. To summarize, we have

• a unified framework for a number of uncertainty models.

• methods to deal with a quadratic performance measure.

• algorithms with polynomial time complexity.

On the other hand, the proposed algorithms come with a number of drawbacks and
problems. These include

• a weak stability theory.

• solutions require semidefinite programming.

• state estimation a patchwork.

Nevertheless, it is our hope that the material in the thesis has pushed the frontier
on minimax MPC one step further.
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12.1 Future Work and Extensions

The material in this thesis is only a first study on how semidefinite relaxations can
be used to deal with uncertainty in MPC. A number of extensions and possible
future research directions are listed below.

12.1.1 State Estimation

The state estimation procedure in Chapter 6 can be regarded as a patchwork in
some sense. The problem is that it solves the estimation problem point-wise in time.
A more natural way to incorporate the estimation problem in the minimax MPC
framework is to solve the dual estimation problem over a finite horizon backwards
in time, along the lines of (Michalska and Mayne, 1995) and (Rao et al., 2000).

12.1.2 Quality of Relaxations

Numerical experiments have indicated that the semidefinite relaxations are efficient
and give an upper bound on the worst-case cost close to the true value. There are
results available on the quality of semidefinite relaxations (Ben-Tal and Nemirovski,
1998), and it would be interesting to see what these results, and similar calculations,
can tell about our relaxations.

12.1.3 A Gain-scheduling Perspective

The step from robust control to robust gain-scheduling is not far. The difference
is essentially that a gain-scheduled controller can measure the uncertainty on-line
and compensate for it (Rugh and Shamma, 2000).

Extending the material in Chapter 5 and 7 to incorporate measurable dis-
turbances is straightforward. In Chapter 5, feedback predictions are changed to
uk+j|k = Lxk+j|k + Mwk+j|k + vk+j|k for some suitably defined feedforward ma-
trix M . The material in Chapter 7 is easily extended to cope with measurable
disturbances by using the parameterization

U = LW + V (12.1a)

L =




L00 0 . . . 0
L10 L11 . . . 0
...

...
. . .

...
L(N−1)0 L(N−1)1 . . . L(N−1)(N−1)


 (12.1b)

Of course, the semidefinite relaxation is only performed with respect to the uncer-
tainties

(
wk+1|k, . . . , wk+N−1|k

)
since wk|k is measured. Incorporating measurable

disturbances in Chapter 5 and 7 can be interpreted as a robust feedforward struc-
ture.
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Exploiting measured uncertainties in Chapter 11 gives a gain-scheduled con-
troller. Consider the following parameterization of the control law in Chapter 11.

uk+j|k = Lxk+j|k + Mpk+j|k + vk+j|k (12.2)

The new predictions are given by (M = ⊕N
j=1M)

X = (A+ BL)X + BV + (G + BM)P + b (12.3a)
Z = (Dx +DuL)X +DuV + (Dp +DuM)P (12.3b)

P = ∆NZ (12.3c)

This system of equations can easily be solved and the result is an LFT description
of X that can be used immediately in the framework of Chapter 11.

A more advanced gain-scheduled controller in an LFT framework typically looks
like (Packard, 1994)

uk = Lxk + Mp̃k (12.4a)
z̃k = Fxk + Kp̃k (12.4b)
p̃k = ∆kz̃k (12.4c)

Incorporating this in our framework would be very interesting. Since gain-scheduled
controllers in an LFT framework are used to control uncertain nonlinear systems, it
would allow us to develop gain-scheduled MPC for constrained uncertain nonlinear
systems.

12.1.4 Uncertainty Models

For simplicity, most uncertainties in this thesis have been assumed unstructured.
Extending the ideas to structured uncertainty models is straightforward. Consider
for example the models in Chapter 10 and Chapter 11. A structured model of ∆
can be included by defining matrices S and T as S = ⊕N

j=1Sj and T = ⊕N
j=1Tj ,

where the matrix multipliers S and T commute with the uncertainty (El Ghaoui
et al., 1998)

S∆ = ∆T ∀∆ ∈∆ (12.5)

A similar extension involves time-invariant models. This can also be addressed,
since time-invariance essentially defines a structure on ∆N . The details are omitted
for brevity.

The only problem with these extensions is that many results in the thesis exploit
the unstructured property of the uncertainties. This includes efficient incorporation
of robust state constraints in Chapters 5, 6 and 10, and the stability constraints in
Chapter 5, 10 and 11.
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12.1.5 Off-line Calculation of Multipliers

It can easily be shown that the semidefinite relaxations in this thesis are quadratic
and second order cone programs for fixed multipliers τ (see Section 10.2.1 for an
example). The intriguing question is if this can be exploited in any way. One
approach could be to calculate suitable multipliers off-line. Of course, this leads
to a hard off-line problem: how to find suitable multipliers that work well for all
states?

12.1.6 Nominal vs. Worst-case Performance

Control is inherently a multi-objective optimization problem. In our setting, the
conflicting performance measures are nominal performance and worst-case perfor-
mance.

