
Linköping studies in science and technology. Dissertations. No. 1358, Linköping 2011

Estimation-based

iterative learning

control

Johanna Wallén

i
i

main: 2011-01-11 10:21 — 1 (“i”) i
i

i
i

i
i

Linköping studies in science and technology. Dissertations.
No. 1358

Estimation-based
iterative learning control

Johanna Wallén

Department of Electrical Engineering
Linköping University, SE–581 83 Linköping, Sweden

Linköping 2011

i
i

main: 2011-01-11 10:21 — 2 (“ii”) i
i

i
i

i
i

Cover illustration: ILC applied to a problem where, for example, a robot tool
is supposed to track a circular path. In the beginning, the tracking performance
is poor, but as the ILC algorithm “learns”, the performance improves and comes
very close to a perfect circle. The orange colour represents the connection to the
experiments performed on ABB robots.

Linköping studies in science and technology. Dissertations.
No. 1358

Estimation-based
iterative learning control

Johanna Wallén

johanna@isy.liu.se
www.control.isy.liu.se
Division of Automatic Control

Department of Electrical Engineering
Linköping University
SE–581 83 Linköping

Sweden

ISBN 978-91-7393-255-4 ISSN 0345-7524

Copyright © 2011 Johanna Wallén

Printed by LiU-Tryck, Linköping, Sweden 2011

i
i

main: 2011-01-11 10:21 — 3 (“iii”) i
i

i
i

i
i

Till Daniel, familjen och vännerna

i
i

main: 2011-01-11 10:21 — 4 (“iv”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 5 (“v”) i
i

i
i

i
i

Abstract

In many applications industrial robots perform the same motion repeatedly. One
way of compensating the repetitive part of the error is by using iterative learning
control (ILC). The ILC algorithm makes use of the measured errors and iteratively
calculates a correction signal that is applied to the system.

The main topic of the thesis is to apply an ILC algorithm to a dynamic system
where the controlled variable is not measured. A remedy for handling this dif-
ficulty is to use additional sensors in combination with signal processing algo-
rithms to obtain estimates of the controlled variable. A framework for analysis
of ILC algorithms is proposed for the situation when an ILC algorithm uses an
estimate of the controlled variable. This is a relevant research problem in for
example industrial robot applications, where normally only the motor angular
positions are measured while the control objective is to follow a desired tool path.
Additionally, the dynamic model of the flexible robot structure suffers from un-
certainties. The behaviour when a system having these difficulties is controlled
by an ILC algorithm using measured variables directly is illustrated experimen-
tally, on both a serial and a parallel robot, and in simulations of a flexible two-
mass model. It is shown that the correction of the tool-position error is limited
by the accuracy of the robot model.

The benefits of estimation-based ILC is illustrated for cases when fusing mea-
surements of the robot motor angular positions with measurements from an ad-
ditional accelerometer mounted on the robot tool to form a tool-position estimate.
Estimation-based ILC is studied in simulations on a flexible two-mass model and
on a flexible nonlinear two-link robot model, as well as in experiments on a par-
allel robot. The results show that it is possible to improve the tool performance
when a tool-position estimate is used in the ILC algorithm, compared to when the
original measurements available are used directly in the algorithm. Furthermore,
the resulting performance relies on the quality of the estimate, as expected.

In the last part of the thesis, some implementation aspects of ILC are discussed.
Since the ILC algorithm involves filtering of signals over finite-time intervals,
often using non-causal filters, it is important that the boundary effects of the fil-
tering operations are appropriately handled when implementing the algorithm.
It is illustrated by theoretical analysis and in simulations that the method of im-
plementation can have large influence over stability and convergence properties
of the algorithm.

v

i
i

main: 2011-01-11 10:21 — 6 (“vi”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 7 (“vii”) i
i

i
i

i
i

Populärvetenskaplig sammanfattning

Denna avhandling behandlar reglering genom iterativ inlärning, ILC (från eng-
elskans iterative learning control). Metoden har sitt ursprung i industrirobot-
tillämpningar där en robot utför samma rörelse om och om igen. Ett sätt att
kompensera för felen är genom en ILC-algoritm som beräknar en korrektions-
signal, som läggs på systemet i nästa iteration. ILC-algoritmen kan ses som ett
komplement till det befintliga styrsystemet för att förbättra prestanda.

Det problem som särskilt studeras är då en ILC-algoritm appliceras på ett dy-
namiskt system där reglerstorheten inte mäts. Ett sätt att hantera dessa svårig-
heter är att använda ytterligare sensorer i kombination med signalbehandlings-
algoritmer för att beräkna en skattning av reglerstorheten som kan användas i
ILC-algoritmen. Ett ramverk för analys av skattningsbaserad ILC föreslås i av-
handlingen. Problemet är relevant och motiveras utifrån experiment på både en
seriell och en parallel robot. I konventionella robotstyrsystem mäts endast de
enskilda motorpositionerna, medan verktygspositionen ska följa en önskad bana.
Experimentresultat visar att en ILC-algoritm baserad på motorpositionsfelen kan
reducera dessa fel effektivt. Dock behöver detta inte betyda en förbättrad verk-
tygsposition, eftersom robotmotorerna styrs mot felaktiga värden på grund av
att modellerna som används för att beräkna dessa referensbanor inte beskriver
den verkliga robotdynamiken helt.

Skattningsbaserad ILC studeras både i simulering av en flexibel tvåmassemodell
och en olinjär robotmodell med flexibla leder, och i experiment på en parallell
robot. I studierna sammanvägs motorpositionsmätningar med mätningar från
en accelerometer på robotverktyget till en skattning av verktygspositionen som
används i ILC-algoritmen. Resultaten visar att det är möjligt att förbättra verk-
tygspositionen med skattningsbaserad ILC, jämfört med när motorpositionsmät-
ningarna används direkt i ILC-algoritmen. Resultatet beror också på skattnings-
kvaliteten, som förväntat.

Slutligen diskuteras några implementeringsaspekter. Alla värden i uppdaterings-
signalen läggs på systemet samtidigt, vilket gör det möjligt att använda icke-
kausal filtering där man utnyttjar framtida signalvärden i filteringen. Detta gör
att det är viktigt hur randeffekterna (början och slutet av signalen) hanteras när
man implementerar ILC-algoritmen. Genom teoretisk analys och simulerings-
exempel illustreras att implementeringsmetoden kan ha stor betydelse för egen-
skaperna hos ILC-algoritmen.

vii

i
i

main: 2011-01-11 10:21 — 8 (“viii”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 9 (“ix”) i
i

i
i

i
i

Acknowledgments

The idea of iterative learning control is appealing and it often works very well
in practice. Crucial for the resulting performance is however that the reference
is a good one. Mikael Norrlöf and Svante Gunnarsson, you have been my path
planners and trajectory generators. Your exceptional patience and efforts to keep
me on the right track are much appreciated! You have also been my sensors, mea-
suring the performance, and my ILC algorithm, by calculating a new correction
signal so that I could come closer to the desired output in the next iteration.

An important part of being able to track the correct reference is also everyone
in the Automatic Control group. The knowledge, curiosity and nice atmosphere
have been worth a lot for me, thank you all! My special thanks go to Lennart
Ljung, who let me join the group, and to Svante Gunnarsson, Ulla Salaneck and
Åsa Karmelind for keeping track of all things in an excellent manner.

Proofreading means many iterations, where mistakes and ambiguities are to be
corrected. First of all, I am very grateful for the enormous efforts Mikael Norrlöf
and Svante Gunnarsson have made to improve the text. The excellent comments
and questions from proofreading by Daniel Ankelhed, Daniel Axehill, Daniel
Petersson, Martin Enqvist, Michael Roth, Patrik Axelsson and Ylva Jung have
also improved the thesis considerably. Thank you all! Henrik Tidefelt and Gustaf
Hendeby, thanks a lot for solving many of my LATEX problems.

I am also grateful for the funding from VINNOVA, the Swedish Research Council
(VR) and from the excellence centers LINK-SIC and ELLIIT, which made it possi-
ble for me to perform new iterations to improve the research. During my visits
in Lund in the spring 2010 I learned a lot — special thanks to Isolde Dressler
and Anders Robertsson for good cooperation! Torgny Brogårdh and the people at
ABB Robotics, thank you for bringing an industrial point of view to my reference
trajectory.

Finally, family and friends, thank you for the patience while I was too busy fol-
lowing the desired trajectory! And Daniel, without you it would have been much,
much harder!

Linköping, January 2011

ix

i
i

main: 2011-01-11 10:21 — 10 (“x”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 11 (“xi”) i
i

i
i

i
i

Contents

Notation xv

I Background

1 Introduction 3
1.1 Motivation and problem statement 3
1.2 Outline . 5

1.2.1 Outline of Part I . 5
1.2.2 Outline of Part II . 5

1.3 Contributions . 5
1.3.1 Publications . 6
1.3.2 Related publications . 7

2 Industrial robots 9
2.1 Industrial robots and robotics . 9
2.2 Development of industrial robots 10
2.3 Modelling . 15

2.3.1 Basic concepts about robots 15
2.3.2 Kinematics . 17
2.3.3 Dynamics . 20

2.4 Control . 26
2.4.1 Robot control system . 26
2.4.2 Motion control . 27

2.5 Summary . 29

3 State estimation 31
3.1 Estimation and sensor fusion in robotics 31
3.2 Estimation algorithms . 32

3.2.1 Kalman filter . 33
3.2.2 Extended Kalman filter . 34
3.2.3 Complementary filtering . 36

3.3 Summary . 36

xi

i
i

main: 2011-01-11 10:21 — 12 (“xii”) i
i

i
i

i
i

xii CONTENTS

4 Iterative learning control 37
4.1 Introduction to the concept of ILC 37
4.2 Historical background . 38
4.3 ILC related to other control approaches 39

4.3.1 Conventional control . 39
4.3.2 Repetitive control . 40
4.3.3 Intelligent/learning control 41

4.4 System description . 41
4.5 Postulates by Arimoto . 44
4.6 ILC algorithms . 45

4.6.1 Linear ILC algorithms . 46
4.6.2 Nonlinear ILC algorithms 48

4.7 Convergence properties . 48
4.7.1 Stability . 49
4.7.2 Convergence of ILC algorithms 51
4.7.3 Stability using two-dimensional systems theory 54

4.8 Design methods . 55
4.8.1 Basic algorithms . 55
4.8.2 Model-based algorithms . 56

4.9 Applications of ILC . 58
4.9.1 Examples of applications . 59

4.10 Summary . 61

II Results

5 Motivation to estimation-based ILC 65
5.1 Problem description . 66
5.2 Experiments on a serial robot . 67

5.2.1 Experimental setup . 67
5.2.2 Performance measures . 69
5.2.3 Experimental results . 70

5.3 Experiments on a parallel robot . 75
5.3.1 Experimental setup . 75
5.3.2 Performance measures . 76
5.3.3 Experimental results . 77

5.4 Simulation study . 80
5.4.1 Simulation setup . 80
5.4.2 Simulation results . 82

5.5 Conclusions . 84

6 A framework for analysis of estimation-based ILC 87
6.1 Introduction . 87
6.2 System description . 88
6.3 Estimation of the controlled variable 90
6.4 ILC algorithm . 93

i
i

main: 2011-01-11 10:21 — 13 (“xiii”) i
i

i
i

i
i

CONTENTS xiii

6.5 Analysis . 93
6.6 Illustration of the results . 96

6.6.1 Case 1 — ILC using measured variable 96
6.6.2 Case 2A — ILC using estimate from model of direct relation 98
6.6.3 Case 2B— ILC using estimate from linear observer 99
6.6.4 Case 3 — ILC using controlled variable 100
6.6.5 Numerical example . 101

6.7 Conclusions . 107

7 Estimation-based ILC applied to a nonlinear robot model 109
7.1 Two-link robot model . 109
7.2 Estimation algorithms . 113
7.3 ILC algorithms . 114
7.4 Simulation results . 116

7.4.1 Case 1 — ILC using measured motor angular position . . . 116
7.4.2 Case 2 — ILC using estimated joint angular position 118

7.5 Conclusions . 121

8 Estimation-based ILC applied to a parallel robot 123
8.1 Introduction . 123
8.2 Robot and sensors . 126

8.2.1 Gantry-Tau robot . 126
8.2.2 Control system . 126
8.2.3 External sensors . 126

8.3 System properties . 127
8.3.1 Trajectory . 127
8.3.2 Nominal performance . 128
8.3.3 Repeatability . 128

8.4 Robot models . 130
8.4.1 Motor models . 131
8.4.2 Models of the complete robot structure 133

8.5 ILC algorithms . 134
8.6 Estimation of robot tool position . 136
8.7 Conditions for ILC experiments . 138

8.7.1 Evaluation measures . 138
8.8 Experimental results . 139

8.8.1 Case 1 — ILC using measurements of motor angular position 139
8.8.2 Case 2 — ILC using estimates of tool position 141
8.8.3 Case 3 — ILC using measurements of tool position 144

8.9 Conclusions . 145

9 Implementation aspects 147
9.1 Introduction . 147
9.2 System and ILC algorithm . 148

9.2.1 System description . 148
9.2.2 ILC algorithm . 149

i
i

main: 2011-01-11 10:21 — 14 (“xiv”) i
i

i
i

i
i

xiv CONTENTS

9.2.3 Stability and convergence properties 149
9.3 Motivating example . 150
9.4 Handling of boundary effects . 151
9.5 Numerical illustration . 154

9.5.1 System description . 154
9.5.2 Analysis . 156
9.5.3 Simulation results . 158

9.6 Conclusions . 160

10 Concluding remarks 163
10.1 Conclusions . 163
10.2 Future work . 164

Bibliography 167

i
i

main: 2011-01-11 10:21 — 15 (“xv”) i
i

i
i

i
i

Notation

Symbols and operators

Notation Meaning

a(t) Acceleration
C(q, q̇) Vector of Coriolis and centripetal torques
dab Translation of origin of coordinate frame a relative to

origin of coordinate frame b
D Damping matrix
e(t) Control error
ε(t) Error used in ILC update equation
η Gear ratio
fc Cutoff frequency
F(q̇) Friction torque
gX(n) Pulse-response coefficient n of transfer operator X(q)
G(q) Vector of gravity torques
I , IN×N Identity matrix (with N rows and columns)

J (Manipulator) Jacobian
k Iteration number
K Observer gain
K(q) Stiffness matrix
L(q) Filter in ILC algorithm
L Matrix in ILC algorithm in matrix form

M(q) Inertia matrix

xv

i
i

main: 2011-01-11 10:21 — 16 (“xvi”) i
i

i
i

i
i

xvi Notation

Symbols and operators (continued)

Notation Meaning

N Number of samples (batch length)
ω Angular frequency
p Differential operator
Π Matrix of gear ratios
q Joint variable
q Time-shift operator, qx(t) = x(t + Ts)
qa Joint angular position
qk Iteration-shift operator, qxk(t) = xk+1(t)
qm Motor angular position
Q(q) Filter in ILC algorithm
Q Matrix in ILC algorithm in matrix form
r(t) Reference signal
ra(t) Joint angular position reference
rm(t) Motor angular position reference
Rab Rotation matrix from coordinate frame a to coordinate

frame b
t Time
τ Torque
τm Motor torque
Ts Sampling interval
uk(t) ILC input signal at iteration k
v(t) Velocity
v(t) Process noise
w(t) Measurement noise
x(t) State vector
y(t) Measured variable
z(t) Controlled variable
zc(t) Calculated tool position obtained by transforming mo-

tor angular positions by the forward kinematics
0N×M Matrix of zeros with N and M columns
AT Transpose of matrix A
A−1 Inverse of matrix A
A∗ Adjoint of matrix A
∂G(x)
∂x

Partial derivative of G(x) with respect to x
Gab(q) Transfer operator relating signal a(t) to signal b(t),

b(t) = Xab(q)a(t)
G0(q) Transfer operator of true system
xk(t) Signal x(t) at iteration k
x∞ Limit of xk as k →∞
x̂(t) Estimate of signal x(t)

x̂(t|t − 1) Estimate of x(t) given from measurements up to and
including time t − 1, also denoted x̂t|t−1

i
i

main: 2011-01-11 10:21 — 17 (“xvii”) i
i

i
i

i
i

Notation xvii

Symbols and operators (continued)

Notation Meaning

xk Vector x at iteration k of theN -sample sequence of x(t)
xT Transpose of vector x
ẋ(t) Time derivative of signal x
|x| Absolute value of complex variable x

X(eiω) Discrete-time Fourier transform of x(t)
ρ(·) Spectral radius
σ̄ (·) Maximum singular value
‖ · ‖ Norm
‖ · ‖2 2-norm
‖ · ‖∞ ∞-norm
‖ · ‖A Weighted norm with weighting matrix A

Abbreviations

Abbreviation Meaning

ARX Autoregressive with external input
CITE-ILC Current-iteration tracking-error ILC

CNC Computer numerical controlled (machine)
D Derivative (controller)

DOF Degrees of freedom
DTFT Discrete-time Fourier transform
EKF Extended Kalman filter

I Integral (controller)
ILC Iterative learning control

MIMO Multiple-input multiple-output (system)
NC Numerically controlled (machine)
P Proportional (controller)

PID Proportional, integral, derivative (controller)
PD Proportional, derivative (controller)

PRBS Pseudo random binary sequence
RC Repetitive control

RMS Root mean square (error)
SISO Single-input single-output (system)
TCP Tool center point

i
i

main: 2011-01-11 10:21 — 18 (“xviii”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 19 (“1”) i
i

i
i

i
i

Part I

Background

i
i

main: 2011-01-11 10:21 — 20 (“2”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 21 (“3”) i
i

i
i

i
i

1
Introduction

In this work the general framework for iterative learning control (ILC) is ex-
tended to cover estimation-based ILC. The extension is motivated by the use

of ILC in robotics, where the desired control error cannot be computed from mea-
sured variables. Instead it is necessary to use estimation techniques to find an
estimate of the error, which then can be used in the ILC algorithm.

1.1 Motivation and problem statement

The method of iterative learning control, or ILC for short, originates from indus-
trial robotics, where in many applications the same trajectory is repeated. The
idea in ILC is to improve the performance of a system, machine or process by
adding a correction signal derived from the errors at previous repetitions. The
word ‘iterative’ reflects the recursive nature of the system operation, while ‘learn-
ing’ denotes that the input signal is updated, or learned, from the system perfor-
mance in the past [Moore, 1998a].

In particular, systems containing mechanical flexibilities are considered in the
thesis. When applying an ILC algorithm to a system, it is often already stabilised
by feedback control. Still, it may be difficult to follow the desired trajectory due to
unmodelled effects or disturbances. One way to understand some of the difficul-
ties of a flexible mechanical system is to first think of the system to be controlled
as a stiff metal bar. Consider the case when it is important that the tip follows
a desired trajectory as closely as possible with ideally no oscillations or other
disturbing phenomena. The only way to control the tip is by the movements of
the hand (the “motor”) holding the bar. For the metal bar, the movement of the
tip is only a scaled version of the movement of the hand. Therefore the desired

3

i
i

main: 2011-01-11 10:21 — 22 (“4”) i
i

i
i

i
i

4 1 Introduction

trajectory can be followed satisfactorily. Now, instead consider the system as a
very flexible fishing rod. To be able to follow the desired trajectory, one has to
derive a complete mental model of how the tip of the rod moves for every single
movement of the hand in every single part of the trajectory. In reality, the tip can
by appropriate hand movements only come fairly close to the desired trajectory,
since the model is only partially known. The tip of the rod will however still
oscillate, especially for rapid movements, due to the flexible structure of the rod.

The problems when controlling an industrial robot has similarities to the con-
trol problem of the fishing rod. The sensor measurements normally available in
commercial industrial robot systems are only the motor angular positions, while
it is the resulting tool position and orientation that are of interest for the user.
The cost- and performance-driven development of the robots results in less rigid
mechanical robot structures. For example, the robot weight to payload ratio for
large-size ABB robots has been reduced by a factor of three since the mid 1980s
from 16:1 to around 5.5:1 of today [Moberg, 2010]. This results in robots having a
larger number of mechanical vibration modes and also lower resonance frequen-
cies. Due to the complex structure of the robot, there are uncertainties in both
kinematic and dynamic models of the robot. Therefore, when programming the
robot to follow a desired tool trajectory, some tool-path errors will still remain.

Despite the robot control challenges described above, there are constantly increas-
ing demands on the desirable robot performance and functionality of the robot
motion control, as is discussed in Brogårdh [2007, 2009]. A remedy for handling
this situation could be to use ILC when performing the same movement repeat-
edly, to be able to correct the repetitive part of the remaining errors. Applying
an ILC algorithm to the robot using the measurements normally available in the
robot system, the motor angular positions, will however not entirely solve the
problem due to the model uncertainties. A solution to this problem is discussed
in this thesis, where estimates of the controlled variable (the tool position in the
case of an industrial robot) are obtained from estimation algorithms. These esti-
mates are thereafter used in an ILC algorithm to improve the system performance.
The usage of estimation-based ILC is the main theme in this thesis, and the fol-
lowing aspects are analysed:

• The resulting error of the controlled variable when using different types of
estimates in the ILC algorithm.

• The benefits of using estimation-based ILC instead of relying only on the
original measurements available. This is illustrated in both simulations and
experiments.

In the thesis some implementation aspects of ILC are also treated, which high-
lights the importance of correct handling of the boundary effects in the imple-
mentation of the non-causal ILC filters. The effects of the filter implementation
are analysed by a time-domain matrix formulation of the ILC system.

Throughout this work the ILC algorithm works as a complement to the already
existing controller of the system. This setting can be motivated from an appli-

i
i

main: 2011-01-11 10:21 — 23 (“5”) i
i

i
i

i
i

1.2 Outline 5

cation point of view, where it is in general not possible for the user to affect the
control system, and therefore it has to be considered as given [Longman, 2000].
The focus is on discrete-time systems and ILC algorithms, motivated by practical
implementation involving computer-based controllers operating in discrete time
and digital storage of the information. First-order, linear, time- and iteration-
invariant ILC algorithms are investigated.

1.2 Outline

The thesis consists of two parts. Part I gives an overview of the subjects treated in
the thesis and serves as a unified background to the results presented in Part II.

1.2.1 Outline of Part I

First, an introduction to the application, industrial robots, is given in Chapter 2.
The field of industrial robots is presented both mathematically, as well as histor-
ically, to bring some understanding to the challenges that are discussed in this
work. In Chapter 3 some estimation techniques are briefly discussed, with focus
on Kalman filtering. It is followed by an introduction to the field of ILC in Chap-
ter 4, with an overview of different types of algorithms, convergence properties,
design methods and applications.

1.2.2 Outline of Part II

Part II begins in Chapter 5 with an experimental motivation to the problem of
improving the performance of the controlled variable of a flexible mechanical
system with ILC using measured variables only. The main problem is illustrated
in a simulation study. A framework for analysis of estimation-based ILC is then
given in Chapter 6, with focus on the resulting performance of the controlled
variable of the system. Thereafter, the possibilities of estimation-based ILC are
shown by simulations on a flexible nonlinear two-link robot model in Chapter 7
and by experiments on a large-size parallel robot in Chapter 8. In Chapter 9 some
implementation aspects are analysed of how the handling of the boundary effects
will affect the convergence properties of the ILC algorithm. Finally, Chapter 10
concludes the work and gives possible directions for future work.

1.3 Contributions

The main contributions of the thesis are:

• Experiments performed on a large-size commercial industrial robot with
an ILC algorithm using measured motor angular positions. An approach as
simple as possible is used, resulting in a substantial error reduction after
only a few iterations. The results are discussed in Chapter 5, and published
in Wallén et al. [2007a].

• Illustration of the problem of applying ILC algorithms using the measured

i
i

main: 2011-01-11 10:21 — 24 (“6”) i
i

i
i

i
i

6 1 Introduction

variable to flexible systems, where the controlled variable is not the mea-
sured variable. This is the topic for Chapter 5, and is also partly discussed
in Wallén et al. [2008b, 2009a,b, 2010a,b].

• A framework for analysis of estimation-based ILC, previously presented
in Wallén et al. [2009c, 2011] and covered in Chapter 6.

• Illustration of the benefits of using estimation-based ILC, both in simula-
tions of a flexible nonlinear two-link robot model in Chapter 7, published
in Wallén et al. [2009a], and in experiments on a large-size parallel robot in
Chapter 8, published in Wallén et al. [2010a,b].

• Discussion of the importance of correct handling of the boundary effects
in the implementation of non-causal ILC filters. The effects of the filtering
are analysed by the time-domain matrix formulation and put in contrast
to the frequency-domain analysis for a case where it is not enough with a
frequency-domain approach. This is the topic for Chapter 9, and is previ-
ously published in Wallén et al. [2010].

1.3.1 Publications

The thesis is based on the following publications, where the author is the main
contributor:

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Experimental evalu-
ation of ILC applied to a six degrees-of-freedom industrial robot. In Proceed-
ings of European Control Conference, pages 4111–4118, Kos, Greece, July
2007a.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Arm-side evalua-
tion of ILC applied to a six-degrees-of-freedom industrial robot. In Proceed-
ings of IFAC World Congress, pages 13450–13455, Seoul, Korea, July 2008b.
Invited paper.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Performance of ILC
applied to a flexible mechanical system. In Proceedings of European Control
Conference, pages 1511–1516, Budapest, Hungary, August 2009b.

Johanna Wallén, Svante Gunnarsson, Robert Henriksson, Stig Moberg, and
Mikael Norrlöf. ILC applied to a flexible two-link robot model using sensor-
fusion-based estimates. In Proceedings of IEEE Conference on Decision and
Control, pages 458–463, Shanghai, China, December 2009a.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. A framework for
analysis of observer-based ILC. In Proceedings of Symposium on Learning
Control at IEEE Conference on Decision and Control, Shanghai, China, De-
cember 2009c.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. A framework for
analysis of observer-based ILC. Asian Journal of Control, 2011. Accepted for
publication in special issue of Iterative Learning Control.

Johanna Wallén, Svante Gunnarsson, and Mikael Norrlöf. Some implementa-
tion aspects of iterative learning control. Technical Report LiTH-ISY-R-2967,

i
i

main: 2011-01-11 10:21 — 25 (“7”) i
i

i
i

i
i

1.3 Contributions 7

Department of Electrical Engineering, Linköping University, Linköping, Swe-
den, September 2010. Submitted to IFAC World Congress 2011, Milano, Italy.

Johanna Wallén, Isolde Dressler, Anders Robertsson, Mikael Norrlöf, and
Svante Gunnarsson. Observer-based ILC applied to the Gantry-Tau paral-
lel kinematic robot — modelling, design and experiments. Technical Report
LiTH-ISY-R-2968, Department of Electrical Engineering, Linköping Univer-
sity, Linköping, Sweden, October 2010a.

Johanna Wallén, Isolde Dressler, Anders Robertsson, Mikael Norrlöf, and
Svante Gunnarsson. Observer-based ILC applied to the Gantry-Tau paral-
lel kinematic robot. Submitted to IFAC World Congress 2011, Milano, Italy,
2010b.

Parts of the material have previously been published in

Johanna Wallén. On Kinematic Modelling and Iterative Learning Control
of Industrial Robots. Licentiate thesis No. 1343, Department of Electri-
cal Engineering, Linköping University, Linköping, Sweden, January 2008.
Available at: http://www.control.isy.liu.se/research/reports/
LicentiateThesis/Lic1343.pdf.

1.3.2 Related publications

Other publications of related interest, but not included in the thesis are:

Johanna Wallén, Svante Gunnarsson, and Mikael Norrlöf. Derivation of kine-
matic relations for a robot using Maple. In Proceedings of Reglermöte 2006,
Royal Institute of Technology, Stockholm, Sweden, May 2006.

Johanna Wallén. On robot modelling using Maple. Technical Report LiTH-
ISY-R-2723, Department of Electrical Engineering, Linköping University, Lin-
köping, Sweden, August 2007.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Accelerometer
based evaluation of industrial robot kinematics derived in Maple. In Pro-
ceedings of Mekatronikmöte 2007, Lund Institute of Technology, Lund, Swe-
den, October 2007b.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Comparison of per-
formance and robustness for two classical ILC algorithms applied to a flexible
system. Technical Report LiTH-ISY-R-2868, Department of Electrical Engi-
neering, Linköping University, Linköping, Sweden, November 2008a.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Performance and
robustness for ILC applied to flexible systems. In Proceedings of Reglermöte
2008, Luleå University of Technology, Luleå, Sweden, June 2008c.

i
i

main: 2011-01-11 10:21 — 26 (“8”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 27 (“9”) i
i

i
i

i
i

2
Industrial robots

The aim of this chapter is twofold. First, to shed some light on the devel-
opment of industrial robots in order to understand the industrial usage and

future challenges. Second, to give an introduction to robot modelling and control.
The focus is on industrial robots in general, not on special applications.

2.1 Industrial robots and robotics

The word robota exists in several Slavic languages, meaning work. The Czech
playwright Karel Čapek wrote R.U.R. (Rossum’s Universal Robots), which had
its premier in 1921. By that the word robot was born. In the play the humans
are served by robots characterised by super human strength and intelligence, but
having no feelings or intellectual life. However, after a while the robots revolt
and kill the master Rossum and destroy all life on Earth. The play resulted in
people thinking of robots as something negative [Bolmsjö, 1992].

Three fundamental laws of robots were formulated by Isaac Asimov, a Russian
writer of science fiction, in 1942:

1. “a robot may not injure a human being, or, through inaction, allow a human
being to come to harm.”

2. “a robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.”

3. “a robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.” [Asimov, 1942]

The perspective here is, in contrast to Čapek’s robot, a kind-hearted mechanical
creation of human appearance, serving human beings [Bolmsjö, 1992]. The be-

9

i
i

main: 2011-01-11 10:21 — 28 (“10”) i
i

i
i

i
i

10 2 Industrial robots

haviour is dictated by a “brain” programmed by human beings, satisfying certain
ethical rules. The laws were complemented by Asimov’s zeroth law in 1985:

0. “a robot may not injure humanity, or, through inaction, allow humanity to
come to harm.” [Asimov, 1985]

Recently, the laws have been complemented by two more laws for industrial
robots by Stig Moberg [NyTeknik, 2007], were the robot motion is considered:

4. a robot must follow the path specified by its master, as long as it does not
conflict with the first three laws.

5. a robot must follow the velocity and acceleration specified by its master, as
long as nothing is blocking the path and it does not conflict with the other
laws. (Translated from Swedish by the author. [NyTeknik, 2007, p. 8])

The definition of industrial robots, formulated by the International Organization
for Standardization (ISO), used by most of the robot organisations is:

Manipulating industrial robot is an “automatically controlled, repro-
grammable, multi-purpose manipulator programmable in three or
more axes which may be either fixed in place or mobile for use in
industrial automation applications”. [ISO, 1996, p.5]

The keyword in the definition is “reprogrammable”, which makes the robot adap-
tive to a variety of types of tasks without physically rebuilding the machine. The
robot shall also have memory and logic to be able to work independently and
automatically. Industrial robotics is a discipline concerning robot design and
control, where the products are reaching the level of a mature technology with
many industrial applications [Bolmsjö, 1992, Sciavicco and Siciliano, 2000].

2.2 Development of industrial robots

A historical journey in the footsteps of industrial robots is given, together with
an introduction to the field of industrial robotics. The main references are West-
erlund [2000] and Bolmsjö [1992], if nothing else is stated.

Automation

Ever since the industrial revolution in the 18th century, automation has been a
major force in rationalising the production. Until half a century ago, automation
was almost synonymous to mechanisation. The drawbacks with mechanisation
are large costs and rigid equipment — for every new product the whole produc-
tion line has to be rebuilt. Therefore, automation is mainly suited for mass pro-
duction, like the car industry, with the assembly lines at Ford being a famous
historical example. When the technical director at Ford aimed at a completely
automatic production line in 1946, it led to a world-wide debate on automation.
The critics were afraid that automation was meant to rationalise the workers out
of production, leading to mass unemployment. On the other hand, the support-
ers believed in that automation would lead to a second industrial revolution.

i
i

main: 2011-01-11 10:21 — 29 (“11”) i
i

i
i

i
i

2.2 Development of industrial robots 11

In industry, the hydraulic assembly machines and the numerically controlled
(NC) milling machines arrived in the 1950s, from which one can say that the
industrial robot originates technically. With the birth of the computers in the
1950s, the computer numerical controlled (CNC) machines could be developed.
Machines were equipped with increasingly sophisticated digital control units and
some systems became integrated with each other by a central control unit in the
late 1960s. With the development of the integrated circuit in the 1970s, the man-
ufacturing production could be more flexible.

The first robots

In 1956 George Devol and Joseph Engelberger met on a party in Connecticut.
Devol had a patent on a machine called Programmed Transfer Article, but was
however uncertain about how the machine actually could be used. Engelberger
was a space industry engineer fond of science fiction and Isaac Asimov’s books.
They started the company Unimation to produce industrial robots. Devol and
Engelberger started by visiting a number of factories to better understand the
needs regarding industrial robots, and the first prototype came in 1961. The first
robot, installed in one of General Motors’ factories to serve a die casting machine,
could only perform one task and had an expected life-span of 18 months. The
breakthrough came after installing 66 robots in a new factory of General Motors
in 1964. The manufacturing industry was still not very interested in robots, but
media was. Engelberger and his robots were regular guests on American televi-
sion, and the robot changed from being a scary object to a “funny toy” to the
general public.

In order to increase the robot production, the technical director at Ford copied
the Unimation robot specification and sent it to other companies for production.
With that movement many American companies saw the potential of robots and
entered the robotics industry. However, the industrial robot industry could not
be seen as a separate unit until the middle of the 1970s, when research results
were ready for commercialisation. With new electronic components, especially
the microprocessor, the basis of the control systems of today was formed. From
the second half of the 1970s, the sale of industrial robots grew rapidly with a
yearly growth exceeding 30 %.

The Swedish company ASEA (later ABB) started their robotic era by using NC
machines and advanced production techniques in the 1960s. ASEA had its own
development of NC control systems, which became a forerunner to their robot
control systems. After loosing the contract of manufacturing Unimation robots
on license to the Swedish company Electrolux in 1969, ASEA decided in 1971 to
develop robots. An electrically driven robot was developed, where the control
program of the first prototype, named IRB6, was run on the new Intel 8008 mi-
croprocessor. The first customer was Magnussons i Genarp AB, a small Swedish
family firm with 20 employees. By the installation of the robot, the firm was
among the first in the world to operate an unmanned factory 24 hours per day,
seven days a week. Both IRB6 and the next model IRB60, introduced in 1975,
were included in the ASEA product range for as long as 17 years.

i
i

main: 2011-01-11 10:21 — 30 (“12”) i
i

i
i

i
i

12 2 Industrial robots

Robotic development

In the 1970s, material handling was the main area for robots, which requires suf-
ficient load capacity of the robot. In the end of the 1970s, the focus of the devel-
opment was turned towards assembly, with needs for robots with higher velocity,
acceleration and better repeatability in order to shorten the cycle times. The auto-
motive industry was, and still is, an important customer, but also metal industry
with their hazardous working environment became an increasing robot user. In
the 1980s, relatively simple tasks, like machine tending, material transfer, paint-
ing and welding became economically viable for robotisation [Craig, 1989].

Robots are developed not only for manufacturing, but also for medical tasks, ser-
vice, search and rescue, which brings new interest into robotics. The develop-
ment performed from the latter part of the 1980s until now has among many
things involved advanced sensors [Spong et al., 2006], as for example vision sys-
tems, laser scanners or force sensors. Additionally, model-based control is a key
competence for robot manufacturers, giving a drastically increase in the robot
performance over the years [Björkman et al., 2008]. As a result, robots can be
used in demanding applications, like water jet and laser cutting, gluing and de-
burring, where accuracy at high speed is crucial [Brogårdh, 2009].

Industrial robots in the future

The discussion about future robot development and possible applications starts
with a picture of the situation of today. The operational stock of industrial robots
for 2005 and 2009 is presented in Table 2.1 for some selected geographical ar-
eas. Different countries can have slightly different definitions of industrial robots,
with for example Japan also counting simpler mechanical machines. Despite this,
Table 2.1 undoubtedly shows that Japan is the largest robot user in the world
followed by Germany. The total worldwide stock of industrial robots in opera-
tion was at the end of 2009 approximately 1 300 000 units, based on an average
life-span of 15 years. However, Japan has seen a continuous decline in robot
investments since 2006. Due to the worldwide economic crisis starting in the
autumn of 2008, the total number of robot installations dropped substantially
from a continuously increased high level in 2005 to 2008 to the lowest number
reported since 1994 [International Federation of Robotics, 2010].

Already today the robot market for many applications in the automotive indus-
try is saturated, and the impact on the robot development is reduced. Since it
is difficult to directly use these robot applications in other areas with different
challenges, further development is necessary. An important aspect in the devel-
opment is also the high cost pressure, which forces the robot manufacturers to
use robot components with larger individual variations, nonlinearities and noise
levels [Brogårdh, 2007, 2009]. The constantly increasing requirements on robot
performance is solved by using more complex model-based multivariable con-
trol methods. Future products could also include iterative learning control (ILC),
with the work in this thesis showing the potential of using robot tool-position
estimates in the ILC algorithm to improve the performance of the robot tool.

i
i

main: 2011-01-11 10:21 — 31 (“13”) i
i

i
i

i
i

2.2 Development of industrial robots 13

Table 2.1: Operational stock of industrial robots for selected countries
for 2005 and 2009 [International Federation of Robotics, 2006, 2010]. The
numbers within parenthesis refer to the position in the ranking for each con-
tinent.

Geographic area Units 2005 Units 2009
Africa 634 1 973

America 143 203 172 141
North America (Canada, Mexico, USA) 139 553 166 183

Asia/Australia 481 664 501 422
Japan(1) 373 481 332 720
Republic of Korea(2) 61 576 79 003
China(3) 11 557 37 312

Europe 297 374 343 661
Germany(1) 126 725 144 133
Italy(2) 56 198 62 242
France(3) 30 434 34 099
Spain(4) 24 081 28 781
Sweden(7) 8 028 9 396

Automation by robots handling small lot series in organisations with lacking in-
frastructure for robot automation and limited economical resources for robot in-
vestment is a challenge to be solved in the future. This requires lower robot cost
as well as development of tools for configuration, calibration, programming and
maintenance. In order to increase the usage of industrial robots, increased sensor-
based control will be necessary both for higher performance, lower robot cost
and for automation of new applications. An increasing amount of sensors also
means new possibilities to develop safe human/robot interaction. One example
is newly developed light-weight robot structures, for example the robot LWR III
seen in Figure 2.1a, having a robot weight to payload ratio close to 1:1 and where
the robot is designed for mobility and interaction with humans. An increasing
interest is also shown to fault detection/isolation and diagnosis in combination
with more sensors, for service of robot components before breakdown [Brogårdh,
2009].

Very large components are machined in the aerospace industry, nowadays per-
formed manually or by expensive Cartesian robots. The high accuracy require-
ments may in the future be satisfied by parallel robots [Brogårdh, 2009]. One
example of a mechanical structure designed for such applications can be seen in
Figure 2.1d. In Chapter 8 improved performance of a parallel robot is achieved
by using ILC based on estimates of the robot tool position.

i
i

main: 2011-01-11 10:21 — 32 (“14”) i
i

i
i

i
i

14 2 Industrial robots

(a) LWR III (b) IRB6600

(c) IRB340 FlexPicker (d) Gantry-Tau prototype

Figure 2.1: Examples of robots: a) light-weight robot with carbon-fibre links,
b) large-size robot for heavy industrial applications, c) parallel robot for
pick-and-place applications, d) parallel robot with large workspace. Photo
a) from DLR [2010], b), c) from ABB Robotics [2007] and d) from SMErobot
[2010].

i
i

main: 2011-01-11 10:21 — 33 (“15”) i
i

i
i

i
i

2.3 Modelling 15

2.3 Modelling

Robot control, especially model-based robot motion control, is in Brogårdh [2007,
2009] stated to be a key competence in the development of industrial robots. A
prerequisite for design of control laws is accurate kinematic and dynamic models
of the robot system. Mathematical models of the robot are also important in
mechanical design, performance simulation, offline programming, diagnosis and
supervision, among others.

This overview of robot modelling starts with a description of the mechanical
structure of the robot, then kinematics modelling is described, followed by rigid
and flexible dynamic models. Finally, a short summary of the control system and
examples of control strategies are given. General references for the remainder of
the chapter are Spong et al. [2006], Sciavicco and Siciliano [2000] and Tsai [1999].
For brevity, the time dependence on the variables is omitted in the chapter.

2.3.1 Basic concepts about robots

The individual bodies that together form a robot are called links, connected by
joints. The robot links form a kinematic chain, where the base of the robot is
defined as link 0, and the other end of the chain is connected to an end effector
or tool. When the kinematic chain is open, every link is connected to every other
link by only one chain of links. A robot having this type of mechanical structure
is called a serial link robot, or serial robot for short. If a sequence of links forms
one or more loops, the robot contains closed kinematic chains, resulting in a par-
allel robot1. In Figure 2.1 some examples of serial and parallel robots are shown,
with the ABB robot IRB6600 and the light-weight robot LWR III from DLR both
having an open kinematic chain. Robots with closed kinematic chains are exem-
plified by the robot IRB340 and the Gantry/Tau robot prototype in the figure. At
present, the serial robot is the most common kinematic structure.

Most industrial robots have six degrees of freedom (DOFs), which makes it pos-
sible to control both the tool position and orientation (tool pose). Generally a
serial robot with n DOFs has n joints and n + 1 links, and the convention is that
joint i connects link i − 1 to link i. For a parallel robot, the total DOFs for the
robot are equal to the DOFs associated with the moving links minus the number
of constraints imposed by the joints.