The standard way to obtain a (Pareto optimal) solution is to scalarize the multi-
objective problem (Boyd and Vandenberghe, 2002). In our case, this means that
we introduce a weight λ ∈ [0, 1] and minimize a weighted sum of the nominal and
worst-case performance.

min
twc,tnom,u

λtwc + (1− λ)tnom

subject to
∑N−1

j=0 yT
k+j|kQyk+j|k + uT

k+j|kRuk+j|k ≤ twc ∀∆ ∈∆∑N−1
j=0 yT

k+j|kQyk+j|k + uT
k+j|kRuk+j|k ≤ tnom (For ∆ = 0)

uk+j|k ∈ U ∀∆ ∈∆
xk+j|k ∈ X ∀∆ ∈∆

This problem can readily be solved using the methods introduced in this thesis.
The only difference is the nominal performance constraint. Since this is a quadratic
constraint, it can easily be written as a second order cone constraint, and be in-
cluded in any of the developed algorithms.

Figure 12.1 shows a trade-off curve for the MPC problem in Example 10.2.
The curve is calculated using 100 different values on λ ranging from 0 to 1. The
figure shows that a worst-case minimax controller reduces the worst-case cost with
a factor of 25. The price paid is a 3-fold increase in nominal cost. The important
thing to see in the figure however is the steep decrease in worst-case cost to the
left in the figure. Allowing a nominal performance loss of, say, 30 percent yields a
5-fold decrease in worst-case cost.
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Figure 12.1: Trade-off curve between nominal cost and worst-case cost.
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Part III

Nonlinear MPC
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13

Nonlinear MPC

This chapter changes focus entirely compared to the first part of the thesis. While
the previous chapters have been devoted to robustness in uncertain constrained
discrete-time linear systems, we now consider nominal stability in unconstrained
nonlinear continuous-time systems instead. Extending the basic ideas and theo-
ries in linear MPC to nonlinear systems is straightforward conceptually, but a lot
of work is required to obtain actual constructive results that can be used in an
implementation.

The main result in this chapter is an MPC algorithm with guaranteed stability
for unconstrained nonlinear systems. The algorithm is an extension of methods
that use a control Lyapunov function to define the terminal state weight in MPC
algorithms with guaranteed stability (Chen, 1997; Primbs, 1999; Jadbabaie, 2000;
Fontes, 2001). The novelty lies in a weaker assumption on the set of admissible
control Lyapunov functions.

The proposed algorithm can be extended to incorporate control and state con-
straints, but the central idea is much more clear when applied to unconstrained
systems. Note that MPC for unconstrained systems is an essentially irrelevant topic
in the linear case, since the LQ controller solves the problem. This is not the case
for nonlinear systems since no explicit solutions are available for the underlying
optimal control problem.
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13.1 Nonlinear MPC

The class of systems addressed in this chapter is continuous-time unconstrained
nonlinear systems.

ẋ(t) = f(x(t), u(t)) (13.1)

Technical details on f(x(t), u(t)) are put aside for the moment, and will instead be
introduced as assumptions in the forthcoming stability theorem.

The underlying goal in MPC is to find a feedback law that minimizes an infinite
horizon performance measure.

J∞ =
∫ ∞

0

`(x(τ), u(τ)) dτ (13.2)

Finding the optimal feedback law is in general an intractable problem since it
requires the solution of a nonlinear partial differential equation, the Hamilton-
Jacobi-Bellman (HJB) equation. It was early recognized (Lee and Markus, 1968)
that a natural way to overcome this is to resort to a numerical solution, i.e., to
continuously minimize the integral on-line. In order to do this, the infinite horizon
has to be truncated. The performance measure used on-line is

J(x(t), ut) =
∫ t+T

t

`(xt(τ), ut(τ)) dτ (13.3)

In (13.3), we introduced the sought control trajectory ut(τ), τ ∈ [t, t + T ], defined
at time t. The control trajectory gives the simulated state trajectory xt(τ), satisfy-
ing system dynamics ẋt(τ) = f(xt(τ), ut(τ)) and the initial condition xt(t) = x(t).

The feedback law is defined in standard MPC manner as1

u(t) = u∗
t (t) (13.4a)

u∗
t = arg min

ut

J(x(t), ut) (13.4b)

Although this might seem like a simple and sound way to define a feedback law,
it turns out that the control law can destabilize the system, just as in the linear
discrete-time case. Fortunately, there are ways to guarantee stability.

13.2 Stability in Nonlinear MPC

The first step towards stability is to add a terminal state weight.

J(x(t), ut) =
∫ t+T

t

`(xt(τ), ut(τ)) dτ + V (xt(t + T )) (13.5)

It is straightforward to derive a sufficient condition on the weight V (x) to guarantee
stability. The stability results in Theorem 2.1 can be extended to nonlinear systems

1A ∗ will be used throughout this chapter to denote optimality in an optimal control problem.
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and a typical result is the following constraints on V (x) and `(x, u) (some technical
assumptions are omitted for brevity). See, e.g., (Mayne et al., 2000) for details and
a proof.

Theorem 13.1 (Stabilizing MPC)
Suppose the following assumptions hold for a nominal controller k(x), a terminal
state weight V (x) and performance measure `(x, u).