The links are connected by joints. With no loss of generality, single-DOF joints
are assumed, since joints having more DOFs can be expressed as a succession of
single-DOF revolute or prismatic joints connected by links of zero length [De-
navit and Hartenberg, 1955, Spong et al., 2006]. A prismatic joint is described by
a cube with side d, resulting in a translational motion. The commonly used rev-
olute joint has a cylindrical shape, where the motion is a rotation by an angle θ.
As an example, the robot IRB1400 from ABB having revolute joints is illustrated
in Figure 2.2a. A joint variable qi is associated to the ith joint, given by

1Also called parallel kinematic machine (PKM).

i
i

main: 2011-01-11 10:21 — 34 (“16”) i
i

i
i

i
i

16 2 Industrial robots

θ1

θ2

θ3

θ4

θ5

θ6

(a) Joint angular positions

0 0.25 0.5 0.75 1 −0.5

0

0.5

0

0.25

0.5

0.75

1

1.25

x [m]

y [m]

z
 [

m
]

x
0

y
0

z
0

x
1

y
1

z
1

x
2 y

2

z
2

x
3

y
3

z
3

x
4

y
4

z
4

x
5

y
5 z

5

x
6

y
6

z
6

(b) Coordinate frames

Figure 2.2: The ABB robot IRB1400 with a) joint angular positions θi ,
i = 1, . . . , 6 and b) coordinate frames for each joint of the robot.

qi =

θi , revolute joint
di , prismatic joint

For an n-joint robot the joint variables qi , i = 1, . . . , n form a set of generalised
coordinates. The vector of these joint variables is often denoted q in the literature.

The robot configuration is given by q, and the joint space2 is the set of all possible
values for the joint variables. The workspace is defined by the total volume swept
by the end effector when executing all possible motions of the robot3. The main
disadvantage with parallel robots is that they generally have a smaller workspace
compared to serial robots. On the other hand, a closed-kinematic chain struc-
ture can give a stiffer mechanical structure compared to an open-chain struc-
ture, thereby giving improved accuracy. It is also almost insensitive to scaling,
since the same mechanical structure can be used for very small as well as large
robots [Merlet, 2006, Merlet and Gosselin, 2008].

For a majority of the industrial robots, the links are actuated by electric motors.
The motor positions are measured by sensors, usually encoders or resolvers. A
transmission (gearbox) is often used, to amplify the motor torque and reduce
the speed. Introduction of a gearbox gives reduced coupling effects, but at the
expense of introducing gearbox friction, flexibilities and backlash. If the gearbox
dynamics is neglected, the relation between the motor (actuator) position qm and
the joint position q can be expressed by

q = Πqm (2.1)

2Also called configuration space.
3Other names are operational space or Cartesian space.

i
i

main: 2011-01-11 10:21 — 35 (“17”) i
i

i
i

i
i

2.3 Modelling 17

with the matrix Π of gear ratios. The elements in Π are generally small (≈ 0.01)
numbers.

2.3.2 Kinematics

Kinematics is a geometric description of the motion of rigid bodies, without con-
sidering the forces and torques causing the motion. The concepts of forward
kinematics4 and inverse kinematics of robots are illustrated in Figure 2.3. The
aim of forward kinematics is to compute the robot tool pose as a function of the
joint variables q. The inverse kinematics problem is the opposite — to compute
the joint configuration from a given tool pose.

By attaching coordinate frames to each of the rigid bodies forming a robot and
specifying the geometric relationships between the frames, it is possible to rep-
resent the relative position and orientation of one rigid body with respect to the
other rigid bodies. As an example, the coordinate frames attached to each of
the joints of the serial robot IRB1400 are illustrated in Figure 2.2b. The conven-
tion of coordinate frames and transformations for serial robots apply without
any changes also to a parallel robot. For a point p rigidly attached to a coordinate
frame i with local coordinate vector pi , the coordinates of p are expressed with
respect to the coordinate frame i − 1 according to the rigid motion

pi−1 = Rii−1pi + d ii−1 (2.2)

The vector d ii−1 describes the translation of the origin of frame i relative to the
origin of frame i − 1. The rotation matrix Rii−1 describes the orientation of the
frame i with respect to the frame i − 1. There are many ways of representing the
orientation, for example by using the axis/angle representation, Euler angles, roll-

?

?

??

?

?

?

?

?

q1

q2

q3

q4

q5

q6

y

x

z

Inverse kinematicsForward kinematics

Kinematics

Figure 2.3: In forward kinematics the joint variable vector q is known and
the robot tool pose is sought. Inverse kinematics means to compute the joint
configuration q from a given tool pose.

4Sometimes also called direct kinematics.

i
i

main: 2011-01-11 10:21 — 36 (“18”) i
i

i
i

i
i

18 2 Industrial robots

pitch-yaw angles or quaternions, see for example Spong et al. [2006] or Sciavicco
and Siciliano [2000].

The rigid motion (2.2) can be expressed using the homogeneous transformation
H as in

Pi−1 = H i
i−1Pi =

(
Rii−1 d ii−1

0 1

)
Pi (2.3)

where Pi denotes the homogeneous representation of the vector pi , given by

Pi =
(
pi
1

)
The homogeneous transformation matrix H i

i−1 is not constant, but varies with the
configuration of the robot, and is a function of the joint variable qi .

Forward kinematics

The forward kinematics aims at deriving the tool pose as a function of the joint
position q, see Figure 2.3. This can be described by the transformation

P0 = Hn
0 (q)Pn =

(
Rn0(q) dn0 (q)

0 1

)
Pn (2.4)

from the tool frame n to the base frame 0. For a serial robot, the derivation of the
forward kinematics is straightforward by direct geometric analysis of the kine-
matic chain. However, the complexity of the problem increases with the number
of joints and the robot structure, and therefore systematic and general procedure
is preferable. The Denavit-Hartenberg representation [Denavit and Hartenberg,
1955] is commonly used in robotics. In this convention, each homogeneous trans-
formation matrix H i

i−1(qi) from frame i to frame i − 1 is represented as a product
of four basic transformations, given from the geometric relationships between the
frames. The forward kinematics always has a unique solution for serial robots.

For systems with a closed kinematic chain, additional changes have to be made to
the Denavit-Hartenberg convention [Paul and Rosa, 1986], unless the kinematic
chain can be rewritten to a corresponding serial kinematic chain. Generally, the
kinematic description of a parallel robot it fundamentally different compared to
the serial robot and requires different methods of analysis. No closed-form solu-
tion exists for the forward kinematics of a general parallel robot. Additionally,
one set of joint variables generally corresponds to many tool poses. For parallel
robots, this makes the forward kinematics problem usually much more complex
than the inverse kinematics problem. From an initial guess of the solution, the
forward kinematics is usually solved using the Newton-Raphson or the Newton-
Gauss iterative scheme [Merlet and Gosselin, 2008]. There is however a risk that
the procedure may not converge, or converges to a solution that is not the cor-
rect tool pose. Therefore, the correctness of the solution has to be analysed, as is
discussed in for instance Merlet [2006] and Merlet and Gosselin [2008].

i
i

main: 2011-01-11 10:21 — 37 (“19”) i
i

i
i

i
i

2.3 Modelling 19

Inverse kinematics

The inverse kinematics problem is to find the values of the joint positions given
the robot tool pose with respect to the base frame, see Figure 2.3. Solving the
inverse kinematics problem is important when transforming the motion specifi-
cations of the tool to the corresponding joint positions to be able to execute the
motion. For a serial robot the inverse kinematics is in general more difficult to
solve than the forward kinematics. For the case of a serial robot, it means to solve
the set of nonlinear equations given by

H1
0 (q1) · · ·Hn

n−1(qn) = H(q) (2.5)

for a given homogeneous transformation H(q), representing the given position
and orientation of the tool. The joint variable vector q is to be found so that
the relation is satisfied. Generally, the equations are nonlinear. It is not always
possible to find a solution in closed form, and numerical methods for solving (2.5)
are required. For a solution to exist, the tool pose must lie within the workspace
of the robot. There may exist many solutions to the problem (or even infinitely
many solutions, which is the case for a kinematically redundant robot). By the
design of the robot kinematic structure, some of the problems can be avoided.

For parallel robots, the inverse kinematics problem is usually straightforward.
One example is the Gantry-Tau parallel robot, where the inverse kinematics prob-
lem can be solved independently for each motor from the closure equations for
the links [Johannesson et al., 2004, Dressler et al., 2007b]. For a given tool posi-
tion, the robot has two solutions for the inverse kinematics, referred to the left-
and right-handed configurations [Tyapin et al., 2002].

Velocity kinematics

Velocity kinematics relates the joint velocity vector q̇ to the linear velocity v and
angular velocity ω of the tool, as in

V =
(
v
ω

)
= J(q)q̇ (2.6)

with the manipulator Jacobian J(q), or Jacobian for short5. It is in general a non-
linear function of the joint variable vector q, computed by a geometric technique
where the contribution from each joint velocity to the tool velocity is determined.
Assume a minimal representation α of the orientation of the tool frame relative
to the base frame, for example Euler angles. Then the analytical Jacobian Ja(q)
can be defined from the following expression

Ẋ =
(
ḋ
α̇

)
= Ja(q)q̇ (2.7)

where d represents the origin of the tool frame with respect to the base frame.
Generally, the manipulator Jacobian J(q) differs from the analytical Jacobian Ja(q).

5It is also called the geometric Jacobian, to emphasise that the derivation is based on the geometry
of the robot structure.

i
i

main: 2011-01-11 10:21 — 38 (“20”) i
i

i
i

i
i

20 2 Industrial robots

For a serial robot, the ith column of the Jacobian is derived from the ith joint ve-
locity only, independently of the velocities of the other joints. For a parallel robot,
all other active joints are explicitly kept motionless. A closed-form expression for
the inverse Jacobian is usually available for parallel robots, while it is difficult to
derive an expression for the Jacobian [Merlet and Gosselin, 2008].

The Jacobian is one of the most important quantities in robot analysis and control,
used in for example planning of smooth trajectories, determination of singular
configurations and transformation of tool forces to joint torques. Identifying sin-
gular configurations is important. For a serial robot in a singular configuration,
a nonzero joint velocity results in a constant tool position. This happens when
columns of the Jacobian are linearly dependent, giving a decreasing rank of J(q)
for the actual configuration. Certain directions of motion may be unreachable,
or bounded joint torques may correspond to unbounded tool forces and torques.
Near singularities there may be no solution or infinitely many solutions to the
inverse kinematics problem for serial robots. For parallel robots the singular con-
figurations can be divided into different types [Gosselin and Angeles, 1990]. In
the so-called serial singularity (decreasing rank of Jacobian) the joints can have
a nonzero velocity, but the tool is at rest. For the parallel singularity (decreasing
rank of inverse Jacobian), there are tool velocities for which the joint velocities are
zero. This type of singularity is of great importance for analysis of parallel robots,
since it corresponds to configurations where the robot loses controllability. Very
large joint forces may also occur, leading to a breakdown of the robot [Merlet and
Gosselin, 2008].

2.3.3 Dynamics

The dynamic model of a robot structure describes the relation between the robot
motion and the forces causing the motion. First, a rigid-body dynamic model is
presented. Second, modelling incorporating some of the mechanical flexibilities
is discussed.

Rigid-body dynamic model

There are several methods for deriving a rigid-body dynamic model, all based
on classical mechanics [Goldstein et al., 2002], with the Lagrange equations and
the Newton-Euler formulation being the two most common approaches [Spong
et al., 2006]. The Lagrange equations are based on the Lagrangian of the system,
which is the difference between the kinetic and potential energy. The Newton-
Euler formulation is a recursive formulation of the dynamic equations and it is
often used for numerical calculation online. In this overview only the Lagrange
formulation will be covered in some detail.

With the Lagrange approach, a set of generalised coordinates is chosen,

q =
(
q1 . . . qn

)T
(2.8)

for an n-DOF robot. The Lagrangian L(q, q̇) is defined as the difference between

i
i

main: 2011-01-11 10:21 — 39 (“21”) i
i

i
i

i
i

2.3 Modelling 21

the total kinetic energy K(q, q̇) and the total potential energy P (q) of the system,

L(q, q̇) = K(q, q̇) − P (q) (2.9)

The kinetic energy can be rewritten to a quadratic function of the vector q̇ of the
form

K(q, q̇) =
1
2
q̇TM(q)q̇

with the inertia matrix M(q) consisting of the configuration dependent inertia
matrix Ma(q) of the robot arm plus the inertia matrix Mm(q) of the rotating mo-
tors. Computing the Lagrangian (2.9) and denoting the partial derivative of the
potential energy by gk(q) gives

gk(q) =
∂P (q)
∂qk

, k = 1, . . . , n

where the gravity vector G(q) is

G(q) =
(
g1(q) . . . gn(q)

)T
The equations of motions for the system are given from Lagrange’s equations

d
dt

∂L(q, q̇)
∂q̇k

−
∂L(q, q̇)
∂qk

= τk , k = 1, . . . , n

where τk is the generalised force associated with the generalised coordinate qk .
The terms of the Lagrangian involving products of the type q̇i , called centrifugal
terms, and the terms involving products of the type q̇i q̇j , called Coriolis terms,
are grouped into the matrix C(q, q̇). To summarise, the dynamic model of a rigid
robot can be written as

M(q)q̈ + C(q, q̇) + G(q) = τ (2.10)

where τ is the vector of torques applied. Note that the quantities are expressed on
the link side of the gearbox. The corresponding motor torques can be computed
from τm = Πτ . The model (2.10) can be extended with, for example, a nonlinear
friction torque F(q̇). A classical friction model incorporates the Coulomb friction
and viscous friction, while more advanced friction models are the LuGre model
and the Stribeck friction model, described in for instance Olsson et al. [1998]
and Armstrong-Hélouvry [1991].

For the serial robot, the generalised coordinates (2.8) can be chosen as the joint
variables. If the robot contains a closed kinematic chain, an equivalent open
kinematic chain of tree structure is derived by virtually cutting the loop at a joint.
The generalised coordinates can then be chosen as the actuated joint variables.
One possible way to derive the dynamic model of the parallel robot is to first
derive the dynamic model of the equivalent open kinematic chain. The torques
corresponding to the actuated joints can be computed, resulting in equations of
motion in the form (2.10), see Sciavicco and Siciliano [2000].

i
i

main: 2011-01-11 10:21 — 40 (“22”) i
i

i
i

i
i

22 2 Industrial robots

Flexible joint dynamic model

The flexible joint model is presented as an example of how to extend the rigid
dynamic model (2.10), where it is assumed that the rigid bodies are connected
by elastic joints (gearboxes) modelled by torsional spring-damper pairs. This is a
good description of the robot when the mechanical flexibilities are concentrated
to the joints and when the gear ratio is high, thus reducing the inertial couplings
between the motors and the links [Spong et al., 2006].

A flexible joint model for a single robot joint rotating in a horizontal plane is illus-
trated in Figure 2.4. The gearbox is characterised by spring coefficient k, damping
coefficient d and gear ratio η. The mass of the motor and the arm have moments
of inertia Mm and Ma, respectively, and the viscous friction fm is approximated
as acting only on the motor. The motor angular position and joint angular posi-
tion are represented by qm and qa, respectively, and the motor is driven by the
torque τ , which can be modelled by the input voltage times a torque constant,
that is, τ = kτu. To summarise, the flexible joint model is described by

Mmq̈m + fmq̇m + ηk(ηqm + qa) + ηd(ηq̇m + q̇a) = kτu = τ (2.11a)

Maq̈a − k(ηqm − qa) − d(ηq̇m − q̇a) = 0 (2.11b)

The flexible joint dynamic model is used for illustrative purposes in Chapters 5, 6
and 9. From the dynamics (2.11) it is straightforward to compute the transfer
functions

Qm(s) = Gm(s)τ(s) (2.12a)

Qa(s) = Ga(s)Qm(s) (2.12b)

The zeros of (2.12a) appear as poles of (2.12b), and corresponds to a notch fre-

quency of ω ≈
√

k
Ma

rad/s. The model (2.11) can be extended to for example in-

clude the inertial couplings between the links and the motors, see Tomei [1990].
A detailed survey of models for robots with elastic joints or elastic links can be
found in for instance De Luca and Book [2008].

τ(t), qm(t)

qa(t)

Mm

Ma

k, d
η

fm

Figure 2.4: A two-mass model of the dynamics of a single robot joint. It
is characterised by spring coefficient k, damping coefficient d, viscous fric-
tion fm, gear ratio η, moments of inertia Mm, Ma, motor angular position qm
and joint angular position qa. The motor torque τ is generated by a torque
constant kτ times the input voltage.

i
i

main: 2011-01-11 10:21 — 41 (“23”) i
i

i
i

i
i

2.3 Modelling 23

Extended flexible joint dynamic model

In Moberg [2010] it is discussed how to describe the dynamics of a modern in-
dustrial robot. The idea is to replace the one-dimensional spring-damper pairs
in the actuated joints with spring-damper pairs of several dimensions, resulting
in the extended flexible joint model originally presented in Moberg and Hanssen
[2007]. If necessary, each elastic link is then divided into a suitable number of
rigid bodies at proper locations, connected by multi-dimensional spring-damper
pairs. By adding non-actuated pseudo-joints to the model, it allows for modelling
of the bending out of the plane of rotation, for example the elasticity of bearings,
tool and foundation, as well as bending and torsion of the links. As pointed out
in Moberg [2010], the number of added non-actuated joints and their locations
are not obvious. A proper selection of the model structure is therefore a crucial
part of the modelling and identification.

The model equations are in Moberg and Hanssen [2007] given by

M(qa)q̈a + C(qa, q̇a) + G(qa) +
(
fg (q̇g)

0

)
=

(
τg
τe

)
(2.13a)

Kg (Π−1qm − qg) + Dg (Π−1q̇m − q̇g) = τg (2.13b)

−Keqe − De q̇e = τe (2.13c)

Mmq̈m + fm(q̇m) = τm −Π−1τg (2.13d)

where qa =
(
qg qe

)T
, with qg being the vector of actuated joint angular positions,

qe denoting the vector of non-actuated joint angular positions and qm represent-
ing the motor angular position vector. The actuator torques τm, τg and τe are
defined analogously. Furthermore, Mm and Ma(qa) denote the inertia matrices
for the motors and joints, where the inertial couplings between the motors and
the rigid bodies are neglected due to the assumption of high gear ratios [Spong
et al., 2006]. The matrices Kg , Ke, Dg and De are the stiffness and damping ma-
trices in the actuated and non-actuated directions, respectively. The Coriolis and
centripetal torques are described by C(qa, q̇a), the gravity torque is given by G(qa)
and the nonlinear friction in motor bearings and gearboxes are modelled by the
terms fm(q̇m) and fg (q̇g). For the choice of removing all non-actuated joints, the
extended flexible joint model equals the flexible joint model.

Flexible nonlinear two-link dynamic robot model

As an example of dynamic robot models, the flexible nonlinear two-link robot
model illustrated in Figure 2.5 is studied in some detail. The model corresponds
to the second and third link of a large industrial serial robot with six motors,
and is validated by experiments made on a commercial industrial robot [Moberg
et al., 2008]. In the model the robot joints have nonlinear elasticity and friction,
while the links are considered as being rigid. The model is part of the benchmark
problem for robust control of a multivariable nonlinear flexible industrial robot,
published in Moberg et al. [2008]. The model is also used in a simulation study
of estimation-based ILC in Chapter 7.

i
i

main: 2011-01-11 10:21 — 42 (“24”) i
i

i
i

i
i

24 2 Industrial robots

0x̂

0ẑ

1aq

2aq

P

1111 ,,, ljm ξ

2222 ,,, ljm ξ

11),(ds ⋅τ

22),(ds ⋅τ

1111),(,, η⋅mmm fqj

1mu

2mu

2222),(,, η⋅mmm fqj

Figure 2.5: Flexible nonlinear two-link robot model. The rigid links are
described by massm, link length l, center of mass ξ and inertia j with respect
to the center of mass. The elastic joints (gear transmissions) are described by
gear ratio η, nonlinear spring torque τs and linear damping d. The nonlinear
friction torque f acts on the motors. The deflection in each joint is described
by the motor angular position qm and joint angular position qa.