A1. ẋ(t) = f(x(t), u(t))

A2. V (0) = 0, V (x) > 0 ∀ x 6= 0

A3. `(x, u) > 0 ∀ (x, u) 6= 0

A4. Vxf(x, k(x)) ≤ −`(x, k(x))

An MPC controller based on the performance measure (13.5) will guarantee asymp-
totic stability.

The theorem essentially states that the function V (x) should be an upper bound
on the tail of the truncated integral. The constraint in Assumption A4,

Vxf(x, k(x)) ≤ −`(x, k(x)) (13.6)

means that the function V (x) is a Lyapunov function for the system ẋ = f(x, k(x)).
Integrating this expression yields∫ ∞

t

`(x(τ), u(τ)) dτ ≤ V (x(t)) (13.7)

A related interpretation can be given in terms of the value (or optimal return)
function of the infinite horizon problem. The optimal feedback law is given by the
solution to the HJB equation. This control law is recovered in MPC if the terminal
state weight is identical to the value function of the infinite horizon problem. For
this to hold, the HJB equation states that (see any text on optimal control theory,
e.g., (Lee and Markus, 1968))

min
k(x(t))

`(x(t), k(x(t))) + Vxf(x(t), k(x(t))) = 0 (13.8)

Calculating the optimal terminal state weight V (x) thus requires the solution of a
nonlinear partial differential equation. The a priori chosen terminal state weight
V (x(t)) replaces the equality constraint in the HJB equation by an inequality, and
uses a suboptimal controller k(x) instead. An in-depth look at the connections
between the terminal state weight in MPC and the value function of the infinite
horizon problem can be found in (Primbs, 1999).

Theorem 13.1 is deceptively simple. The MPC problem defined by the theorem
is almost as hard as the original infinite horizon problem, since we have to find the
controller k(x) and the terminal state weight V (x).
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Methods to derive suitable k(x) and V (x) are essential for a constructive sta-
bility theory in nonlinear MPC. Locally admissible k(x) and V (x) are relatively
easy to construct, and this motivates an extension of Theorem 13.1 (Mayne et al.,
2000).

Theorem 13.2 (Stabilizing MPC with terminal state constraints)
Suppose the following assumptions hold for a nominal controller k(x), a terminal
state weight V (x), a performance measure `(x, u) and the terminal state domain
XT = {x : V (x) ≤ γ}.

A1. ẋ(t) = f(x(t), u(t))

A2. V (0) = 0, V (x) ≥ 0 ∀ x 6= 0

A3. `(x, u) > 0 ∀ (x, u) 6= 0

A4. Vxf(x, k(x)) ≤ −`(x, k(x)) ∀x ∈ XT

An MPC controller based on the performance measure (13.5) and a terminal state
constraint xt(t+T ) ∈ XT guarantees asymptotic stability if the problem is initially
feasible.

This theorem can be used to categorize most stability results in nonlinear MPC.
Let us briefly review the central ideas in the literature. For a more thorough survey,
the reader is referred to (Mayne et al., 2000).

A simple and elegant approach to guarantee stability is to add a terminal state
equality constraint x∗

t (t + T ) = 0. This can be interpreted as a terminal state
weight infinite everywhere except in the origin. This approach was proposed, in the
context of linear continuous-time systems, in (Kwon and Pearson, 1977) and later
generalized to nonlinear systems and thoroughly analyzed in (Keerthi and Gilbert,
1988) (for discrete-time systems) and (Mayne and Michalska, 1990) (continuous-
time systems).

The numerically complicating terminal state equality was relaxed in (Michalska
and Mayne, 1993) and a dual-mode scheme was proposed. The idea was to calcu-
late, off-line, a linear controller that asymptotically stabilized the nonlinear system
locally in an ellipsoid EP . The ellipsoid was used for two purposes. To begin with,
it defined a terminal state constraint in the MPC controller. By using the optimal
finite horizon cost as a Lyapunov function, it was possible to show that the state
eventually reaches EP when the MPC controller is used. By switching to the linear
control law when EP is reached, asymptotic stability follows immediately.

Actually switching to the linear feedback controller when the terminal state
domain is reached is not necessary, and the theoretical trick needed to show this is
a terminal state weight (Parsini and Zoppoli, 1995; Chen, 1997). The main idea,
generalizing ideas in (Michalska and Mayne, 1993; Rawlings and Muske, 1993)
was to derive an ellipsoidal terminal state constraint x∗

t (t + T ) ∈ EP , a linear
controller k(x) and a quadratic terminal state weight αxt(t+T )Pxt(t+T ) satisfying
Assumption A4. The design was based on the linearized system. A more general
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scheme using a nonlinear controller k(x) and a possibly non-quadratic terminal
state weight satisfying Assumption A4 was proposed in (Chen, 1997).

The ideas with a nonlinear nominal controller k(x) in (Chen, 1997) have recently
been generalized and studied in a control Lyapunov function framework (Primbs,
1999; Jadbabaie, 2000; Fontes, 2001). However, in the design procedure one still
has to find a terminal state weight globally satisfying (13.6), or resort to arguments
based on linearizations and/or additional stability constraints.