In the model, each link has rigid-body characteristics described by mass m, link
length l, center of mass ξ and inertia j with respect to center of mass. The links
are actuated by electric motors, via elastic joints. The deflection in each joint is de-
scribed by the motor angular position qm and joint angular position qa. The joint
dynamics is described by nonlinear spring torque τs, linear damping d, nonlinear
friction torque f and gear ratio η. The angular position vector q and vector u of
model inputs are described by

q =


qa1
qa2

qm1/η1
qm2/η2

 , u =


ua1
ua2
um1η1
um2η2


The robot dynamics are given by

M(q)q̈ + C(q, q̇) + G(q) + Dq̇ + K(q) + F(q̇) = u (2.14)

with the inertia matrix M(q) as in

M(q) =


M11(q) M12(q) 0 0
M21(q) M22(q) 0 0

0 0 jm1η
2
1 0

0 0 0 jm2η
2
2

 =
(
Ma(qa) 0

0 Mm

)
(2.15)

i
i

main: 2011-01-11 10:21 — 43 (“25”) i
i

i
i

i
i

2.3 Modelling 25

with the terms

M11(q) = j1 + m1ξ
2
1 + j2 + m2(l21 + ξ2

2 − 2l1ξ2 sin qa2)

M12(q) = j2 + m2(ξ2
2 − l1ξ2 sin qa2)

M21(q) = M12(q)

M22(q) = j2 + m2ξ
2
2

and Ma(qa) and Mm denoting the inertia matrices for the links and motors, re-
spectively. The vector C(q, q̇) of Coriolis and centripetal terms is

C(q, q̇) =


−m2l1ξ2(2q̇a1q̇a2 + q̇2

a2) cos qa2
m2l1ξ1q̇

2
a1 cos qa2
0
0

 (2.16)

and the vector G(q) of gravity torques is described as

G(q) =


−g

(
m1ξ1 sin qa1 + m2

(
l1 sin qa1 + ξ2 cos(qa1 + qa2)

))
−gm2ξ2 cos(qa1 + qa2)

0
0

 (2.17)

with g denoting the gravitational constant. The linear damping matrix D is

D =


d1 0 −d1 0
0 d2 0 −d2
−d1 0 d1 0

0 −d2 0 d2

 (2.18)

The nonlinear spring torque is given by

K(q) =


τs1(∆q1)
τs2(∆q2)
τs1(−∆q1)
τs2(−∆q2)

 (2.19)

with the deflection

∆qi = qai − qm1/ηi , i = 1, 2

and where the nonlinear relations are

τsi =

ki1∆qi + ki3∆
3
qi , |∆qi | ≤ ψi

sign(∆qi)
(
mi0 + mi1(|∆qi | − ψi)

)
, |∆qi | ≥ ψi

ki1 = klow
i

ki3 = (khigh
i − klow

i)/(3ψ2
i)

mi0 = ki1ψi + ki3ψ
3
i

mi1 = k
high
i

i
i

main: 2011-01-11 10:21 — 44 (“26”) i
i

i
i

i
i

26 2 Industrial robots

The nonlinear stiffness is specified by the lowest stiffness klow
i , the highest stiff-

ness khigh
i and the break-point deflection ψ. For the choice klow

i = k
high
i = ki , the

stiffness is linear, τsi = ki∆qi . Finally, the vector of nonlinear friction torques is
approximated as acting only on the motors, and is given by

F(q̇) =


0
0

f1(q̇)
f2(q̇)

 (2.21)

with the following friction model

fi(q̇) = ηi

(
fvi q̇mi + fci

(
µki + (1 − µki) cosh−1(βi q̇mi)

)
tanh(αi q̇mi)

)
, i = 1, 2

The robot tool position P in the base frame, see Figure 2.5, is then described by
the forward kinematics

P =
(
x(q)
z(q)

)
=

(
l1 sin qa1 + l2 cos(qa1 + qa2)
l1 cos qa1 − l2 sin(qa1 + qa2)

)
(2.22)

The model can be extended to, for example, incorporate measurement noise and
time delay of the measurements. The control signals (motor torques) can also be
subject to disturbance and saturation. See Moberg et al. [2008] for the details
regarding the benchmark problem and for suitable model parameters.

2.4 Control

There is a constant need for improved robot models and control methods to
be able to satisfy the increasing demands on the robot performance [Brogårdh,
2007, 2009]. In this section a brief overview over the robot control system is
given, together with some common control approaches. The reader is referred to
for example Spong et al. [2006], Sciavicco and Siciliano [2000] or Siciliano and
Khatib [2008] for a more detailed description of different control methods used
in robotics. These references are also the main references used in this section.
In Brogårdh [2007, 2009] and Moberg [2010] an overview of the current status of
robot motion control is given from an industrial point of view.

2.4.1 Robot control system

The robot control problem can be divided into the following parts:

• Path planning: a path is determined in task space (or configuration space)
in order to move the robot to a desired position without colliding with ob-
stacles. It is a pure geometric description without any time laws specified.
This can be done manually by specifying the motion by a series of com-
mands in a robot programming language. The path can also be calculated
in an offline-programming system, or be specified on a higher level by task
programming.

i
i

main: 2011-01-11 10:21 — 45 (“27”) i
i

i
i

i
i

2.4 Control 27

• Trajectory generation: responsible for generating a tool trajectory, such
that it is possible to follow the desired tool trajectory without actuator satu-
ration or violating other limitations set by the robot designer (for example
motor and gearbox torques and structural forces). The desired tool motion
is specified in terms of position, velocity and acceleration as a function of
time. To be able to use the generated trajectory for control, it has to be
transformed into the configuration space, that is, corresponding joint angu-
lar positions. This step relies on the inverse kinematics, and is in general
not possible to do analytically.

• Motion control: to control the motors such that the tool follows the desired
trajectory. The problem could be point-to-point control, where only the
start and end points on the path and the travelling time are defined, or
trajectory tracking, when the desired trajectory is to be followed at every
time step. The focus in this overview will be on trajectory tracking, which is
a complex problem to solve due to the multivariable, nonlinear and coupled
robot dynamics. Control of robots in interaction with the environment (for
example force control) will not be treated here.

The parts of the robot control system is illustrated in Figure 2.6. The kinematic
and dynamic robot models are used in path planning and trajectory generation
to generate a trajectory that is feasible, that is, a trajectory possible to follow by
the robot tool. The robot motion control is often model-based. The actual robot
motion is measured by sensors, normally only the motor angular positions.

Path

planning

Trajectory

generation

Motion

control
Sensors

Task

Figure 2.6: Block diagram of the robot control system.

2.4.2 Motion control

The mechanical design of the robot influences the type of controller. The robots
studied in this thesis are driven by electric motors equipped with gearboxes, thus
implying flexible joint dynamics.

Since the reference trajectory is known beforehand, it can be used in a feedfor-
ward controller to give the essential performance of the system. The feedback
control loop adds stability and reduces sensitivity to disturbances and model un-
certainties. It is often assumed that the motor torque control is ideal and can

i
i

main: 2011-01-11 10:21 — 46 (“28”) i
i

i
i

i
i

28 2 Industrial robots

be seen as a part of the motor, which also has been experimentally proved to be
a reasonable assumption [Moberg, 2010]. Therefore, the control signal can be
considered as the motor torque reference. The measurements available in com-
mercial robot systems are normally only the motor angular positions [Brogårdh,
2009, Spong et al., 2006]. The motion control approaches can be divided into de-
centralised control and centralised control. The concepts are described in some
more detail below by giving examples of common methods used in robot motion
control, illustrated in Figure 2.7.

Flexible

dynamics

model

Feedforward

controller

Feedback

controller
Robotqr(t)

qm,r(t)

τf f (t)

τf b(t) τ(t) q(t)

qm(t)
++

−

Figure 2.7: Block diagram of the robot motion control.

Independent joint control

The basic way of controlling a robot is by independent joint control, which is a
decentralised control approach. Independent joint control means that each robot
joint is controlled separately and the coupling effects between the links due to
varying configurations are treated as disturbances. By relying on only motor an-
gular position measurements, it requires a model of the gearbox dynamics of the
single joint, to transform the desired trajectory in the joint space to the actuator
space.

Since the main performance is expected to be given from a feedforward controller,
a fairly simple structure of the independent joint controller can be chosen, for
example proportional-derivative (PD) compensation

τfb = KP (qm,d − qm) + KD (q̇m,d − q̇m) (2.23)

where the desired motor position and motor velocity are given by qm,d and q̇m,d ,
respectively.

Feedforward control

Independent joint control is adequate in many point-to-point applications, but
not for trajectory tracking. For a complex path, it is not satisfactory to have
smooth trajectories in order not to excite the flexibilities in the robot structure,
since this would lead to longer cycle times. Therefore, model-based controllers
taking into account the robot dynamics should be considered, both for feedback
and feedforward control. The model-based approach is typically more computa-
tionally intensive than the decentralised approach in independent joint control.

i
i

main: 2011-01-11 10:21 — 47 (“29”) i
i

i
i

i
i

2.5 Summary 29

Consider the rigid-body dynamics (2.10) of a rigid robot. The main performance
can be achieved by introducing a feedforward term based on the robot dynamics,
as in

τff = M̂(qd)q̈d + Ĉ(qd , q̇d)q̇d + Ĝ(qd)

where M̂ is a model of the true inertia matrix M. When the true system is exactly
known, the feedforward controller results in perfect tracking if no disturbances
are present. However, since the model suffers from model uncertainties, the ro-
bustness to model uncertainties can be increased by combining the feedforward
control action with independent joint control according to

τ = M̂(qd)q̈d + Ĉ(qd , q̇d)q̇d + Ĝ(qd)︸ ︷︷ ︸
τff

+KP (qd − q) + KD (q̇d − q̇)︸ ︷︷ ︸
τfb

Feedback linearisation control

The aim of feedback linearisation is to cancel nonlinear terms of the robot system
by using the inverse dynamics according to

τ = M̂(q)aq + Ĉ(q, q̇)q̇ + Ĝ(q)

where aq represents an input to be chosen. When the model is equal to the true
system, it results in decoupled linear dynamics for each joint, namely decoupled
double integrators

q̈ = aq

These decoupled systems can be controlled by a decentralised method, for exam-
ple a PD-controller, by choosing

aq = q̈d + KP (qd − q) + KD (q̇d − q̇)

The resulting control action is calculated from an inner loop (feedback linearisa-
tion) in combination with an outer loop (linear controller). However, one draw-
back is that the implementation of the feedback linearisation control requires
online computation of the robot inverse dynamics.

2.5 Summary

The prerequisites for the era of industrial robots are mainly the early automation
in the industry. The robots have developed from being simple devices perform-
ing only one task, to complex mechatronic systems capable of handling a broad
spectrum of applications.

Models are important tools for improving robot performance. By kinematic mod-
els, the robot structure and for example singular configurations can be analysed.
Dynamic models can be divided into rigid-body models and flexible models. The
flexible joint dynamic model is used for illustrative purposes in the thesis in sim-
ulations presented in Chapters 5, 6 and 9. The simulation study in Chapter 7 is

i
i

main: 2011-01-11 10:21 — 48 (“30”) i
i

i
i

i
i

30 2 Industrial robots

based on the nonlinear two-link dynamic robot model with flexible joints.

An overview of the robot control system is given, and some methods for robot mo-
tion control are summarised. The actual robot motion is normally only measured
by the motor angular positions. The control system constitutes a basis on which
ILC can be applied to the robot in order to improve the system performance.

i
i

main: 2011-01-11 10:21 — 49 (“31”) i
i

i
i

i
i

3
State estimation

The importance of additional sensors is expected to increase in future devel-
opment of industrial robots [Brogårdh, 2009]. Then there is an increased

need of fusing different measurements together to obtain estimates of relevant
signals. A short overview of some estimation techniques is given in this chapter,
with focus on state estimation by using Kalman filtering and estimation by using
complementary filtering. The intended usage of the approaches presented here
is to derive estimates of the robot tool position to be used in ILC algorithms, as is
discussed and illustrated in more detail in Chapters 6 to 8.

3.1 Estimation and sensor fusion in robotics

Due to both practical and economical reasons, the actual robot tool position is
not measured in industrial applications. This will be discussed in more detail in
Chapter 5. One possible way to handle this difficulty is to fuse measurements of
different kinds together by signal processing and estimation algorithms, to form
estimates of the tool position.

The Kalman filter is often used for fusing measurements of different kinds to-
gether to form an estimate. It has been used in a number of robotic publications.
Some examples are the experiments presented in Alder and Rock [1994, 1996],
where the states of a single-link flexible robot arm are estimated by a stationary
Kalman filter in presence of unknown load dynamics and coloured sensor noise.
In Li and Chen [2001], a laser-optical system is developed for measuring the tip
deflection of a planar one-link flexible robot arm. The system states are there-
after estimated from the measurements of the tip deflection and motor angular
position by a stationary Kalman filter.

31

i
i

main: 2011-01-11 10:21 — 50 (“32”) i
i

i
i

i
i

32 3 State estimation

Approaches for nonlinear estimation are also investigated in the robotics litera-
ture, with a number of publications discussing the usage of the extended Kalman
filter (EKF). One example is Lertpiriyasuwat and Berg [2000], where also an
overview of Kalman filtering and estimation in robotics are given. In the paper,
the performance of the EKF based on models with different quality are compared
when applied to a two-axis direct-driven robot arm with very flexible links. The
estimation algorithm uses measurements of motor angular positions and tool po-
sition. Karlsson and Norrlöf [2005] estimates the robot tool position by using
an EKF based on measurements of motor angular positions and tool accelera-
tion. The approach is evaluated on a flexible-joint robot model with three DOFs.
In Henriksson et al. [2009], different versions of the EKF as well as the determi-
nistic observer by [De Luca et al., 2007] are evaluated on a commercial industrial
robot, based on measurements of motor angular positions and tool acceleration.
Experimental results show improved robot motion control.

Many contributions also address the nonlinear estimation problem of robots with
structural flexibility, without using Kalman filters. One example is the early pub-
lication Nicosia et al. [1988], where approximate observers for robots having elas-
tic joints are investigated. In a paper by Jankovic [1995], a reduced-order high-
gain observer for elastic robot joints is derived when the motor angular positions
and motor angular velocities are measured. The robustness of the observer is
investigated by simulations of a two-DOF robot model with elastic joints. The de-
terministic observer by De Luca et al. [2007] explicitly uses the model structure of
a robot with linear joint elasticity. Measurements of motor angular positions and
signals from accelerometers mounted on the robot arm are used in the observer.
The approach is validated by experiments on a commercial industrial robot.

3.2 Estimation algorithms

An accurate model is a prerequisite for obtaining a good estimate. The model
does not necessarily have to fully describe the system, but has to capture the
essential properties of the system and be well suited for being used in the estima-
tion. Since most of the systems studied in practice are nonlinear, it implies that
one has to solve a nonlinear estimation problem. Consider therefore a discrete-
time nonlinear state-space model given by

x(t + 1) = f
(
x(t), u(t), t

)
+ v(t), v(t) ∼ N

(
0, Rv(t)

)
(3.1a)

y(t) = h
(
x(t), u(t), t

)
+ w(t), w(t) ∼ N

(
0, Rw(t)

)
(3.1b)

with state vector x(t), input u(t) and measured output y(t), see for example Rugh
[1996] or Kailath et al. [2000]. The initial state vector x(0) is assumed to be Gaus-
sian with mean x̄0 and covariance P̄0. The process and measurement noise v(t)
and w(t) enter additively and are assumed to be white with zero mean and co-
variance matrices Rv(t) and Rw(t), respectively. A sampling interval of Ts = 1
has been used in (3.1) for notational simplicity. The model (3.1a) describes the
evolution of the state variables over time, while the measurement model (3.1b)

i
i

main: 2011-01-11 10:21 — 51 (“33”) i
i

i
i

i
i

3.2 Estimation algorithms 33

determines how the measurements are related to the state variables. The prob-
lem is now to estimate the state vector x(t + m) by using measurements of the
output y(t) up to and including time t, denoted x(t + m|t). The estimation prob-
lem can be divided into three categories; filtering (m = 0), prediction (m > 0)
and smoothing (m < 0). In this overview, the focus will be on one-step ahead
prediction (m = 1).

The estimation problem for the nonlinear model (3.1) can be solved by approx-
imating the model (3.1) by a local linear model, and then derive an estimator
for the linear model. The first approach, known as the linearised Kalman fil-
ter [Kailath et al., 2000], was to linearise the state-space equations around a
known nominal trajectory. Later, it was found that relinearisation about the cur-
rent state estimate might lead to smaller errors than for the former approach,
and this procedure is called the (Schmidt) extended Kalman filter [Kailath et al.,
2000], or EKF for short.

The Kalman filter was in 1960 presented in the seminal paper by Kalman [1960].
One of the classical references regarding Kalman filtering is the book Anderson
and Moore [1979]. A publication thoroughly covering not only Kalman filtering
but also many aspects of state-space estimation is Kailath et al. [2000], which
together with Grewal and Andrews [2008] and Gustafsson [2000] are the main
references for this chapter. An overview of examples of applications can be found
in for instance Sorenson [1985].

3.2.1 Kalman filter

A common special case of the nonlinear model (3.1) is the linear time-variant
state-space model subject to Gaussian noise, given by

xt+1 = Atxt + Btut + vt , vt ∼ N (0, Rv,t) (3.2a)

yt = Ctxt + Dtut + wt , wt ∼ N (0, Rw,t) (3.2b)

where the subscript t is used from now on in the chapter to denote time depen-
dence. The Kalman filter for this model is given in Algorithm 1, see also Kailath
et al. [2000, pp.332–333], Grewal and Andrews [2008, p.138] or Gustafsson [2000,
p.278] for a formulation of the equations. The update of the state estimate is re-
cursively alternating between updating the state vector from measurements and
one-step simulation. By adding new information from the measurement yt in
the measurement update step, the uncertainty is reduced and the covariance ma-
trix Pt|t of the estimation error is decreased. The uncertainty is then increased in
the time update due to the one-step ahead prediction. Under the assumption of
Gaussian variables x0, vt and wt , the Kalman filter is the best possible estimator
among all linear and nonlinear ones, in the sense of minimum variance of the
estimation error.

The Kalman filter has been widely used in a broad field of applications. One
explanation to its popularity is the usage of the state-space description. This en-
ables easy incorporation of different types of sensor models within the algorithm,
together with the possibility to quantitatively assign the quality of different sen-

i
i

main: 2011-01-11 10:21 — 52 (“34”) i
i

i
i

i
i

34 3 State estimation

Algorithm 1 Kalman filter

Consider the linear model (3.2). Initialise by setting x̂0|−1 = x̄0 and P0|−1 = P̄0.
The estimator is recursively computed by the following steps:

1. Measurement update
x̂t|t = x̂t|t−1 + Kt(yt − Ct x̂t|t−1 − Dtut) (3.3a)

Pt|t = Pt|t−1 − KtCtPt|t−1 (3.3b)

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t + Rv,t)

−1 (3.3c)
2. Time update

x̂t+1|t = At x̂t|t + Btut (3.4a)

Pt+1|t = AtPt|tA
T
t + Rw,t (3.4b)

sor measurements by the statistical properties introduced [Durrant-Whyte and
Henderson, 2008]. The linear structure of the Kalman filter algorithm also makes
it easy to implement and apply to the system.

In the case of applying a Kalman filter to a time-invariant state-space model,
given by the relations

xt+1 = Axt + But + vt , vt ∼ N (0, Rv) (3.5a)

yt = Cxt + Dut + wt , wt ∼ N (0, Rw) (3.5b)

the covariance matrix will approach the steady-state covariance P̄ as t →∞. The
Kalman gain is consequently approaching the steady-state Kalman gain K̄ , thus
resulting in the stationary Kalman filter summarised in Algorithm 2, see also
Gustafsson [2000, p.286]. The stationary Kalman filter aims at minimising the
variance of the estimation error under the assumption that the initial error has
faded away. From Algorithm 2 it can be seen that the Kalman gain K̄ and co-
variance P̄ can be computed in advance and stored in a computer. This gives a
decreased computational load compared to the KF in Algorithm 1.

Algorithm 2 Stationary Kalman filter
Consider the linear time-invariant model (3.5). The stationary Kalman filter in
predictor form is given by

x̂t+1|t = (A − AK̄C)x̂t|t−1 + AK̄yt + (B − AK̄D)ut (3.6a)

P̄ = AP̄ AT − AP̄ CT (CP̄ CT + Rv)−1CP̄ AT + Rw (3.6b)

K̄ = P̄ CT (CP̄ CT + Rv)−1 (3.6c)

3.2.2 Extended Kalman filter

To be able to apply the Kalman filter to nonlinear systems, the nonlinear system
model (3.1) is linearised. A local approximation is obtained by a first-order Taylor

i
i

main: 2011-01-11 10:21 — 53 (“35”) i
i

i
i

i
i

3.2 Estimation algorithms 35

expansion around the current state estimate, giving

f (xt , ut , t) ≈ f (x̂t|t , ut , t) + Ft(xt − x̂t|t) (3.7a)

h(xt , ut , t) ≈ h(x̂t|t−1, ut , t) + Ht(xt − x̂t|t−1) (3.7b)

where

Ft =
∂f (x, ut , t)

∂x

∣∣∣∣∣
x=x̂t|t

, Ht =
∂h(x, ut , t)

∂x

∣∣∣∣∣
x=x̂t|t−1

Using the linearisation in (3.1) gives

xt+1 = f (x̂t|t , ut , t) − Ft x̂t|t + Ftxt + vt , vt ∼ N (0, Rv,t) (3.8a)

yt = h(x̂t|t−1, ut , t) − Ht x̂t|t−1 + Htxt + wt , wt ∼ N (0, Rw,t) (3.8b)

The Kalman filter can then be applied to this linear model (3.8), resulting in the
EKF algorithm formulated in for example Kailath et al. [2000, p.340] or Grewal
and Andrews [2008, p.400] and summarised in Algorithm 3.