13.3 Main Result

We see from the quick review above that there are three main ingredients in the
available approaches; assuming knowledge of a terminal state weight globally satis-
fying (13.6), using arguments based on the linearized system, and adding stabilizing
constraints. The goal in this chapter is to develop a method that use neither of
these ingredients.

Our terminal state weight will be defined using a control Lyapunov function.
(Krstić et al., 1995).

Definition 13.1 (Control Lyapunov function)
A smooth positive definite and radially unbounded function V : R

n → R+ is called
a control Lyapunov function (CLF) if there exist a control law u = k(x) such that

V̇ (x, k(x)) = Vxf(x, k(x)) < 0, ∀x 6= 0

Notice the small but absolutely crucial difference in the requirement on the CLF
compared to the condition (13.6). Of course, assuming knowledge of a CLF is an
essential limitation, but with recent developments in nonlinear control synthesis,
there are many methods available to find such a function. Examples include back-
stepping, feedforwarding, feedback linearization and physically motivated designs.
See, e.g., (Krstić et al., 1995) and (Sepulchre et al., 1997).

The constraint (13.6) shows up in stability analysis of MPC as a sufficient
condition. To be precise, the condition is

V̇ (x∗
t (t + T ), k(x∗

t (t + T ))) + `(x∗
t (t + T ), k(x∗

t (t + T ))) ≤ 0 (13.9)

The algorithm in this chapter is based on the idea that this condition can be
achieved, intuitively, by multiplying ` with some sufficiently small constant λ, since
we know from the design that V̇ (x, k(x)) < 0 and `(x, k(x)) > 0. Use the scaled
performance measure to obtain a modified constraint.

V̇ (x∗
t (t + T ), k(x∗

t (t + T ))) + λ`(x∗
t (t + T ), k(x∗

t (t + T ))) ≤ 0 (13.10)

If (13.10) not holds, λ should be decreased. This motivates introduction of a new
variable λ(t), which can be thought of as a state in the MPC controller, with
dynamics

λ̇(t) ∼ −λ(t)`(x∗
t (t + T ), k(x∗

t (t + T )))− V̇ (x∗
t (t + T ), k(x∗

t (t + T ))) (13.11)
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The finite horizon cost used in the MPC controller is changed to

J(x(t), ut, λ(t)) = λ(t)
∫ t+T

t

`(xt(τ), ut(τ)) dτ + V (xt(t + T )) (13.12)

The problem is now to find an update-law for λ(t) that actually guarantees stability
of the closed-loop system. To do this, we first introduce some assumptions.

A1. ẋ(t) = f(x(t), u(t)), f(0, 0) = 0, f(x, u) continuously differentiable.

A2. `(x, u) > 0 ∀(x, u) 6= 0, `(0, 0) = 0. Furthermore, `(x, u) is twice continuously
differentiable with `xx � 0, `uu � 0 and `xu = 0.

A3. V (x) is a global CLF with the continuously differentiable controller k(x).
The linearization ẋ = f(x, k(x)) is asymptotically stable and Vxx � 0.

A4.
∫ t+T

t
`(xt(τ), ut(τ)) dτ →∞ for any ut(τ) when ||x(t)|| → ∞.

A5. There exist a minimizing argument u∗
t of (13.12) for all x(t) and λ(t) > 0.

A6. J(x(t), u∗
t , λ(t)) is continuously differentiable w.r.t x(t) and λ(t).

The assumptions stated are those needed to use J(x(t), u∗
t , λ(t)) as a Lyapunov

function. Assumption A5 on existence of a solution implicitly imposes additional
constraints on f(x, u), `(x, u) and V (x). Typical results can be found in, e.g.,
Theorem 6.2 in (Berkovitz, 1974). Admittedly, Assumption A6 is hard to verify.
The reason for incorporating this assumption is to obtain an intuitive result using
standard Lyapunov theory. For additional discussion on the assumptions, see the
proof of Theorem 13.3 and remarks in the appendix.

With the introduced assumptions, we state the main result of this chapter.

Theorem 13.3 (Stabilizing MPC using control Lyapunov functions)
Suppose (A1-A6) are satisfied and λ(0) > 0. Then the following MPC scheme is
globally asymptotically stabilizing

u(t) = u∗
t (t)

u∗
t = arg min

ut

J(x(t), ut, λ(t))

λ̇(t) =
−λ(t)`(x∗

t (t + T ), k(x∗
t (t + T )))− V̇ (x∗

t (t + T ), k(x∗
t (t + T )))∫ t+T

t
`(x∗

t (τ), u∗
t (τ)) dτ

Proof The proof is rather elaborate and is therefore given in Appendix 13.A 2

Notice that the complexity of the on-line optimal control problem is the same
as for the original problem, i.e., stability is not achieved at the expense of a more
complicated optimization problem. Moreover, the right-hand side of the differ-
ential equation governing λ(t) is easily calculated since both the numerator and
denominator can be obtained from the solution of the optimization problem.
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Important to realize is that the MPC controller is entirely based on nonlinear
components. Local assumptions on f(x, u), k(x) and V (x) are not used in the
synthesis, i.e., in the definition of the on-line optimal control problem, but only used
in the proof of Theorem 13.3. The local assumptions on the Taylor expansions make
the proof more constructive and easier to interpret, but can actually be dispensed
with altogether, as described in Remark 13.A.2.