Algorithm 3 Extended Kalman filter (EKF)
Consider the nonlinear model (3.1), linearised around the current state estimate
to give the model (3.8). Initialise by setting x̂0|−1 = x0 and P0|−1 = P0. An estimator
is then recursively computed by the following steps:

1. Measurement update
x̂t|t = x̂t|t−1 + Kt

(
yt − h(x̂t|t−1, ut , t)

)
(3.9a)

Pt|t = Pt|t−1 − KtHtPt|t−1 (3.9b)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rv,t)

−1 (3.9c)
2. Time update

x̂t+1|t = f (x̂t|t , ut , t) (3.10a)

Pt+1|t = FtPt|tF
T
t + Rw,t (3.10b)

From the relations (3.9) and (3.10) it can be seen that the calculations depend
on the estimated states, due to the matrices Ft and Ht in the linearisation (3.7).
The Kalman gain and covariance can therefore not be precomputed, which may
result in a large computational load when implemented in a practical applica-
tion [Kailath et al., 2000]. This is however not a critical issue in ILC applications,
where the estimates can be derived offline.

Since the Kalman filter is applied to the linearised model (3.8), the resulting es-
timator is not optimal and there may be a nonlinear estimator producing better
estimates. Also a considerable amount of tuning of the EKF is often required to
produce an estimation filter with reasonably performance. Another problem is
the risk of divergence. Still, the EKF often performs well in practice and this
approach, with variations, is today the most widely used nonlinear state-space
estimator [Kailath et al., 2000].

i
i

main: 2011-01-11 10:21 — 54 (“36”) i
i

i
i

i
i

36 3 State estimation

3.2.3 Complementary filtering

A pair of filters is called a complementary filter if the sum of their transfer func-
tions is one over all frequencies [Higgins, 1975]. It is an estimation technique for
sensor fusion used in for instance flight control industry and navigation system
design and is popular because of its simplicity. Applications of the complemen-
tary filter are given in for example Higgins [1975] and the references therein. See
also Pascoal et al. [2000] and Corke [2004] for more examples of applications
where the method is used. In Higgins [1975] the relation between the comple-
mentary filter and the stationary Kalman filter is shown for a certain class of
filtering problems. A similar kind of filter pairs is widely used in communication
systems, see for example Vaidyanathan [1993]. However, there the sum of the
transfer functions does not have zero phase, since many communication systems
can handle time delays.

Complementary filtering is used to fuse noisy measurements of the same phys-
ical variable from two sensors with different frequency characteristics [Higgins,
1975]. No details about the statistical properties of the noise processes are consid-
ered in complementary filtering, and the filters are derived from a simple analysis
in the frequency domain. For example, consider a case when measurement s1(t)
from the first sensor has mostly high-frequency noise and measurement s2(t)
from the second sensor suffers from noise mostly at low frequencies. First, the
measurement s1(t) is filtered by using a low-pass filter G(q), with q denoting the
time-shift operator. A high-pass filter given by 1 − G(q), the complement to G(q),
is then used to filter the measurement s2(t). The filtered signals are then added
to form an estimate of the physical variable x(t) as in

x̂(t) = G(q)s1(t) +
(
1 − G(q)

)
s2(t) (3.11)

3.3 Summary

A short introduction to state estimation is given in this chapter, with focus on the
linear Kalman filter and the extended Kalman filter (EKF). Finally, a model-free
estimation approach, the complementary filter, is summarised. Examples of ap-
plications of these methods are given. In this thesis the estimation techniques are
used to obtain estimates of the robot tool position to be used in ILC algorithms.

i
i

main: 2011-01-11 10:21 — 55 (“37”) i
i

i
i

i
i

4
Iterative learning control

The fundamental ideas and aspects regarding iterative learning control, or
ILC for short, are described with focus on discrete-time linear systems. First,

the concept of ILC is introduced and a formulation of the system description is
given. Then, a general description of ILC updating formulas is presented, fo-
cusing on first-order linear algorithms. Stability and convergence properties of
a linear system using ILC are then discussed, followed by examples of design
methods. The chapter is concluded by discussing various applications of ILC.

4.1 Introduction to the concept of ILC

The concept of ILC is inspired by human learning [Arimoto et al., 1984b], and
has its origin in industrial robot applications where the same task is performed
repeatedly. It is then a sound idea to try to improve the performance, using in-
formation of how the task was performed in previous repetitions by adding a
correction signal to the system. The key problem in ILC is what type of algo-
rithm to use for generation of the correction input signal, which should result
in a smaller error in some norm. When applying an ILC algorithm to a system,
it should ideally result in a large decrease of the error with only limited (a min-
imum) knowledge of the system dynamics [Moore, 1993, Longman, 2000, Elci
et al., 2002].

Another motivation for using ILC can be given by studying a system perform-
ing several types of motions [Moore, 1993]. An industrial robot is one example
of such a system, since it can be programmed for a variety of tasks. It is a chal-
lenging problem to develop a robot motion control system which makes the robot
follow all types of trajectories and satisfy the same requirements of high accuracy

37

i
i

main: 2011-01-11 10:21 — 56 (“38”) i
i

i
i

i
i

38 4 Iterative learning control

everywhere in the workspace. When performing each of these different motions
repeatedly, it is possible to improve performance by using ILC.

The inherent property of the signals involved when performing a task repeatedly
is the finite time duration. For practical implementation of ILC algorithms, it
involves computer-based controllers operating in discrete time together with dig-
ital storage of the information. Thus, it is natural to consider discrete-time ILC
algorithms applied to systems operating in finite time [Moore, 1993, Longman,
2000]. Therefore, this thesis focuses on ILC algorithms for discrete-time systems.

4.2 Historical background

The origin of ILC can be traced back to the beginning of the 1970s. An application
for a United States patent on “Learning control of actuators in control systems”
was accepted in 1971, see Garden [1971]. The idea was to store a command signal
in a computer memory. A learner iteratively updates the signal by an amount
related to the error between the actual response and the desired response of the
actuator. In the patent, applications of this learning control law are discussed for
electric drive units and pneumatic actuators. This is clearly an implementation
of ILC in a general sense, as is discussed in Chen and Moore [2000], although the
updating equation is not explicitly formulated in the patent. The first academic
contribution to what today is called ILC is the paper by Uchiyama [1978]. Since it
was only published in Japanese, the idea was not widely spread until 1984, when
the papers by Arimoto et al. [1984b], Casalino and Bartolini [1984], and Craig
[1984] were independently published, all describing a method that iteratively
could compensate for model errors and disturbances. Thereafter ILC started to
become an active research area with a growing number of publications. The idea
was especially developed by the group around Arimoto in a number of papers in
the middle to late 1980s, as seen in for example the references in Moore [1998a].

The method was first referred to learning control, betterment process, iterative
control, repetitive control, training or virtual reference, where virtual reference
refers to that a correction signal makes the system follow a “virtual” reference to
produce an output closer to the actual reference. The term iterative learning con-
trol is introduced in Arimoto et al. [1984a] and has become the standard notion
during the latter part of the time span for the research area [Moore, 1993].

The development of ILC grew originally from practical issues in the field of indus-
trial robotics, where repetitive motions appear in many applications. Much of the
early work is about convergence of ILC algorithms and robustness analysis. Spe-
cial attention is directed to linear systems or the special class of nonlinear systems
represented by robot dynamic models, see for example Arimoto et al. [1984b], To-
gai and Yamano [1985], Bondi et al. [1988] and Kawamura et al. [1988]. From the
late 1990s the focus has moved from analysis of ILC, to design and performance
of algorithms. One typical example is the book by Bien and Xu [1998] that cov-
ers both analysis, design and applications. Another commonly referred paper
is Longman [2000], discussing practical aspects of design and performance.

i
i

main: 2011-01-11 10:21 — 57 (“39”) i
i

i
i

i
i

4.3 ILC related to other control approaches 39

One of the open areas is ILC algorithms for nonlinear systems. Algorithms for
different classes of nonlinear systems have been developed and analysed, but
a unifying theory of ILC is still under development. Other examples of issues
pointed out to be important future research areas are formalisation of the tradeoff
regarding robustness versus performance, as well as connections to more general
learning paradigms [Moore, 1998a, Bristow et al., 2006]. Open problems are also
to derive general ILC methods when having not identical, but similar reference
signals [Bristow et al., 2006], and how to design algorithms simple enough, robust
and with good performance for industrial usage [Longman, 2000]. To conclude,
the ILC field is still growing and there are many theoretical as well as practical
issues to investigate.

The ILC research field is covered in a number of surveys, for instance Bien and Xu
[1998], Chen and Wen [1999] and Bristow et al. [2006]. Moore [1998a] gives a de-
tailed overview over the ILC area and a categorisation of much of the publications
up to 1998 and in Ahn et al. [2007] there is a discussion and classification of the
literature published between 1998 and 2004. A topological classification of the
general results is given in Moore [1998a], which also contains a list of references
related to robotics and other applications. A wide range of ILC algorithms has
been developed, as can be seen in the survey papers and the references therein.
Many of them, particularly those developed from a linear model of the system,
are also experimentally evaluated, as is discussed in Section 4.9.

4.3 ILC related to other control approaches

First, ILC is put into the context of conventional feedback control. Then repeti-
tive control is discussed, since it has much in common with ILC. Finally, ILC can
be seen as a part of the larger class of intelligent/learning control approaches.

4.3.1 Conventional control

The ILC update signal is based on data from previous iterations, and the algo-
rithm can be regarded as a feedback control law with respect to the iteration
domain. In the time domain, on the other hand, the ILC algorithm is acting
as a feedforward controller and the ILC input signal is updated only once per
iteration. If the system is initially unstable, it should first be stabilised by a con-
ventional feedback control technique, since the focus of the ILC algorithm is to
improve performance [Bristow et al., 2006]. Hence, the system is assumed to be
stable1.

A hybrid arrangement with two independent controllers — a stabilising feedback
controller in combination with an ILC algorithm — is very common in practical
applications [Longman, 2000]. The conventional controller gives good tracking
performance and reduces sensitivity to disturbances, while the ILC algorithm
improves the performance by reducing the remaining repetitive errors. The ILC

1Se the postulated by Arimoto in Section 4.5, for the principles underlying the concept of ILC.

i
i

main: 2011-01-11 10:21 — 58 (“40”) i
i

i
i

i
i

40 4 Iterative learning control

algorithm can therefore be seen as a complement to the conventional controller.
Since the ILC algorithm is applied offline, it means that when computing the
ILC input signal at the time instant t1, it is possible to use information from
previous iterations at a time instant t2 > t1. As a result, it is possible to use non-
causal filtering techniques. This can be compared to feedback control, where the
controller reacts to the error up to the current time step online, and therefore has
to be causal.

ILC is categorised as an offline method with a feedforward control action in
the time domain. This can be compared to model-based feedforward control,
where the control action is computed by using a stable approximate inverse of
the model2. This can also be done in a non-causal manner, in cases when the
reference trajectory is known beforehand. If the dynamics of the true system are
known, there is no need of iterative learning of the input in the disturbance-free
case. However, the outcome of the model-based feedforward control depends on
the quality of the model. ILC requires less information about the true system in
order to give the desired system performance, as has been illustrated in a number
of publications, see for example Moore [1993], Elci et al. [1994], Longman [2000]
and Bien and Xu [1998].

Optimal control relies on an accurate model of the system. If the physical sys-
tem changes, the optimal controller will no longer be optimal. On the other
hand, by using an ILC algorithm one can easily adapt to system and environ-
mental changes by adjusting the ILC input signal at the next iteration. This can
be contrasted to the adaptive control technique, where most adaptive control ap-
proaches are applied online and adjust the controller parameters.

4.3.2 Repetitive control

The control approach closest to ILC is repetitive control (RC). In the RC situa-
tion, the command to be executed is a periodic function of time and disturbances
having the same period are compensated. One example is a rotating disc with
a disturbance occurring at every revolution. The system does not return to the
same initial conditions before the next period starts, which is one of the assump-
tions in ILC, see Section 4.5. In RC the control changes at the end of one period
therefore influence the error at the beginning of the next period and transients
can propagate from one period to the next. This makes the stability analysis of
ILC and RC very different. Although practical applications of ILC and RC seem
very similar, the ILC approach is a special case of a two-dimensional system with
a finite time variable and an infinite iteration variable, while RC is not. Among
the differences between ILC and RC is also that an undefined amount of time can
elapse between the ILC iterations and that the ILC learning does not need to be
computed in real time, while the RC scheme acts as a feedback controller. For a
deeper understanding of the similarities and differences between the two control
approaches, a starting point could for example be the publications by Longman
[2000] and Elci et al. [2002].

2See Section 2.4.2 for feedforward control in robot motion control.

i
i

main: 2011-01-11 10:21 — 59 (“41”) i
i

i
i

i
i

4.4 System description 41

4.3.3 Intelligent/learning control

Artificial neural networks, fuzzy logic, expert systems and machine learning are
examples of frameworks that can be used for control. They all involve learning
in some form, and the phrase learning control is sometimes mentioned in con-
nection to these approaches [Moore, 1998a]. Learning control is a special case of
learning in general in the context of intelligent systems, as is discussed in for ex-
ample Albus [1991], where an overview picture of the field of learning is given. In
the paper, the concept of learning is regarded as a mechanism for storing knowl-
edge about the external world and to obtain skills and knowledge of how to act.
In that sense ILC can be classified into the group of intelligent control strategies.
However, ILC is based on a system-theoretic approach, in contrast to the other ap-
proaches which are based on artificial intelligence and computer science [Moore,
1993, 1998a].

The two fields of artificial neural networks and ILC are connected in for exam-
ple Moore [1993]. This is also the topic for a number of contributions in Bien
and Xu [1998], where integration of ILC and fuzzy/neural control methods is
discussed.

4.4 System description

Consider a system T depicted in Figure 4.1. It has four scalar inputs; a reference
signal r(t), an externally generated control signal u(t), and load and measurement
disturbances v(t) and w(t), respectively. The measured variable is denoted y(t),
while the controlled variable is denoted z(t). The system can have internal feed-
back, which means that the blocks denoted Tu , Tr , Tv and Tw contains the system
to be controlled as well as the controller in operation. All signals are defined on
a finite time interval t = nTs, n ∈ [0, N − 1] with N number of samples and sam-
pling interval Ts. In the remainder of this chapter, Ts = 1 if nothing else is stated.
Finally, Tu , Tr , Tv and Tw are assumed to be stable.

The aim in ILC is to iteratively update the control signal u(t), using information
from the measured output y(t), such that the controlled variable z(t) tracks the
reference r(t) as well as possible. The system T , illustrated in Figure 4.1, will
be used in the analysis of systems using ILC in this chapter. It is a special case
of a more general system with a dynamic relationship between the measured
variable y(t) and controlled variable z(t), which will be analysed in Chapter 6.

Time-domain description

In a situation where the system T in Figure 4.1 is a linear time- and iteration-
invariant system operating in discrete time, it can be described using transfer
operators

zk(t) = Tr (q)r(t) + Tu(q)uk(t) + Tv(q)vk(t) (4.1a)

yk(t) = zk(t) + Tw(q)wk(t) (4.1b)

i
i

main: 2011-01-11 10:21 — 60 (“42”) i
i

i
i

i
i

42 4 Iterative learning control

T

Tu

Tr

Tw

Tv

y(t)r(t)

u(t)

w(t)

v(t)

z(t)
++

Figure 4.1: Representation of the system used for analysis of ILC. Inputs are
the reference signal r(t), an externally generated ILC control signal u(t), and
load and measurement disturbances v(t) and w(t), respectively. Controlled
output is z(t) and measured output is y(t). The system T contains the system
to be controlled as well as the controller in operation.

where q denotes the time-shift operator. The subscript k is the iteration3 index
and indicates how many times the iterative motion has been repeated. No rep-
etitions have occurred when the motion is performed for the first time, which
corresponds to k = 0.

The forthcoming analysis of systems using ILC will be based on the system de-
scription (4.1). However, it can be noted that it is not always possible to measure
the controlled variable z(t), corrupted by some noise w(t), in practical applica-
tions. This issue is the common theme for Chapters 5 to 8. In these chapters the
situation of a dynamic relationship between the measured variable y(t) and con-
trolled variable z(t) is discussed and can be handled by introducing an estimate
of z(t) in the ILC algorithm.

Now define the vector r of the N -sample sequence of the reference signal r(t) as

r =
(
r(0) . . . r(N − 1)

)T
(4.2)

The other vectors uk , yk , zk , vk and wk are defined analogously. From the pulse-
response coefficients gTr (t), t ∈ [0, N − 1] of the transfer operator Tr (q) in (4.1),
the Toeplitz matrix Tr can be formed according to

Tr =


gTr (0) 0 . . . 0
gTr (1) gTr (0) . . . 0
...

...
. . .

...
gTr (N − 1) gTr (N − 2) . . . gTr (0)

 (4.3)

3Also called repetition, trial, pass, cycle or batch in the literature.

i
i

main: 2011-01-11 10:21 — 61 (“43”) i
i

i
i

i
i

4.4 System description 43

The system matrices Tu , Tw and Tv are defined analogously. They are lower-
triangular, since the corresponding transfer operators are causal. Finally, the
system description (4.1) can be rewritten in matrix form as

zk = Trr + Tuuk + Tvvk (4.4a)

yk = zk + Twwk (4.4b)

This matrix description is closely related to the descriptions of systems using ILC
in Phan and Longman [1988], Moore [1998b] and Tousain et al. [2001], among
others4. By writing the system (4.1) in matrix form, the time- and iteration-
domain description of the system is rewritten as a MIMO iteration-domain sys-
tem. The system description (4.4) is more general than the filter description (4.1),
since it can handle also time-variant systems. Then, the matrices are not lower-
triangular Toeplitz matrices, but instead general lower-triangular matrices that
can change from iteration to iteration.

The vectors and matrices describing the system in matrix form are throughout
the thesis written in bold face, to distinguish the matrix description (4.4) of the
system from the system description (4.1) using transfer operators.

Frequency-domain description

The corresponding frequency-domain representation of Tr (q) is defined from the
discrete-time Fourier transform (DTFT) of the pulse-response coefficients gTr (t),

Tr (e
iω) =

∞∑
n=0

gTr (n)e−iωn (4.5)

or by replacing q by eiω in Tr (q). The frequency-domain representation of the
other transfer operators in (4.1) are defined similarly. The signals zk(t), r(t), uk(t),
yk(t), vk(t) and wk(t) are transformed into the frequency domain by the DTFT,

X(eiω) =
∞∑
n=0

x(n)e−iωn (4.6)

It is assumed that the sums (4.5) and (4.6) exist and are finite for all ω. Finally,
the system (4.1) can be described in the frequency domain as

Zk(e
iω) = Tr (e

iω)R(eiω) + Tu(eiω)Uk(e
iω) + Tv(eiω)Vk(e

iω) (4.7a)

Yk(e
iω) = Zk(e

iω) + Tw(eiω)Wk(e
iω) (4.7b)

The matrix formulation (4.4) is more general than the frequency-domain descrip-
tion (4.7), since it can contain both time-variant as well as iteration-variant sys-
tems. Also note that the frequency-domain representation uses the assumption
of infinite time horizon. This is an approximation in the ILC setting, where a
finite time horizon is considered. This will be discussed in Chapter 9, where the
influence of boundary effects is analysed when filtering the signals over finite
time intervals through possibly non-causal ILC filters.

4Also called for example lifted form or system description using supervectors in the literature.

i
i

main: 2011-01-11 10:21 — 62 (“44”) i
i

i
i

i
i

44 4 Iterative learning control

4.5 Postulates by Arimoto

A number of principles that underlie the concept of ILC have been formulated
in Arimoto [1990, 1998]. The principles are given as the following postulates,
here with the formulation5 in Arimoto [1998]:

P1: Every iteration ends in a fixed time of duration T > 0.

P2: A desired output r(t) is given a priori over that time with duration t ∈ [0, T].

P3: Repetition of the initial setting is satisfied, that is, the initial state xk(0) of
the objective system can be set the same at the beginning of each iteration:

xk(0) = x0 for k = 1, 2, . . .

P4: Invariance of the system dynamics is ensured throughout the repeated iter-
ations.

P5: Every output yk(t) can be measured and therefore the tracking error signal

ek(t) = r(t) − yk(t)

can be utilized in construction of the next input uk+1(t).

P6: The system dynamics is invertible, that is, for a given desired output r(t)
with a piecewise continuous derivative, there exists a unique input ud(t)
that drives the system to produce the output r(t).

Then the problem is to find a recursive control law

uk+1(t) = F
(
uk(t), ek(t)

)
and a function norm ‖ · ‖ such that ‖ek‖ vanishes as k tends to infinity.

As pointed out in for example Arimoto [1990, 1998], various disturbances related
to the initial setting, measuring the output and implementing the control law are
present in ILC applications. To meet these considerations, the postulates P3, P4
and P5 are replaced by the following relaxed conditions, here using the formula-
tion in Arimoto [1998]:

P′3: The system is initialised at the beginning of each operation within an error
level β1 > 0, that is,

‖xk(0) − x0‖ < β1, for k = 1, 2, . . .

P′4: The norm of the input disturbance ηk(t) induced during the repeated itera-
tions is limited to some extent, that is, ‖ηk‖ ≤ β2.

P′5: The output yk(t) can be measured with noise, that is, the output error is
subject to

ek(t) = r(t) −
(
yk(t) + ζk(t)

)
where the L2-norm of the noise ζk must be small, say, ‖ζk‖ ≤ β3.

5Reproduced with some minor changes to fit the notation used in the thesis

i
i

main: 2011-01-11 10:21 — 63 (“45”) i
i

i
i

i
i

4.6 ILC algorithms 45

Although these underlying assumptions about the system controlled using ILC
are important for analysis of the resulting ILC system, many contributions dis-
cuss how to overcome the difficulties when one or several of the postulates are
not satisfied. For example, learning for the case when a system is to follow a
reference trajectory r1(t), and thereafter be able to use the learning action to fol-
low a similar but not identical reference trajectory r2(t) is discussed in a number
of publications under the notion of direct learning control, see for example Xu
[1997], Xu and Song [1998]. This is an example of how to overcome the restric-
tion on the reference trajectory set by postulate P2. Another example is Saab
et al. [1997], where tracking of a slowly varying reference is discussed. A number
of publications are devoted to the situation with mismatch in initial conditions
from iteration to iteration, see for example Lee and Bien [1991] and Xu et al.
[2006], that is, violation of postulate P3. The work in this thesis especially inves-
tigates the case with an ILC algorithm applied to a system where postulate P5,
or P′5, does not hold, that is, when the controlled variable is not measured.

4.6 ILC algorithms

Considering ILC algorithms, the categorisation can be based on a number of prop-
erties, such as linear or nonlinear, discrete time or continuous time and frequency
domain or time domain. Another categorisation is first-order or high-order ILC
algorithms, which are defined below according to the definitions given in Norrlöf
[2000].

Definition 4.1 (First-order ILC algorithm). An ILC updating formula that only
uses measurements from the previous iteration,

uk+1(t) = F
(
uk(t), ek(t)

)
is called a first-order ILC algorithm.

Definition 4.2 (High-order ILC algorithm). When the ILC updating formula
uses measurements from more than the previous iteration,

uk+1(t) = F
(
uk(t), uk−1(t), uk−2(t), . . . , ek(t), ek−1(t), ek−2(t), . . .

)
it is called a high-order ILC algorithm. The terms second order, third order, etc.,
are used when the order of the ILC algorithm should be emphasised.

The focus in this thesis is on linear first-order ILC algorithms, which are de-
scribed in more detail below. These algorithms are put into a more general con-
text by briefly describing high-order linear algorithms and nonlinear algorithms.
The reader is referred to for example Moore [1993], Bien and Xu [1998], Moore
[1998a] and Ahn et al. [2007] and references therein for a more thorough descrip-
tion of other types of algorithms.

i
i

main: 2011-01-11 10:21 — 64 (“46”) i
i

i
i

i
i

46 4 Iterative learning control

4.6.1 Linear ILC algorithms

First-order ILC algorithms

The ILC scheme proposed in the seminal paper by Arimoto et al. [1984b] is in
continuous time, given in the form

uk+1(t) = uk(t) + Γ ėk(t) (4.8)

where uk(t) is the ILC input signal at iteration k and Γ is a constant gain. The
update equation of the ILC algorithm (4.8) of so-called Arimoto type includes
the derivative of the error ek(t), with the error given by the difference between
the reference r(t) and the measured output yk(t) as in

ek(t) = r(t) − yk(t) (4.9)

This algorithm is in Arimoto [1985] generalised to

uk+1(t) = uk(t) + Φek(t) + Ψ

t∫
0

ek(τ)dτ + Γ ėk(t) (4.10)

with constant gains Φ, Ψ and Γ . The ILC update equation has a term propor-
tional (P) to the error, an integral (I) term and a derivative (D) term of the error,
thereby forming a PID-like system.

The discrete-time counterpart of the ILC algorithm (4.8) of Arimoto type is

uk+1(t) = uk(t) + γek(t + 1) (4.11)

where the error at next time instant t + 1 is used in the update equation. This
type of algorithm is used in one of the first publications regarding discrete-time
ILC algorithms, see Togai and Yamano [1985]. More recent examples are Moore
[2001] and Moore et al. [2005], where in the latter publication also a time-varying
learning gain γ(t) is used. The algorithm (4.11) can be seen as a special case of
a more general structure by introducing a filter L(q), where L(q) = γq in (4.11).
In the first contributions only the error ek(t) is filtered, as in (4.11). Later, other
structures of ILC updating equations have been suggested, where also filtering of
the ILC updating signal uk(t) is included, or filtering of the computed learning
signal uk(t) + L(q)ek(t) before applying it to the system. The latter alternative is
used in this thesis, resulting in the algorithm

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
(4.12)

The structure (4.12) gives two degrees of freedom with the filters Q(q) and L(q),
both possibly non-causal, and is widely used in the ILC community [Hara et al.,
1988, Norrlöf, 2000, Elci et al., 2002, Barton and Alleyne, 2008].

The update equation for a first-order ILC algorithm in matrix form is similar

i
i

main: 2011-01-11 10:21 — 65 (“47”) i
i

i
i

i
i

4.6 ILC algorithms 47

to (4.12) given by

uk+1 = Q(uk + Lek) (4.13a)

ek = r − yk (4.13b)

In general, the matrix form (4.13) covers a larger class of algorithms than the
filter form (4.12). For time- and iteration-invariant filters, the corresponding
matrices are found from the pulse-response coefficients of the filters similarly as
in (4.3). The filter form (4.12) can also be described in the frequency domain,
derived similarly to the relations (4.5) to (4.6). In the thesis, the ILC algorithm in
filter form (4.12) or matrix form (4.13) is considered. There are however possible
generalisations, for example:

• Current-iteration ILC: The approach to incorporate feedback control in
the ILC algorithm is discussed in for example Verwoerd [2005], Goldsmith
[2002], Xu et al. [2004] and Norrlöf and Gunnarsson [2005], commonly re-
ferred to as current-iteration tracking-error ILC (CITE-ILC). One example
of a CITE-ILC algorithm is given by

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
+ C(q)ek+1(t) (4.14)

where the errors from both the previous iteration and the current iteration
are used to compute the ILC input signal. When separating the terms into
a (non-causal) feedforward and a (causal) feedback component, it can be
seen that CITE-ILC is equivalent to a combination of an ILC algorithm with
a feedback controller [Bristow et al., 2006]. CITE-ILC appears naturally in
the norm-optimal ILC design approach, described in some more detail in
Section 4.8.

• Time-varying and iteration-varying ILC filters: Another generalisation of
the algorithm (4.12) is to let the processing of ek(t) and uk(t) vary with time,
that is, along the trajectory. A possible way to derive a time-varying ILC
algorithm is to formulate the algorithm design as an optimisation problem,
see Section 4.8. Examples of time-varying ILC filters are given in Hätönen
et al. [2004] and Tharayil and Alleyne [2004], while the usage of iteration-
varying filters is discussed in for example Norrlöf [2002], among others.

High-order ILC algorithms

Most of the existing ILC schemes are of first order [Chen et al., 1998, Norrlöf,
2000], that is, only the error from the previous iteration is used in the update
equation. There are however also publications dealing with high-order ILC al-
gorithms, as for instance Moore and Chen [2002] and Gunnarsson and Norrlöf
[2006]. High-order ILC algorithms were first introduced in Bien and Huh [1989],
where it is concluded that the rate of convergence can be improved when incor-
porating errors from previous iterations. Introducing high-order updating laws
is also a way of reducing the effect of measurement disturbances, since the error
is weighted over the iterations [Moore and Chen, 2002]. In Gunnarsson and Nor-
rlöf [2006] disturbance properties of high-order ILC algorithms are analysed by
using statistical models of the load and measurement disturbances.

i
i

main: 2011-01-11 10:21 — 66 (“48”) i
i

i
i

i
i

48 4 Iterative learning control

For a general ILC algorithm of N th order, the ILC input signal is computed from
the ILC input signals and errors from the previousN iterations, see Definition 4.2.
The update equation can according to Norrlöf [2000] be written

uk+1(t) =
k∑

j=k−N+1

(
Qk−j+1(q)

(
uj (t) + Lk−j+1(q)ej (t)

))
(4.15)

with transfer operators Qj (q) and Lj (q) for j = 1, . . . , N . The concept of high-
order ILC is intuitively described by an example in Norrlöf [2000], with constant
filters Lj (q) = lj and where Q1(q) = 1 and Qj (q) = 0 for j > 1. The update equa-
tion (4.15) then results in

uk+1(t) = uk(t) +
k∑

j=k−N+1

lk−j+1ej (t) (4.16)

where the second term can be interpreted as iteration-domain filtering of the
error at time t by a filter with pulse-response coefficients lj .

4.6.2 Nonlinear ILC algorithms

A general nonlinear ILC algorithm of N th order is given by

uk+1(t) = F
(
uk(t), . . . , uk−N+1, ek(t), . . . , ek−N+1(t)

)
The class of nonlinear systems is very large, and as is pointed out in Moore [1993],
it is not clear what type of nonlinear ILC algorithm structure F(·) that would be
most suitable for learning control applications. Artificial neural networks are due
to their nonlinear structure a good candidate, resulting in an iteration-varying
updating scheme, see for example Moore [1993] and Bien and Xu [1998].

Still, ILC applied to nonlinear systems and nonlinear ILC algorithms is an open
area, and the results available are applied on a case-by-case basis [Moore, 1998a,
Xu and Bien, 1998].

4.7 Convergence properties

Convergence properties of ILC algorithms are considered in this section. The
effects of disturbances will not be discussed in this overview, and therefore an
ILC algorithm applied to a disturbance-free system will be studied. A thorough
investigation of convergence properties of ILC algorithms is for instance given
in Norrlöf and Gunnarsson [2002a], and an overview of these results can be seen
in Bristow et al. [2006]. Most of the convergence properties presented here are
well-known from linear systems theory, see for example Rugh [1996]. The main
reference for this section is Norrlöf and Gunnarsson [2002a].

First, some matrix measures used in the sequel will briefly be recovered. The

i
i

main: 2011-01-11 10:21 — 67 (“49”) i
i

i
i

i
i

4.7 Convergence properties 49

spectral radius of an N × N matrix F is defined as

ρ(F) = max
i=1,...,N

|λi(F)| (4.17)

where λi denotes the ith eigenvalue of the matrix F . The maximum singular
value of the matrix F , defined by

σ̄ (F) =
√
ρ(F T F) (4.18)

gives a bound on the matrix gain according to

‖Fx‖2 ≤ σ̄ (F)‖x‖2
with the 2-norm of a vector x given by

‖x‖2 =
√
xT x

The analysis will be carried out using linear iterative systems [Norrlöf and Gun-
narsson, 2002a], defined on a discrete and limited time interval. The linear itera-
tive system considered in this section is given by

zk+1 = Fzk + Frr (4.19)

where the vectors r, zk and zk+1 are defined from the N -sample sequence of the
corresponding signals, similarly as in (4.2).

Applying the ILC algorithm (4.13),

uk+1 = Q(uk + Lek)

ek = r − yk
to the system (4.4) with disturbances omitted,

yk = Trr + Tuuk (4.20)

gives

uk+1 = Q(I − LTu)uk + QL(I − Tr)r (4.21)

The expression (4.21) is in the sequel denoted an ILC system in matrix form. The
ILC system in filter form is similarly to (4.21) given as

uk+1(t) = Q(q)
(
1 − L(q)Tu(q)

)
uk(t) + Q(q)L(q)

(
1 − Tr (q)

)
r(t) (4.22)

With zk = uk , F = Q(I − LTu) and Fr = QL(I − Tr) it can be seen that the ILC sys-
tem (4.21) is a special case of the linear iterative system (4.19). The system (4.22)
is similarly a special case of a linear iterative system in filter form.

4.7.1 Stability

An essential property of a linear iterative system is bounded-input bounded-
output (BIBO) stability, which is stated below.

i
i

main: 2011-01-11 10:21 — 68 (“50”) i
i

i
i

i
i

50 4 Iterative learning control

Definition 4.3 (BIBO stability [Norrlöf and Gunnarsson, 2002a, Definition 4]).
The linear iterative system (4.19) is BIBO stable if a bounded input ‖r‖ < ∞
generates a bounded output ‖zk‖ < ∞ for all k.

Theorem 4.1 (BIBO stability [Norrlöf and Gunnarsson, 2002a, Theorem 1]).
Consider the linear iterative system (4.19). The system is BIBO stable if and only
if

ρ(F) < 1 (4.23)

Of importance for linear iterative systems is the transient response. From the
following theorem a monotonously decreasing 2-norm of the signal is guaranteed
when the homogeneous part of the linear iterative system is considered.

Theorem 4.2 (Monotone convergence [Norrlöf and Gunnarsson, 2002a, Theo-
rem 2]). Consider the linear iterative system

zk+1 = Fzk

If the maximum singular value satisfies

σ̄ (F) < 1 (4.24)

then

‖zk+1‖2 < ‖zk‖2

From Theorem 4.1 it is concluded that the linear iterative system (4.19) is BIBO
stable if σ̄ (F) < 1. The condition (4.24) giving monotone convergence is however
stronger than the stability condition (4.23).

Theorem 4.3 (BIBO stability, frequency domain [Norrlöf and Gunnarsson,
2002a, Theorem 6]). The linear iterative system

Zk+1(eiω) = F(eiω)Zk(e
iω) + Fr (e

iω)R(eiω)

is BIBO stable if

sup
ω∈[−π,π]

|F(eiω)| < 1 (4.25)

The frequency-domain stability result is only asymptotically valid, that is, under
the assumption of infinite time horizon. By the following theorem, a relation
between the time-domain stability criterion (4.24) and the frequency-domain sta-
bility criterion (4.25) is provided.

Theorem 4.4 ([Norrlöf and Gunnarsson, 2002a, Theorem 8]). Consider the lin-
ear iterative system

zk+1(t) = F(q)zk(t) + Fr (q)r(t)

i
i

main: 2011-01-11 10:21 — 69 (“51”) i
i

i
i

i
i

4.7 Convergence properties 51

Suppose a stable and causal filter F(q) and

sup
ω∈[−π,π]

|F(eiω)| < 1 (4.26)

Then the largest singular value of FN ∈ RN×N in the matrix representation of the
linear iterative system

zk+1 = FN zk + Frr

satisfies

σ̄ (FN) < 1 (4.27)

where FN is the lower-triangular Toeplitz matrix with the first column being
the N first pulse-response coefficients of F(q).

4.7.2 Convergence of ILC algorithms

By using the stability results for linear iterative systems, the convergence prop-
erties of ILC algorithms can be studied. Stability of the ILC system is defined as
follows.

Definition 4.4 (ε-convergence, stability [Norrlöf and Gunnarsson, 2002a, Def-
inition 1]). An ILC system (4.21) is ε-convergent in some norm ‖ · ‖ if

lim
k→∞

sup ‖ud − uk‖ < ε

where ud is the input that drives the system to produce the desired output r.

An ILC system is called stable if it is ε-convergent with ε < ∞.

If the linear iterative system (4.19) is BIBO stable according to Theorem 4.1, the
output is bounded for all iterations k, that is, ‖zk‖ < ∞. BIBO stability for the ILC
system (4.21) is given by the following theorem.

Theorem 4.5 (Stability [Norrlöf and Gunnarsson, 2002a, Corollary 3]). The
ILC system (4.21) is stable if and only if

ρ
(
Q(I − LTu)

)
< 1 (4.28)

The stability property (4.28) of the ILC algorithm given by Theorem 4.5 is dis-
cussed by studying the following example.

Example 4.1: Stability of ILC system
Consider a stable SISO system

yk(t) = G(q)uk(t)

described by the transfer operator

G(q) = g1q
−1 + g2q

−2 + ...

i
i

main: 2011-01-11 10:21 — 70 (“52”) i
i

i
i

i
i

52 4 Iterative learning control

from the pulse-response coefficients gi . The input uk(t) is generated from an
ILC algorithm given by (4.12). The ILC filter L(q) is designed to compensate for
the one-sample time delay of the system (g0 is zero), giving L(q) = l1q

1. A filter
Q(q) = 1 is chosen. From N pulse-response coefficients of the filters G(q), Q(q)
and L(q), the following Toeplitz matrices can be formed according to

G =


0 . . . 0 0
g1 . . . 0 0
...

. . .
...

...
gN−1 . . . g1 0

 , Q = IN×N , L =


0 l1 . . . 0
...

...
. . .

...
0 0 . . . l1
0 0 . . . 0


Calculating Q(I − LG) it results in a lower-triangular matrix with diagonal ele-
ments given by 1 − l1g1, except the last element, as in

Q(I − LG) =



1 − l1g1 0 . . . 0 0
−l1g2 1 − l1g1 . . . 0 0
...

...
. . .

...
...

−l1gN−1 −l1gN−2 . . . 1 − l1g1 0
0 0 . . . 0 1


(4.29)

The output signal is monitored on the finite time interval t ∈ [0, N − 1] and the
ILC input signal is calculated using the error on the same interval. Due to the
one-sample time delay of the system, the value of the ILC input signal uk(T) for
the last time instant will not affect the system output yk(T) and hence the last
row of LG contains only zeros. Therefore, the last row of the matrix Q(I − LG)
has the appearance as given in (4.29), which means that the ILC input signal
value uk(T) is the same for all iterations. Now, considering only the part of the
matrix Q(I − LG) which is dependent on the choice of the learning gain l1 in the
ILC filter L(q), the stability condition (4.28) from Theorem 4.5, results in

|1 − l1g1| < 1

The ILC algorithm applied to the system will convergence if and only if

0 < l1g1 < 2

from which a suitable value of the learning gain l1 can be chosen.

A number of conclusions can be drawn from this result. First, the condition for
stability is independent of the system dynamics, since the first pulse-response
coefficient is g1 = CB for a system described in state-space form with matrices
A, B, C and D. Second, it is less useful in practical applications, as is pointed
out in Longman [2000]. In Longman [2000] a third-order linear model of the
input-output relationship of a single robot joint is studied, with the above ILC
algorithm applied to the model. Simulations show a decreasing error for the first
seven iterations, followed by an increasing error to a very large value of the root-
mean square (RMS) error, and finally decreasing to zero error. Although the ILC
algorithm converges, resulting in zero error, it would be impossible to achieve
this in practice due to the high error level before reaching zero error.

i
i

main: 2011-01-11 10:21 — 71 (“53”) i
i

i
i

i
i

4.7 Convergence properties 53

From this example it can be concluded that it is relatively easy to guarantee sta-
bility of the system using ILC with the use of Theorem 4.5. In practical appli-
cations it is however not enough with stability, where the important aspect is to
guarantee monotone convergence in some norm, as discussed in Elci et al. [2002]
and Longman [2000].

Theorem 4.6 (Monotone convergence [Norrlöf and Gunnarsson, 2002a, Theo-
rem 9]). If the ILC system (4.21) satisfies

σ̄
(
Q(I − LTu)

)
< 1 (4.30)

then the system is stable and u∞ − uk will converge according to

‖u∞ − uk‖2 ≤ λk‖u∞ − u0‖2
with constant 0 ≤ λ < 1 and with u∞ defined as

u∞ =
(
I −Q(I − LTu)

)−1
QL(I − Tr)r (4.31)

With the asymptotic ILC input signal u∞ applied to the system (4.20), it gives the
asymptotic error

e∞ = r − y∞ =
(
I − Tr − Tu

(
I −Q(I − LTu)

)−1
QL(I − Tr)

)
r (4.32)

Generally, monotone convergence of uk does not imply monotone convergence of
the error ek , see for example Bristow et al. [2006]. One example when monotone
convergence of the error is also achieved is for causal ILC filters and causal sys-
tem, which implies lower-triangular Toeplitz matrices that commute. Then the
condition on monotone convergence of the error reduces to the condition (4.30)
on monotone convergence of the ILC input signal.

From Theorem 4.4, under the condition of the ILC system being causal with scalar
input, the condition on the maximum singular value can be replaced by the crite-
rion

sup
ω∈[−π,π]

|Q(eiω)
(
1 − L(eiω)Tu(eiω)

)
| < 1 (4.33)

under the assumption of infinite time horizon. This coincides with the well-
known frequency-domain convergence criterion in the ILC literature, see for ex-
ample Bristow et al. [2006] or Longman [2000]. The frequency-domain conver-
gence criterion (4.33) offers some intuition to the problem of designing the ILC
algorithm (4.12). The criterion (4.33) implies that there are two main routes for
the design of the filters Q(q) and L(q). One approach is to choose L(q) as the best
possible inverse of the model Tu(q). This requires that the model describes the
true system sufficiently well. For a system having time delays, it also requires
a non-causal filter L(q). The second approach is to choose the magnitude of the
filter Q(q) small enough. If the frequency-domain criterion (4.33) is satisfied for
a certain frequency, it means that this frequency component of the error is atten-
uated. On the contrary, violating the criterion (4.33) for a certain frequency im-

i
i

main: 2011-01-11 10:21 — 72 (“54”) i
i

i
i

i
i

54 4 Iterative learning control

plies growth of this error component. An approach to satisfy the criterion (4.33)
for all frequencies is to cut off the learning by the filter Q(q) for the frequencies
where the criterion is violated for 1− L(q)Tu(q) [Elci et al., 2002, Longman, 2000].
Cutoff is also needed in practice to introduce robustness to model errors in Tu(q).
The price to pay is convergence to a non-zero error level [Elci et al., 2002]. The
design is a trade-off between these two routes for the design of Q(q) and L(q).