The novelty in the theorem is the fact that we are able to construct a stabi-
lizing MPC controller using the condition V̇ (x, k(x)) < 0, instead of the standard
assumption V̇ (x, k(x)) ≤ −`(x, k(x). Finding a tuple k(x) and V (x) satisfying the
former condition is a much easier problem, since it holds for any pair (k(x), V (x))
designed using control Lyapunov functions.

For the sake of completeness we extend the theorem to systems with constraints
u(t) ∈ U and x(t) ∈ X.

Corollary 13.1 (Stabilizing MPC using control Lyapunov functions)
Suppose (A1-A6) holds. Furthermore, assume there exist a constant γ > 0 such
that XT = {x : V (x) ≤ γ} ⊆ X and k(x) ∈ U ∀x ∈ XT . Then the following MPC
scheme is globally asymptotically stabilizing if it is initially feasible and λ(0) > 0

u(t) = u∗
t (t)

u∗
t = arg min

ut∈U,xt∈X,xt(t+T )∈XT

J(x(t), ut, λ(t))

λ̇(t) =
−λ(t)`(x∗

t (t + T ), k(x∗
t (t + T )))− V̇ (x∗

t (t + T ), k(x∗
t (t + T )))∫ t+T

t
`(x∗

t (τ), u∗
t (τ)) dτ

Proof See Appendix 13.B. 2

This result is not by far as useful as Theorem 13.3 since it requires calculation
of the parameter γ to construct the terminal state domain. This is a nonconvex
problem in the general case. Moreover, the theorem adds a terminal state constraint
to the optimization problem, making it harder to solve. Adding this artificial
constraint gives a results that essentially recovers a standard approach, such as
(Chen, 1997). The only difference is the dynamic weight λ(t) and the weaker
assumption on V (x).

Before we proceed, we should point out that optimality is not required for the
stability proofs to hold. The proofs are based on an improvement property that
essentially says that it is trivial to construct a feasible solution, and this feasible
solution ensures asymptotic stability. This is a standard feature for the majority
of stability proofs in MPC.
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13.4 Simulation Results

The main result of this chapter is the design approach defined by Theorem 13.3.
Evaluating the performance of this approach is almost an impossible task, since the
performance depends on many ingredients, such as the nonlinear system f(x, u),
the nominal control law k(x), the terminal state weight V (x) and the prediction
horizon T . Hence, no general conclusion can be drawn from the single experiment
conducted below, but it exemplifies how k(x) and V (x) can be derived, and how
the state λ(t) behaves.

Example 13.1 (Nonlinear MPC)
The nonlinear model is taken from (Krstić and Kokotović, 1995) and is a simple
description of a jet engine compressor (modulo some transformations). Physical
considerations are not dealt with in this simple example, so we just state the
nonlinear system.

ẋ1 = − 3
2
x2

1 −
1
2
x3

1 − x2 (13.13a)

ẋ2 = u (13.13b)

The goal is to create an MPC controller with a quadratic performance measure
`(x, u) = xT Qx + uT Ru where Q = I and R = 1. The prediction horizon T is
chosen to 0.5 seconds.
In (Krstić and Kokotović, 1995), a nonlinear control synthesis method called lean
backstepping is applied to derive the control law k(x) = Kx, K = [k1 − k2],
k1 = (c1 + 9

8 )k2, k2 = c1 + c2 + 9
8 . The design parameters for the controller are

c1 > 0 and c2 > 0. The following CLF is obtained when the feedback law is
developed (c0 = c1 + 9

8 ).

V (x) = c0

(
(
c1

2
+

9
16

)x2
1 +

1
2
x3

1 +
1
8
x4

1

)
+

1
2
(x2 − c0x1)2

This CLF can be shown to fulfill

V̇ (x,Kx) ≤ −xT Wx (13.14)

where

W =
[
c0c

2
1 + c2c

2
0 −c0c2

−c0c2 c2

]
� 0 (13.15)

Rather arbitrarily, we select c1 = c2 = 1 to define k(x).
The fact that we have a linear controller k(x), a quadratic performance measure
and a quadratic upper bound bound on V̇ (x,Kx) makes it possible to calculate
a constant λ(t) so that (13.10) is globally satisfied. Inserting the performance
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measure and the upper bound on V̇ (x, k(x)) in (13.10) gives us a sufficient condition
for stability

−xT Wx + λxT (Q + KT RK)x ≤ 0 (13.16)

This condition holds for all x if λ is chosen smaller than the smallest eigenvalue of
(Q+KT RK)−1W . For the parameters used in this example, we find that stability
is guaranteed for λ(t) = 0.09. This corresponds to an MPC controller with the
terminal state weight 1

0.09V (x) and can be considered an implementation of the
algorithms in, e.g., (Chen, 1997; Jadbabaie, 2000; Fontes, 2001). The controller
defined using this MPC scheme will be denoted the standard MPC controller.
The proposed MPC controller with a dynamic λ(t), an MPC controller with fixed
λ(t), i.e., the standard MPC controller, and the backstepping controller k(x) were
implemented. The finite horizon optimal control problems were solved in MAT-

LAB by solving the associated two-point boundary value problem (Lee and Markus,
1968).