It shall be noted that the frequency-domain condition (4.33) is an approximate
condition for monotone convergence, see for instance Norrlöf and Gunnarsson
[2002a] and Longman [2000]. First, the transformation to the frequency do-
main assumes infinite time horizon. The frequency-domain convergence condi-
tion (4.33) then assures that the amplitudes of all frequency components of the
signal decay monotonically at every iteration. In applications of ILC, the time
horizon is finite, and boundary effects will influence the output from the filtering
operations, especially if the filter transients are long compared to the iteration du-
ration. These issues are discussed in more detail in Chapter 9, where analysis of
how the boundary effects will influence the convergence properties is performed
in the time domain.

In contrast to the frequency-domain analysis, the benefit of the convergence anal-
ysis in the time domain is that also time- and iteration-variant systems and ILC
algorithms can be considered. However, the disadvantage is that the time-domain
approach is in general more computationally demanding. The issue of extending
the usage of the time-domain approach to ILC systems with larger dimensions is
considered in for instance in Barton and Alleyne [2008], where an upper approxi-
mation of the largest singular value is made by introducing submatrices. Thereby
the size of systems possible for analysis in matrix form is increased.

4.7.3 Stability using two-dimensional systems theory

The information propagation is both along the trajectory of the current iteration
and from iteration to iteration. By emphasising the dependence on the finite
time t and infinite iteration k, the ILC algorithm (4.12) can be written as a linear
equation in two dimensions,

u(k + 1, t) = Q(q)
(
u(k, t) + L(q)e(k, t)

)
(4.34)

Now define the iteration-shift operator, see for instance Norrlöf [2000] and Moore
[1998a], by the relation

qku(k, t) = u(k + 1, t) (4.35)

For example, consider the ILC update equation (4.34), with the filters Q(q) = 1
and L(q) = γq. The ILC algorithm can then be written

u(k, t) =
γq

qk − 1
e(k, t) = P (q, qk)e(k, t) (4.36)

in the variables t and k and transfer operator P (q, qk) with shift operators q
and qk .

i
i

main: 2011-01-11 10:21 — 73 (“55”) i
i

i
i

i
i

4.8 Design methods 55

A number of publications address convergence and stability of ILC systems by
using two-dimensional analysis, for example Al-Towaim et al. [2004]. One of the
first publications is Kurek and Zaremba [1993], where a state-space representa-
tion of a two-dimensional linear system is studied. Hladowski et al. [2010] apply
two-dimensional systems theory to discrete-time linear repetitive processes to
derive robust ILC algorithms. The algorithms are then applied to a gantry robot
and evaluated experimentally.

4.8 Design methods

Almost three decades have passed since the start of the ILC research area in 1984.
Since then the first algorithms have been modified and extended in a variety of
directions, as is seen from the categorisation presented in Moore [1998a] and Ahn
et al. [2007]. Following the discussion in Ratcliffe et al. [2005], one can from
a wider perspective split the types of algorithms into two different categories;
basic and model-based algorithms. The basic type of algorithms, as for example
the ILC algorithm of Arimoto-type in (4.11), is very attractive from an industrial
point of view [Ratcliffe et al., 2005, Longman, 2000]. This type of algorithms
is easy to implement and adjust with a few parameters, and requires very little
knowledge of the true system, such as for example static gain and time delay of
the system. The model-based algorithms require an explicit model of the system,
and the methods tend to be more computationally intensive. On the other hand,
utilising more system knowledge could improve the resulting performance. In
this section some examples of both basic and model-based design methods are
given, with the discussion limited to linear ILC algorithms.

If it is possible to choose the filter L(q) in (4.12) as the inverse of the system
dynamics, it results in convergence to zero error in one single iteration. As dis-
cussed in for example Elci et al. [1994], there are practical difficulties when im-
plementing such an algorithm. First, the discrete-time equivalent of a continu-
ous system is very often non-minimum phase due to the sampling, and therefore
it is not possible to invert the full system resulting in stable dynamics. How-
ever, by using causal and anti-causal filtering techniques, the inverse of the non-
minimum phase system can be utilised in the design of the filter L(q), as is dis-
cussed in Markusson et al. [2001]. The model suffers from uncertainties, espe-
cially at higher frequencies, which can violate the stability properties of the sys-
tem. However, it can be useful to design the ILC algorithms based on inversion
of parts of the system dynamics, see for instance Elci et al. [1994].

4.8.1 Basic algorithms

The inherent message for design and implementation of ILC algorithms in prac-
tical applications is clearly expressed in Norrlöf and Gunnarsson [2000] by the
following words: Try simple things first. This is stressed already in the first publi-
cations in the field, see for example Arimoto [1990], where the simplicity of the
algorithm is emphasised motivated by practical implementation, as well as the

i
i

main: 2011-01-11 10:21 — 74 (“56”) i
i

i
i

i
i

56 4 Iterative learning control

desire to design the ILC algorithm without knowing the entire system dynam-
ics. These issues are also discussed in a number of publications by Longman and
co-authors, for example Elci et al. [1994], Longman [1998, 2000] and Elci et al.
[2002].

Design methods relying on very little knowledge of the system are sometimes
called model-free ILC or heuristic ILC algorithms [Norrlöf and Gunnarsson,
2002b]. One example is when the knowledge of the system consists of only the
time delay and the static gain of the system to be controlled. The learning gain γ
is then chosen such that γ times the static gain is less than 1. The time delay
of the system is compensated by a time shift forwards in time, see Example 4.1.
Finally, the bandwidth of the filter Q(q) determines how large part of the error
dynamics that should be learned. The heuristic design method is summarised
in Algorithm 4 below. See also Norrlöf [2000] for the formulation of the algo-
rithm design. Some examples of algorithms designed according to Algorithm 4
are given in Elci et al. [2002], Abdellatif et al. [2006] and Freeman et al. [2010].

Algorithm 4 Heuristic design
1. Choose the filter Q(q) as a low-pass filter with cutoff frequency such that

the bandwidth of the learning algorithm is sufficient.
2. Let L(q) = γqδ. Choose the learning gain γ and time shift δ such that

the frequency-domain stability criterion (4.33) is satisfied. Normally it is
sufficient to choose δ as the time delay of the system and 0 < γ ≤ 1 to get a
stable ILC system.

There are also model-free design methods based on self tuning. In these meth-
ods the ILC design parameters, for example learning gain, time shift and cutoff
frequency, are tuned or adapted along the iteration axis until an algorithm with
reasonable learning speed and final error level is obtained. See for example Long-
man and Wirkander [1998] for a discussion of different self-tuning techniques.

4.8.2 Model-based algorithms

Optimisation-based design

Using the matrix description of the system and ILC algorithm, the algorithm
design can be considered in the context of numerical optimisation, see for ex-
ample Togai and Yamano [1985], Lee and Lee [1998a], Gunnarsson and Norrlöf
[2001], Owens and Hätönen [2005] and Barton et al. [2008]. A suitable ILC input
signal uk is derived from minimising a cost function, for example based on the
current cycle error, and the change in the ILC input signal, according to

Jk+1 = ‖ek+1‖2 + ‖uk+1 − uk‖2 (4.37)

One possible update equation, see Amann et al. [1996a], is given by

uk+1 = uk + Lek+1

i
i

main: 2011-01-11 10:21 — 75 (“57”) i
i

i
i

i
i

4.8 Design methods 57

where L = αk+1T ∗u , with T ∗u being the adjoint of Tu and αk+1 denoting the step
length to be chosen at each iteration. The aim is to achieve optimal correction
while still avoiding too high actuator demands by penalising the difference of the
ILC input signal between successive iterations. One example is the early refer-
ence Togai and Yamano [1985], where the learning gain is derived by minimising
a quadratic criterion of the error by using gradient-based methods. The problem
of deriving an ILC input signal by minimising the criterion (4.37) is further stud-
ied in Amann et al. [1996a,b] under the notion of norm-optimal ILC. In Owens
and Hätönen [2005] norm-optimal ILC is used for effectively controlling a gantry
robot system.

The cost function (4.37) to be minimised can be generalised to

J = ‖ek+1‖2QJ + ‖uk+1‖2SJ + ‖uk+1 − uk‖2RJ (4.38)

with sums of weighted norms with symmetric positive definite matrices QJ , SJ
and RJ , often chosen as (QJ , SJ ,RJ) = (qI, sI, rI), as seen in Ratcliffe et al. [2006].
Tuning guidelines of the weights are given in Barton et al. [2008], where it is seen
that the convergence speed strongly depends on RJ .

Design of an ILC algorithm based on optimisation can be summarised by Algo-
rithm 5, see also [Norrlöf and Gunnarsson, 2002b].

Algorithm 5 Model-based time-domain design using optimisation
1. Build a model of the relation between the ILC input and the resulting cor-

rection on the output, that is, find a model T̂u of Tu .
2. Choose weighting matrices.
3. Minimise a quadratic criterion in the error and the control signal. The re-

sulting algorithm can be interpreted as matrices Q and L.

Frequency-domain design

Another branch of design methods is based on frequency-domain analysis, which
implies linear time- and iteration-invariant ILC algorithms. One example is given
by Algorithm 6, see also Norrlöf and Gunnarsson [2002b]. Examples of frequency-
based ILC design methods are de Roover [1996], where the ILC design is gener-
alised to the synthesis of a sub-optimal H∞-controller, and Norrlöf and Gunnars-
son [2002b], where an algebraic approach is adopted. In Wang and Ye [2004] a
multi-channel approach is proposed to extend the bandwidth of the ILC system.
The error is divided into different frequency bands, where an ILC algorithm is
tuned based on the frequency-domain criterion (4.33) for the frequency range
of interest. See also, for example, Longman [2000] for a discussion of design
and tuning of the ILC filters based on the frequency-domain convergence crite-
rion (4.33).

i
i

main: 2011-01-11 10:21 — 76 (“58”) i
i

i
i

i
i

58 4 Iterative learning control

Algorithm 6 Model-based frequency-domain design
1. Build a model of the relation between the ILC input and the resulting cor-

rection on the output, that is, find a model T̂u(q) of Tu(q).
2. Choose a filter HB(q) such that it represents the desired convergence rate

for each frequency. Normally this means a high-pass filter.
3. Compute L(q) = T̂ −1

u (q)
(
1 − HB(q)

)
.

4. Choose the filterQ(q) as a low-pass filter with cutoff frequency such that the
bandwidth of the resulting ILC algorithm is high enough and the desired
robustness is achieved.

4.9 Applications of ILC

The patent Garden [1971] is an example of early industrial usage of ILC, as is
discussed in Chen and Moore [2000]. Experimental results presented later show
improved performance of highly coupled, time-varying or nonlinear systems un-
der repetitive motions. The control specifications met by using ILC may not eas-
ily be satisfied by other control methods, as other methods require more prior
knowledge of the process in the controller design. ILC requires much less infor-
mation of the system variations to yield the desired dynamic behaviour [Moore,
1993, Longman, 2000, Bien and Xu, 1998]. For example, experimental results
in Elci et al. [1994] show that it is possible to come close to the reproducibility
level of the robot system without relying on a complex model of the entire robot
dynamics. In Norrlöf and Gunnarsson [2002b] an experimental comparison of
ILC design approaches is presented with the ILC algorithm applied to the first
three joints of a commercial industrial robot of moderate size. One observation
from this comparison is that the heuristic approach presented in Algorithm 4
performs surprisingly well compared to the model-based approaches in Algo-
rithms 5 and 6. In Abdellatif et al. [2006] an ILC algorithm with phase-lead
compensation and zero-phase filter Q(q), Algorithm 4, is compared to a more
general linear form and to a model-based approach. The same conclusion was
found also in Abdellatif et al. [2006], that Algorithm 4 performs well. This is one
reason for choosing this design method in the simulations and experiments pre-
sented in the thesis. However, usage of more system knowledge could improve
performance.

However, ILC is still not yet widely used in engineering applications. In order to
increase the impact of ILC in practical usage, the following items could be one
way of progress [Longman, 2000]:

• Linear ILC formulation. A majority of the nonlinear control problems are
addressed by linear control laws in practice. Choose the simplest approach
that works.

• Discrete-time ILC algorithms. To measure, store and process the information,
it requires usage of a digital computer online, and it is natural to consider
the ILC problem in discrete time.

i
i

main: 2011-01-11 10:21 — 77 (“59”) i
i

i
i

i
i

4.9 Applications of ILC 59

• Existing feedback controllers. By simultaneously designing feedback con-
trollers and ILC algorithms, it restricts the number of practical applications.
A method easily implemented and applied to an existing feedback control
system is desirable.

• Command to the feedback controller adjusted, not the manipulated variable. The
only possible solution in many practical control applications is to adjust
the input to the controller, since it is not desirable/possible to go into the
existing controller and modify the signals sent to the actuators.

• Simple ILC algorithms with a small number of parameters to adjust. PID con-
trollers have only a few parameters to adjust and the tuning is easy to un-
derstand. It is therefore the largest class of feedback control laws used in
practice. The aim is to have an ILC algorithm in a similar fashion.

• Typical knowledge about system behaviour. Do not try to design a universal
ILC algorithm that works for every system. Make instead use of information
about the system dynamics that is easy to obtain, for example, by frequency-
response tests.

• Monotone convergence. Universal ILC algorithms that result in convergence
to zero error are often of little use in practice, due to increasing error lev-
els before convergence to zero error. The difficult part is to derive an ILC
algorithm that guarantees monotone convergence.

• Long-term stability. Instability may occur after only many iterations, which
can be avoided by giving the user guidelines of how to adjust the ILC design
parameters.

• Knowledge foundation of practicing control engineers. Make the concepts eas-
ily understood to make the control system engineer knowing how to apply
them, for example by interpreting the information intuitively in a Bode
plot.

4.9.1 Examples of applications

Finally, a number of applications of ILC will be mentioned, in order to show the
broad field of potential usage. Due to the quite recent growing interest in de-
sign, performance and practical aspects of ILC, studies where an ILC algorithm
is applied to a commercial industrial platform are still less common in the ILC
literature. This also motivates the choice of applying ILC algorithms to a serial
and parallel industrial robot in Chapters 5 and 8. ILC applied to resonant sys-
tems is of special interest here, since the systems considered in this thesis suffer
from mechanical flexibilities in the frequency region of interest6.

A summary of publications regarding ILC applied to especially robotics is given
in Moore [1998a]. See also Ahn et al. [2007] for a detailed categorisation of recent
publications, with applications of ILC in robotics, rotary systems and biomedical

6See also Chapter 5 for illustrative experimental and simulation results of ILC algorithms applied
to systems containing mechanical flexibilities.

i
i

main: 2011-01-11 10:21 — 78 (“60”) i
i

i
i

i
i

60 4 Iterative learning control

applications, as well as for controlling actuators, semiconductors or power elec-
tronics. Regarding the robotics area, ILC is applied to for example direct-drive
robots, serial and parallel robots and XY-tables. The focus in this thesis is on ILC
algorithms applied to industrial robotics, and therefore the publications men-
tioned in this section mainly relate to the robotics field. The applications are
divided into three categories, covering the range from simulation and laboratory-
scale experiments to industrial products.

Simulation studies and laboratory-scale experiments

• Convergence and stability properties of various ILC algorithms, exempli-
fied by simulation studies which naturally involves a large number of it-
erations. The ILC research community has earlier been very focused on
stability, which explains the number of work in this area. Some works are
for example Elci et al. [2002] and Wang et al. [2003].

• New approaches to ILC, verified by simulation studies or experiments per-
formed on laboratory-scale testbeds that are representative for the indus-
trial problems. The robot model has at most two or three DOFs. Exam-
ples of such studies are De Luca and Ulivi [1992], Gunnarsson et al. [2007]
and Tayebi [2004].

• ILC algorithms applied to robot arms with several DOFs. In Elci et al.
[2002] a simple first-order ILC algorithm is applied to all axes of a seven-
DOF robot arm. The ILC design variables are tuned experimentally, or by
using a simple model of the system identified from experiments. The mo-
tion is chosen to illustrate theoretical results and is not motivated by any
practical application, which also is the case in Longman [2000].

• Different application areas other than robotics, where the system is hard
to model accurately and is subject to disturbances, as for example batch
chemical processes. The ILC algorithms have to be combined with feedback
control to be successful. ILC applied to laboratory-scale batch chemical
processes is described in for instance Lee and Lee [1998b].

Industry-motivated experiments

• Different aspects of implementation and practical usage of ILC algorithms.
One example is Dijkstra and Bosgra [2002], where an ILC algorithm de-
signed using optimisation and is applied to a wafer stage, which is a system
used in production of integrated circuits. Only the observable part of the
system in iteration domain is considered in the design, which gives a con-
troller of lower order. The resulting ILC update rule, given in the matrix
description, is implemented by interpreting the update as filtering opera-
tions. In Ratcliffe et al. [2006] implementation aspects are discussed for
norm-optimal ILC, where a faster version of the norm-optimal algorithm is
presented and evaluated in experiments.

• Experiments and trajectories clearly motivated by applications. Norm-opti-
mal ILC is experimentally evaluated in Ratcliffe et al. [2006] and Barton
et al. [2008], where different tuning aspects are discussed, together with

i
i

main: 2011-01-11 10:21 — 79 (“61”) i
i

i
i

i
i

4.10 Summary 61

robustness to initial state errors. In Ratcliffe et al. [2006] the algorithm is
applied to a gantry robot for automation applications, where each motor
is controlled individually. In Barton et al. [2008] a practically motivated
trajectory is to be followed by a multi-axis robotic testbed, where the raster
scanning trajectory consists of long periods of low-frequency content fol-
lowed by short periods of high-frequency movements.

• Different aspects of ILC applied to commercial robot systems. See for exam-
ple Norrlöf [2000], where the issue is discussed both from the design and
experimental point of view.

• Discussion of the entire control system, with ILC as a final tool to improve
performance. Modelling, feedback and feedforward control for a parallel
robot, and finally ILC as a tool to improve accuracy especially for higher
frequencies are discussed and experimentally verified in Abdellatif and
Heimann [2010].

Industrial products

Besides the first patent by Garden [1971], also the patent by Gunnarsson et al.
[2006] is worth mentioning here, where path correction for an industrial robot
is described with the use of laser measurements of the tool position in the ILC
algorithm. The method is used in for example workcells for laser cutting on car
frames. Another example is the patent by Chen et al. [2002], dealing with ILC
applied to hard disk drives.

4.10 Summary

Stability and convergence properties of the system using ILC are given in the
chapter, with focus on first-order linear algorithms applied to linear systems.
The time-domain analysis is more general, including both time-variant as well
as iteration-variant systems and algorithms, while the frequency-domain analy-
sis is more intuitive but approximate. The most important aspect in practice is
to guarantee monotone convergence. Tuning of the ILC algorithm is a trade-off
between performance, where ILC filters are ideally chosen as the inverse of the
system dynamics, and robustness, with only learning for frequencies where the
model errors are small. The price to pay for cutting off the learning for some
frequencies is convergence to a non-zero error level.

i
i

main: 2011-01-11 10:21 — 80 (“62”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 81 (“63”) i
i

i
i

i
i

Part II

Results

i
i

main: 2011-01-11 10:21 — 82 (“64”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 83 (“65”) i
i

i
i

i
i

5
Motivation to estimation-based ILC

Traditionally ILC has been applied to systems where the controlled vari-
able also is the measured variable. In industrial robot applications, as for

example plasma cutting shown in Figure 5.1, this is typically not the case. Usu-
ally only the motor angular positions are measured in a commercial robot system,
while the control objective is to follow a desired tool path. In this chapter exper-
imental results are discussed when applying an ILC algorithm to two different
industrial robots. First, experiments are performed on a commercial serial robot.
Second, a parallel robot prototype will be used as the experimental testbed. In

Figure 5.1: The industrial robot IRB1400 performing plasma cutting. The
control objective is to follow a desired tool path, whereas the measured vari-
ables are the motor angular positions. The tool position and orientation are
not measured due to practical and economical reasons. Photo from ABB
Robotics [2007].

65

i
i

main: 2011-01-11 10:21 — 84 (“66”) i
i

i
i

i
i

66 5 Motivation to estimation-based ILC

both cases, the ILC algorithm uses the measured motor angular positions directly
and the resulting tool performance is evaluated. The key properties of the experi-
mental results are then illustrated by a simulation study where an ILC algorithm
is applied to a flexible two-mass model. The main observation in both simula-
tions and experiments is that although the ILC algorithm reduces the error of the
measured variable, the performance evaluated in terms of the controlled variable
can be worse due to model errors. The aim of this chapter is to illustrate the
case when an ILC algorithm is applied to a system where the controlled variable
is not the measured variable. The discussion serves as a motivation to the work
presented in Chapters 6 to 8, where an estimate of the controlled variable drives
the ILC algorithm. The experimental parts of the chapter are based on Wallén
et al. [2007a, 2008b, 2010a,b], while more details about the simulation study can
be found in Wallén et al. [2009b].