Two different initial conditions were studied, x(0) =
(
−2 1

)T and x(0) =
(
2 −1

)T .
The state trajectories are shown in Figure 13.1.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

x
1

x
2

Proposed
Standard (λ=0.09)
Lean backstepping

Figure 13.1: Closed-loop state trajectories from two different initial conditions using
the proposed controller (−), an standard MPC controller with fixed terminal state weight
(−−) and a backstepping controller.

The trajectories alone do not reveal much about the relative performance of the
controllers so the accumulated costs during the simulations,

∫ 5

0
xT (t)x(t) + u2(t) dt,
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were calculated and are reported in Table 13.1.

Controller Initial state Accumulated cost

Proposed MPC
(
−2 1

)T 50.7
Standard MPC

(
−2 1

)T 75.1
Backstepping

(
−2 1

)T 76.4
Proposed MPC

(
2 −1

)T 4.3
Standard MPC

(
2 −1

)T 10.4
Backstepping

(
2 −1

)T 22.9

Table 13.1: Accumulated cost for the three controllers from two different initial states.
The proposed controller is derived using stability arguments only, but performance has
clearly benefited from the relaxed conditions on the terminal state weight in this example.

The proposed MPC controller has clearly improved the performance compared to
the standard MPC controller. An intuitive explanation for the better performance
is that the large fixed terminal state weight used in the standard MPC controller
puts too much emphasis on stability, hence our dynamic choice of λ(t) is indeed
beneficial. Note though, that the main objective here is guaranteed stability.
Finally, Figure 13.2 shows how λ(t) evolved. The state λ(t) changes rapidly in the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

t

λ(t)

x(0)=(−2 1)T

x(0)=(2 −1)T

Figure 13.2: Evolution of the weight λ(t). The weight is not guaranteed to converge to
a stationary value.
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beginning. If this is a problem, this behavior can in some cases be improved upon
by using the extension discussed in Remark 13.A.3 in the appendix. Another way
to address this problem is to initialize λ(0) to a smaller value.
Notice also that λ(t) does not converge to a stationary value. The reason is that
the terminal state weight not is locally consistent with the true infinite horizon
value function. For this example, a better choice would be a terminal state weight
whose Hessian is equal to the solution to the Riccati equation for the associated LQ
problem for the linearized system. Methods to develop locally consistent control
Lyapunov functions are available in the literature, see (Ezal et al., 1997; Löfberg,
2000).



Appendix

13.A Proof of Theorem 13.3

The idea in the proof is to use the optimal finite horizon cost J(x(t), u∗
t , λ(t)),

from now on called J∗(t), as a Lyapunov function. This is a standard strategy in
stability theory for MPC.

The first step is to derive an expression for J∗(t + δ), i.e., the optimal cost
at some future time instant. This will be used to find the derivative of our pro-
posed Lyapunov function, and it will then be shown that J∗(t) satisfies conditions
necessary to prove global asymptotic stability of the closed-loop system.

To begin with, add and subtract terms to the optimal cost.

J∗(t) = λ(t)
∫ t+T

t

`(x∗
t (τ), u∗

t (τ)) dτ + V (x∗
t (t + T ))

= λ(t)
∫ t+T

t

`(x∗
t (τ), u∗

t (τ)) dτ + V (x∗
t (t + T ))

+λ(t + δ)
∫ t+T+δ

t+T

`(x̃t(τ), ũt(τ)) dτ

−λ(t + δ)
∫ t+T+δ

t+T

`(x̃t(τ), ũt(τ)) dτ

+V (x̃t(t + T + δ))− V (x̃t(t + T + δ)) (13.A.17)

Two new variables were introduced above, ũt and x̃t. The first one, ũt, is an
arbitrary control input over the new segment [t + T, t + T + δ]. The corresponding
state trajectory is denoted x̃t.

˙̃xt(τ) = f(x̃t(τ), ũt(τ)), x̃t(t + T ) = x∗
t (t + T ) (13.A.18)

Split the integral
∫ t+T

t
(·) dτ into

∫ t+δ

t
(·) dτ +

∫ t+T

t+δ
(·) dτ . Furthermore, replace

λ(t) with λ(t)+λ(t+δ)−λ(t+δ). With these manipulations, write the first integral

178
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term in (13.A.17) as

λ(t)
∫ t+T

t

`(x∗
t (τ), u∗

t (τ)) dτ = λ(t)
∫ t+δ

t

`(x∗
t (τ), u∗

t (τ)) dτ

+λ(t + δ)
∫ t+T

t+δ

`(x∗
t (τ), u∗

t (τ)) dτ

+(λ(t)− λ(t + δ))
∫ t+T

t+δ

`(x∗
t (τ), u∗

t (τ)) dτ

Plug this expression into (13.A.17) and sort to have terms involving variables at
t + δ first

J∗(t) = λ(t + δ)
∫ t+T

t+δ

`(x∗
t (τ), u∗

t (τ)) dτ

+λ(t + δ)
∫ t+T+δ

t+T

`(x̃t(τ), ũt(τ)) dτ + V (x̃t(t + T + δ))

−λ(t + δ)
∫ t+T+δ

t+T

`(x̃t(τ), ũt(τ)) dτ

+λ(t)
∫ t+δ

t

`(x∗
t (τ), u∗

t (τ)) dτ

+(λ(t)− λ(t + δ))
∫ t+T

t+δ

`(x∗
t (τ), u∗

t (τ)) dτ

−V (x̃t(t + T + δ)) + V (x∗
t (t + T )) (13.A.19)

The first two rows in the expression above is the cost at time t + δ, using the old
optimal u∗

t over the horizon [t+ δ, T ] and ũt over the new segment [t+T, t+T + δ].
Clearly, this cost cannot be lower than the optimal cost, hence

J∗(t) ≥ J∗(t + δ)

−λ(t + δ)
∫ t+T+δ

t+T

`(x̃t(τ), ũt(τ)) dτ

+λ(t)
∫ t+δ

t

`(x∗
t (τ), u∗

t (τ)) dτ

+(λ(t)− λ(t + δ))
∫ t+T

t+δ

`(x∗
t (τ), u∗

t (τ)) dτ

−V (x̃t(t + T + δ)) + V (x∗
t (t + T )) (13.A.20)

Up to now, we have only made some algebraic manipulations, but at this point, a
crucial decision on how to proceed has to be made. One approach is to continue
without assuming differentiability of the involved expressions and instead look at
the sequence J∗(t), as in (Fontes, 2001). However, to obtain a simple and intuitive
result, we assume J∗(t) to be continuously differentiable.
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Standard arguments with limδ→0+ yield

J̇∗(t) ≤ −λ(t)`(x∗
t (t), u

∗
t (t)) + λ(t)`(x∗

t (t + T ), ũt(t + T ))

+ λ̇(t)
∫ t+T

t

`(x∗
t (τ), u∗

t (τ)) dτ + V̇ (x∗
t (t + T ), ũt(t + T )) (13.A.21)

Since our goal is to show that J∗(t) is a Lyapunov function proving stability, we
would like the right hand side of (13.A.21) to be negative definite. The only degree
of freedom available to accomplish this is the definition of λ̇(t).

For reasons that will be clear later, chose ũt(t+T ) = k(x∗
t (t+T )). An update-

law for λ(t) can now be derived from (13.A.21). If

λ(t)`(x∗
t (t + T ), k(x∗

t (t + T ))) + λ̇(t)
∫ t+T

t

`(x∗
t (τ), u∗

t (τ)) dτ

+ V̇ (x∗
t (t + T ), k(x∗

t (t + T ))) ≤ 0 (13.A.22)

the derivative of J∗(t) satisfies

J̇∗(t) ≤ −λ(t)`(x∗
t (t), u

∗
t (t)) (13.A.23)

From Assumption A2, −λ(t)`(x∗
t (t), u

∗
t (t) is negative if λ(t) > 0, hence J∗(t) is

negative if λ(t) > 0. Condition (13.A.22) thus motives the proposed dynamics for
the weight λ(t)

λ̇(t) =
−λ(t)`(x∗

t (t + T ), k(x∗
t (t + T )))− V̇ (x∗

t (t + T ), k(x∗
t (t + T )))∫ t+T

t
`(x∗

t (τ), u∗
t (τ)) dτ

(13.A.24)

Before we proceed to prove stability, some supporting results are needed. To
begin with, the definition of λ̇(t) guarantees λ(t) to remain positive (assuming
λ(0) > 0) since −V̇ (x, k(x)) and the denominator in (13.A.24) are both positive
definite. To prove stability, it is crucial to show that λ(t) is not only positive, but
also bounded from below. To do this, we first need a bound on x∗

t (t + T ).
We know that there exist a solution to the optimal control problem, hence the

initial cost J∗(0) is bounded. This immediately implies V (x∗
t (0+T )) ≤ J∗(0) <∞.

Define a ball ||x|| ≤ r1 containing the level-sets V (x) ≤ J∗(0). From (13.A.23), we
know that J∗(t) is non-increasing since λ(t) is positive and ` is positive definite.
Hence, we know that J∗(t) ≤ J∗(0) which implies that ||x∗

t (t + T )|| ≤ r1.
From (13.A.24), we see that λ̇(t) is non-negative when

λ(t) ≤ −V̇ (x∗
t (t + T ), k(x∗

t (t + T )))
`(x∗

t (t + T ), k(x∗
t (t + T )))

(13.A.25)

All we have to do is to show that the right-hand side of (13.A.25) is bounded from
below in ||x∗

t (t + T )|| ≤ r1.
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Introduce a constant r2 ∈ (0, r1) and define the minimum of the right-hand side
of (13.A.25) in the set r2 ≤ ||x∗

t (t + T )|| ≤ r1. The minimum is bounded from
below.

min
r2≤||x||≤r1

−V̇ (x, k(x))
`(x, k(x))

= γ1 > 0 (13.A.26)

This follows from continuity and positive definiteness of ` and −V̇ . From this we
find that λ(t) increases when it falls below γ1 and r2 ≤ ||x∗

t (t + T )|| ≤ r1.
A somewhat different approach is employed to find

min
||x||≤r2

−V̇ (x, k(x))
`(x, k(x))

(13.A.27)

From the assumptions, the following models hold around the origin

ẋ = (A + BK)x + o(||x||)
V (x) = xT Px + o(||x||2)

`(x, k(x)) = xT Qx + xT KT RKx + o(||x||2)

where

A = fx(0, 0), B = fu(0, 0), K = kx(0)

P =
1
2
Vxx(0), Q =

1
2
`xx(0, 0), R =

1
2
`uu(0, 0)

Inserting these models in (13.A.27) yields

min
||x||≤r2

−x((A + BK)T P + P (A + BK))x + g1(x)
xT (Q + KT RK)x + g2(x)

(13.A.28)

where g1(x) and g2(x) collect higher order terms

||g1(x)||
||x||2 ≤ ρ1(x), lim

||x||→0
ρ1(x) = 0 (13.A.29a)

||g2(x)||
||x||2 ≤ ρ2(x), lim

||x||→0
ρ2(x) = 0 (13.A.29b)

Assumption A3 implies that there exist a positive definite matrix W such that

(A + BK)T P + P (A + BK) = −W (13.A.30)

Insert this and the higher order terms. A lower bound to (13.A.27) can be obtained
by solving

min
||x||≤r2

xT (W − ρ1(x)I)x
xT (Q + KT RK + ρ2(x)I)x

(13.A.31)
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Since ρ1(x) tends to zero, we can always find a r2 such that ||x|| ≤ r2 guarantees,
say, ρ1(x) ≤ 1

2ν where ν denotes the smallest eigenvalue of W . For ||x|| ≤ r2 we
thus have W − ρ1(x)I � 1

2W . Furthermore, let

0 ≤ α = max
||x||≤r2

ρ2(x) <∞ (13.A.32)

With these bounds on ρ1(x) and ρ2(x) we obtain an even more conservative ap-
proximation by solving

min
||x||≤r2

1
2xT Wx

xT (Q + KT RK + αI)x
(13.A.33)

Since Q and R are positive definite, we find that the minimum of this expression
is equal to the smallest eigenvalue of the matrix 1

2 (Q + KT RK + αI)−1W . Let γ2

denote this lower bound. We can now conclude that for ||x∗(t+T )|| ≤ r2, λ(t) has
to start to increase if it is smaller than γ2.

Combining the bounds shows that λ̇(t) is non-negative when λ(t) ≤ min(γ1, γ2).
This immediately implies that λ(t) ≥ min(λ(0), γ1, γ2). With this, we are ready to
employ the Barbashin-Krasovskii theorem (Khalil, 1992).

Theorem 13.A.4
Let x = 0 be an equilibrium point and the continuously differentiable function
V : R

n → R+ be positive definite and radially unbounded with

V̇ (x) < 0, ∀x 6= 0

then x = 0 is globally asymptotically stable

To begin with, we assumed J∗(t) to be continuously differentiable. It is easy
to see that J∗(t) = 0 if x(t) = 0. Moreover, since λ(t) is positive, we know that
J∗(t) > 0 ∀x 6= 0. Assumption A4 and the fact that λ(t) is bounded from below
guarantees that J∗(t)→∞ when ||x(t)|| → ∞. Finally, J̇∗(t) < 0 ∀x 6= 0 according
to (13.A.23) and positivity of λ(t) and `(x, u). Hence, J∗(t) is a Lyapunov function
that proves asymptotic stability of x(t).

Remark 13.A.1
Notice that the linearized system is not used for the controller design, it is only
used in the stability proof.

Remark 13.A.2
A second remark concerns the local assumption on f(x, k(x)), V̇ (x, k(x)) and
`(x, k(x)). These assumptions are only used to show that the quotient

−V̇ (x, k(x))
`(x, k(x))

(13.A.34)

is bounded from below in the origin. Clearly, the assumed local properties are not
necessary for this to hold.
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Remark 13.A.3
The update-law for λ(t) is of course not unique. There are many alternatives that
might work just as well, or even better. One such choice is (0 ≤ ε < 1)

λ̇(t) =
−λ(t)`(e∗t , k(e∗t ))− V̇ (e∗t , k(e∗)) + ελ(t)`(x(t), u∗

t (t))∫ t+T

t
`(x∗

t (τ), u∗
t (τ)) dτ

(with e∗t denoting x∗
t (t + T ) to save space).

13.B Proof of Corollary

The control input over τ ∈ [t + T, t + T + δ] was chosen as the control law k(x̃t(τ))
in the proof. Since x∗

t (t + T ) ∈ XT , this control is feasible. To see this, recall that
V̇ (x, k(x)) < 0, hence V (x̃t(τ)) ≤ V (x∗

t (t+T )) for τ ≥ t. This implies x̃t(τ) ∈ XT .
Since k(x) ∈ U ∀x ∈ XT and X ⊆ XT , the control input is feasible. Once feasibility
is established, the remaining part of the proof can be used directly.
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Löfberg, J. (2002c). YALMIP 2.2 - User’s Guide. Linköpings universitet, Sweden.
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