5.1 Problem description

A modern industrial robot contains mechanical flexibilities due to a number of
reasons. As a result of the cost-driven development of industrial robots, less
rigid mechanical structures are developed. This results in a larger number of
mechanical vibration modes and lower resonance frequencies of the robots. The
cost reduction also results in robot components with larger individual variation
[Moberg, 2010, Brogårdh, 2007, 2009].

A difficulty in industrial applications is to measure the actual robot tool position
in an acceptable way, both economically and practically. Therefore, normally
only the motor angular positions are measured in commercial industrial robot
systems [Brogårdh, 2009, Spong et al., 2006], including the robots used in the
experiments in this chapter. The control objective is however to follow a desired
tool path. Assuming that correct kinematic and dynamic models of the robot are
available, the tool position and orientation could theoretically be derived from
the motor angular positions. For every robot individual it would require exact
descriptions of complex phenomena, as for example friction, backlash, motor
torque ripple and nonlinear stiffness of the gearboxes. In addition, a complete
model of the mechanical flexibilities of the robot structure1 is necessary. This is
however not realistic in practice, and the derivation of the tool position from the
motor angular positions suffers from model uncertainties.

ILC has traditionally been applied to systems where the controlled variable is
measured, some recent examples are Moore et al. [2005], Dabkowski et al. [2010]
and Abdellatif and Heimann [2010]. This property is explicitly formulated in the
postulate P′5 of Arimoto2. When applying an ILC algorithm to a flexible system
based on the position measured on one side of the mechanical flexibility, the pos-
tulate P′5 is satisfied. However, even though the error of the measured variable

1See the extended flexible joint dynamic model, summarised in Section 2.3.3 and presented in
detail in Moberg [2010], for work in that direction.

2See Section 4.5.

i
i

main: 2011-01-11 10:21 — 85 (“67”) i
i

i
i

i
i

5.2 Experiments on a serial robot 67

decreases with the iterations, the position measured on the other side of the me-
chanical flexibility converges but towards an incorrect signal when model uncer-
tainties are present. This will be illustrated in both simulations and experiments
in the chapter.

5.2 Experiments on a serial robot

The experiments on a serial robot are performed on a large-size commercial robot
from ABB with six joints. A robot with similar load capacity (175 kg) can be seen
in Figure 5.2. In the experiments the conventional robot controller, implemented
by ABB in the IRC5 control system, works in parallel with the ILC algorithm3.

Figure 5.2: Example of a large-size industrial robot from ABB with similar
size and load capacity (175 kg) as the robot used in the experiments. Photo
from ABB Robotics [2007].

5.2.1 Experimental setup

Robot system

In the experiments the robot tool is supposed to perform a small circle with
radius 5 mm. The motion is programmed with a tool velocity of 40 mm/s and
the experiments studied in this chapter are performed in an operating point
with the robot configuration seen in Figure 5.3. Experiments covering other
robot configurations, as well as a broader range of ILC design variables are pre-
sented in Wallén et al. [2007a, 2008b]. The resulting tool path is measured by
the laser-measurement system LTD500 from Leica Geosystems [2010]. Measure-
ments from the Leica system can be used in the ILC algorithm, as is described
in for example Gunnarsson et al. [2006]. It is an expensive measurement system
and therefore it is used strictly as an evaluation tool in this chapter.

3See Norrlöf [2000] for a detailed description of the experimental setup.

i
i

main: 2011-01-11 10:21 — 86 (“68”) i
i

i
i

i
i

68 5 Motivation to estimation-based ILC

ILC algorithm

The robot is a multivariable system, but for simplicity the robot joints will be
treated individually as decoupled systems with a separate ILC algorithm for each
joint4. Errors originating from the dynamic coupling between the joints will be
treated as disturbances. To support the assumption with identical initial con-
ditions for all experiments, the robot starts from the same position with zero
velocity. In Figure 5.4a the reference tool path is shown. The robot performs an
introductory motion (lead-in), followed by the circle, and ends with a lead-out
back to the initial position. The whole trajectory is to be learned by the ILC algo-
rithm, while the performance is evaluated on the circular path, see Figure 5.4b.

Figure 5.3: The robot configuration for the operating point.

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

•

∨

x−axis [mm]

y
−

a
x
is

 [
m

m
]

Circle

Lead−in/out

(a) Reference path

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

•

x−axis [mm]

y
−

a
x
is

 [
m

m
]

r
meas

(t)

r
ref

ref

Leica

(b) Performance evaluation

Figure 5.4: a) Reference path for the robot tool position with lead-in/lead-
out, b) performance evaluated on the circular path, see (5.6) to (5.7).

4Compare independent joint control in Section 2.4.

i
i

main: 2011-01-11 10:21 — 87 (“69”) i
i

i
i

i
i

5.2 Experiments on a serial robot 69

The first-order ILC algorithm (4.12),

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
(5.1)

is applied to the motors for each of the six robot joints, with the error

ek(t) = rm(t) − qm,k(t) (5.2)

consisting of the motor angular position reference rm(t) and the measured motor
angular position qm,k(t) at iteration k. The ILC input signal uk(t) is added to the
motor angular position reference. All signals are defined on a finite time interval
t = nTs, n ∈ [0, N −1] with N number of samples and sampling interval Ts = 4 ms.
The filterQ(q) is chosen as a zero-phase low-pass filter, and the filter L(q) consists
of a time shift of δ samples and a learning gain γ , resulting in L(q) = γqδ. The
ILC update equation can explicitly be written as

uk+1(t) = Q(q)
(
uk(t) + γek(t + δTs)

)
(5.3)

with the ILC design variables:

• Type and order of the filter Q(q).

• Cutoff frequency fc of the filter Q(q).

• Learning gain γ , with 0 < γ ≤ 1.

• Time shift δ.

In this chapter the design variable fc and its influence on the ILC algorithm per-
formance is investigated, while the other ILC design variables remain constant5.
A second-order Butterworth filter with cutoff frequency fc is applied using the
Matlab function filtfilt, to get a zero-phase behaviour of the resulting fil-
ter Q(q). The learning gain γ = 0.9 is motivated by a trade-off between conver-
gence rate and robustness for each of the robot joints, having a static gain equal
to 1. The time shift is chosen as δ = 3, and is experimentally validated to give a
stable ILC system. The same ILC design variables are used for all six joints for
simplicity reasons and the learning is stopped after five iterations.

5.2.2 Performance measures

For the evaluation of the experimental results, error measures are defined for the
performance of the joints and the tool, respectively. The measures are computed
for the circular path, not including the lead-in/lead-out parts, see Figure 5.4.

Performance of the joints

The results for each of the six joints are compared to the nominal error when no
ILC algorithm is applied (k = 0). The nominal error for joint number i = 1, . . . , 6
is given in vector form as in

ei0 =
(
ei0(0) . . . ei0((N − 1)Ts)

)T
(5.4)

5See also Wallén et al. [2007a, 2008b] for experiments with varying robot configuration, time
shift δ and a wider range of cutoff frequencies fc .

i
i

main: 2011-01-11 10:21 — 88 (“70”) i
i

i
i

i
i

70 5 Motivation to estimation-based ILC

for N number of samples along the circle. The reduction of the norm of the motor
angular position error (5.2) for joint i = 1, . . . , 6 and iteration k is given by

J ik = 100 ·
‖eik‖

maxl ‖el0‖
[%] (5.5)

The value is normalised with respect to the largest nominal error (5.4) for all
joints. The error measure (5.5) is studied in both 2-norm and∞-norm.

Performance of the tool

The root mean square (RMS) error of the tool position at iteration k is

eRMS
k =

√√√
1
N

(N−1)Ts∑
t=0

(
rref − rmeas,k(t)

)2
(5.6)

where rmeas,k(t) denotes the radius of the measured circle at time t, see Figure 5.4b.
The radius of the reference circle is rref = 5 mm. The maximum deviation from
the reference circle at iteration k is defined as

emax
k = max

t=nTs ,n∈[0,N−1]

(
|rref − rmeas,k(t)|

)
(5.7)

The error measures (5.6) to (5.7) are normalised by the largest nominal error,

JRMS
k = 100 ·

eRMS
k

eRMS
0

[%] (5.8)

Jmax
k = 100 ·

emax
k

emax
0

[%] (5.9)

The error measure (5.5) in 2-norm of each joint corresponds to the RMS error of
the tool position, JRMS

k in (5.8). The error measure (5.5) in ∞-norm of each joint
corresponds to the maximum deviation of the tool position error, Jmax

k in (5.9).

5.2.3 Experimental results

Reduced motor angular position and tool position errors

An experiment is performed with the ILC design variable fc = 10 Hz in the fil-
terQ(q). First, the reduction of the motor angular position error (5.2) is evaluated.
The error measure J ik in (5.5) expressed in∞-norm is illustrated in Figure 5.5 for
each iteration. The error measure (5.5) in 2-norm has similar appearance. It can
be seen that the performance is improved for all joints when the ILC algorithm is
applied to the robot.

The performance of the tool is evaluated by the error measures (5.8) to (5.9), and
the result from the experiment is shown in Figure 5.6. Both JRMS

k and Jmax
k of

the tool position error have a decreasing trend with respect to the iterations. Fig-
ure 5.7 shows the resulting tool position for each iteration, and it can be seen that
the measured circle is close to the reference circle after five iterations.

i
i

main: 2011-01-11 10:21 — 89 (“71”) i
i

i
i

i
i

5.2 Experiments on a serial robot 71

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 1

[%
]

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 2

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 3

[%
]

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 4

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 5

Iteration

[%
]

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 6

Iteration

Figure 5.5: The error measure J ik , see (5.5), expressed in∞-norm for all joints
i = 1, . . . , 6 for each iteration. The experiment is performed with the ILC
design variable fc = 10 Hz and shows an improved performance for all joints.
Note the logarithmic scale.

0 1 2 3 4 5
40

60

80

100

J
kR

M
S
 [

%
]

0 1 2 3 4 5
60

70

80

90

100

Iteration

J
km

a
x
 [

%
]

Figure 5.6: Tool-position error evaluated by JRMS
k from (5.8), and Jmax

k
from (5.9), for each iteration. In the experiment the ILC design variable
is fc = 10 Hz.

i
i

main: 2011-01-11 10:21 — 90 (“72”) i
i

i
i

i
i

72 5 Motivation to estimation-based ILC

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

0th
 iteration

y
−

a
x
is

 [
m

m
]

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

1st
 iteration

ref

Leica

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

2nd
 iteration

y
−

a
x
is

 [
m

m
]

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

3rd
 iteration

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

4th
 iteration

x−axis [mm]

y
−

a
x
is

 [
m

m
]

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

5th
 iteration

x−axis [mm]

Figure 5.7: Measured circles of the tool at every iteration, compared to the
reference circle. The experiment is performed with ILC design variable
fc = 10 Hz. After five iterations the measured circle is close to the reference.

i
i

main: 2011-01-11 10:21 — 91 (“73”) i
i

i
i

i
i

5.2 Experiments on a serial robot 73

The experiment shows that a simple ILC design, a first-order ILC algorithm with
the same design parameters for all joints, can significantly reduce both the errors
for each joint and the resulting tool position error within only a few iterations.

Reduced motor angular position errors, but increased tool position error

The cutoff frequency of Q(q) directly affects the bandwidth of the ILC algorithm.
The resulting performance with respect to cutoff frequency is investigated in ex-
periments when fc = 10 and 15 Hz. In Figure 5.8 the error measure J ik (5.5) in
∞-norm for each of the joints are shown and it can be seen that a higher cutoff
frequency gives a larger reduction of the motor angular position errors. This can
be explained by the fact that with a higher cutoff frequency, a larger part of the
error is taken into account in the ILC update equation (5.3) and can be corrected.

From the corresponding error measures (5.8) to (5.9) for the tool, shown in Fig-
ure 5.9, it can be concluded that the tool-path error is increased for fc = 15 Hz
compared to fc = 10 Hz. This is an opposite result compared to the error mea-
sure (5.5) of the joints presented in Figure 5.8. An oscillatory behaviour of the
tool is noticed after a few iterations, as can be seen in Figure 5.10, where the tool
performance at the 0th and 5th iteration are compared. The oscillations are due

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 1

[%
]

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 2

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 3

[%
]

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 4

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 5

Iteration

[%
]

0 1 2 3 4 5

1
2
5

10
20
50

100
Joint 6

Iteration

f
c
 = 10

f
c
 = 15

Figure 5.8: The error measure J ik , see (5.5), expressed in∞-norm for all joints
i = 1, . . . , 6, cutoff frequencies fc = 10 and 15 Hz for each iteration. A higher
cutoff frequency gives a larger reduction of the errors.

i
i

main: 2011-01-11 10:21 — 92 (“74”) i
i

i
i

i
i

74 5 Motivation to estimation-based ILC

to the ILC algorithm and the ILC input signal uk(t), since the only differences
between the iterations is the added ILC input signal.

Summary

The experiments show that a simple ILC algorithm applied to the complex robot
structure can effectively reduce the motor angular position errors. The behaviour
of the tool is more complicated. In the first experiment, with the ILC design vari-
able fc = 10 Hz, it is illustrated that also the tool performance is improved. In
the second experiment a higher cutoff frequency, fc = 15 Hz, is used. In the ex-
periment it is shown that although the ILC algorithm reduces the motor angular
position errors, this does not necessarily imply improved tool performance.

0 1 2 3 4 5
40

60

80

100

J
kR

M
S
 [

%
]

0 1 2 3 4 5
60

80

100

120

Iteration

J
km

a
x
 [

%
]

f
c
 = 10 Hz

f
c
 = 15 Hz

Figure 5.9: Tool-position error evaluated by JRMS
k from (5.8), and Jmax

k
from (5.9), for each iteration. Higher cutoff frequency fc gives larger errors.

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

0th
 iteration

y
−

a
x
is

 [
m

m
]

x−axis [mm]
−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

5th
 iteration

x−axis [mm]

Figure 5.10: Measured circle of the tool when the experiment is performed
with the ILC design variable fc = 15 Hz. An oscillatory behaviour is noticed
for iteration 5 compared to iteration 0.

i
i

main: 2011-01-11 10:21 — 93 (“75”) i
i

i
i

i
i

5.3 Experiments on a parallel robot 75

5.3 Experiments on a parallel robot

The experiments on a parallel robot are performed on the Gantry-Tau parallel
robot prototype [Johannesson et al., 2004], which is schematically pictured in
Figure 5.11. The robot is designed to have a large workspace compared to other
parallel robot structures, while still being stiff compared to serial robots.

q1(t)

q2(t)

q3(t)

X
Y

Z

Xt

Yt

Zt

TCP T

Figure 5.11: Schematic picture of the Gantry-Tau parallel robot, with the
base coordinate frame XYZ, the coordinate frame XtYtZt of the end-effector
plate and the tool position T . Three carts move on guideways. The corre-
sponding cart positions are denoted q1(t), q2(t) and q3(t).

5.3.1 Experimental setup

Robot system

The Gantry-Tau robot has three kinematic chains, where each chain is driven by
a linear actuator consisting of a cart moving on a guideway. The three carts are
connected to the end-effector plate via link clusters, resulting in three purely
translational DOFs. In the experiments, the robot tool is supposed to perform
a rectangular motion with side 10 mm and with a high programmed tool veloc-
ity of 100 mm/s. Two length gauges from Heidenhain [2010] are available for
measuring the resulting tool position in the X- and Y -direction, respectively.6

The individual control loop of the motor for each cart can be approximated by a
low-pass filter with five samples delay, with the delay caused by internal data
communication in the IRC5 control system. From experiments when a force
pulse is generated by the impact of a hammer to the end-effector plate in the X-
and Y -direction, respectively, it is concluded that the light-weight robot links and

6See Section 8.2 for more information about the robot, control system and measurement devices.

i
i

main: 2011-01-11 10:21 — 94 (“76”) i
i

i
i

i
i

76 5 Motivation to estimation-based ILC

the mechanical framework introduces flexibilities in the robot structure7. The
first resonance at around 11 Hz in Y -direction is larger in magnitude than the
resonance in X-direction and is consequently dominant for the robot behaviour.

ILC algorithm

An ILC algorithm of the type (5.3) is used in the experiments. As the heuristic
algorithm design8 relies on only minor knowledge of the system (static gain and
time delay of the system), it is a suitable candidate for the experiments. It results
in a filter L(q) consisting of a time shift of δ = 5 samples and a learning gain
of γ = 0.9, based on a time delay of five samples and unity static gain of the
closed-loop system for each motor. A second-order low-pass Butterworth filter
with cutoff frequency fc = 10 Hz is chosen, implemented by filtering the signal
forwards-backwards in time, to obtain a zero-phase filter Q(q). An ILC algorithm
is implemented on each of the three carts independently, using the individual
motor angular position errors, with the same ILC design variables for all carts.

5.3.2 Performance measures

The experimental evaluation is based on the nominal error when no ILC algo-
rithm is applied (denoted k = 0). The nominal error for the three carts is

e1
m,0
e2
m,0
e3
m,0

 =

r
1
m
r2
m
r3
m

 −

q1
m,0
q2
m,0
q3
m,0

 (5.10)

with motor angular position error eim,0 and measured motor angular position qim,0
for cart i at iteration 0 and rim being the corresponding reference. The nominal
tool-position error is analogously defined as(

eXz,0
eYz,0

)
=

(
rXz
rYz

)
−
(
zX0
zY0

)
(5.11)

in the X- and Y -direction with the tool-position reference rz and z0 denoting the
measured tool position at iteration 0.

The reduction of the 2-norm of the motor error at iteration k is given in percent-
age of the nominal motor error (5.10), as in

ē1
m,k = 100 ·

‖e1
m,k‖2
‖e1
m,0‖2

[%] (5.12a)

ē2
m,k = 100 ·

‖e2
m,k‖2
‖e2
m,0‖2

[%] (5.12b)

ē3
m,k = 100 ·

‖e3
m,k‖2
‖e3
m,0‖2

[%] (5.12c)

7See a description of the identification experiment and the result in Section 8.4.
8See Algorithm 4, Section 4.8 for the details.

i
i

main: 2011-01-11 10:21 — 95 (“77”) i
i

i
i

i
i

5.3 Experiments on a parallel robot 77

The reduction of the 2-norm of the tool-position error is similarly given by

ēXz,k = 100 ·
‖eXz,k‖2
‖eXz,0‖2

[%] (5.13a)

ēYz,k = 100 ·
‖eYz,k‖2
‖eYz,0‖2

[%] (5.13b)

The quantities (5.12) and (5.13) are based on the part of the trajectory to be
learned by the ILC algorithm.

5.3.3 Experimental results

The experimental results when applying the ILC algorithm to each of the three
carts independently, using the individual motor angular position errors, are pre-
sented in Figure 5.12. The error measure (5.12) is reduced to nearly 2 % for the
three carts after approximately five iterations. The corresponding cart position is
derived by dividing the measured motor angular position by the gear ratio. The
resulting cart position errors after 10 iterations are compared to the nominal cart
position errors in Figure 5.13. It can clearly be seen that by applying an ILC al-
gorithm to the individual carts of the Gantry-Tau parallel robot, the cart position
errors for the part of the trajectory to be learned (t = 1.6 − 4.1 s) are significantly
reduced.

0 1 2 3 4 5 6 7 8 9 10
2

5

10

20

50

100

C
a

rt
 1

 [
%

]

Reduction of motor error

0 1 2 3 4 5 6 7 8 9 10
2

5

10

20

50

100

C
a

rt
 2

 [
%

]

0 1 2 3 4 5 6 7 8 9 10
2

5

10

20

50

100

C
a

rt
 3

 [
%

]

Iteration

Figure 5.12: Error measure (5.12) of the three carts.

i
i

main: 2011-01-11 10:21 — 96 (“78”) i
i

i
i

i
i

78 5 Motivation to estimation-based ILC

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

C
a

rt
 1

 [
m

m
]

Cart position error

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

C
a

rt
 2

 [
m

m
]

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

C
a

rt
 3

 [
m

m
]

Time [s]

k = 0

k = 10

Figure 5.13: Cart position errors after 10 iterations compared to the nomi-
nal errors for the three carts. The errors for the part of the trajectory to be
learned (t = 1.6 − 4.1 s) are significantly reduced.

i
i

main: 2011-01-11 10:21 — 97 (“79”) i
i

i
i

i
i

5.3 Experiments on a parallel robot 79

The motor angular position references to be followed by the motors are calculated
from the rectangular reference path of the tool transformed by the inverse kine-
matics. The path calculated from the measured motor angular positions trans-
formed by the forward kinematics, called “kinematics” in Figure 5.14, represents
the corresponding tool path if the robot was stiff. Since the ILC algorithm for
each cart is based on the motor angular position error, the kinematics path com-
pared to the reference path reflects the remaining control errors seen from the
motors, which are very small. For low velocities, much of the error components
of the robot tool position can be corrected by using ILC algorithms based on the
motor angular position errors, since the influence of the flexibilities in the robot
structure is small. When performing ILC experiments at higher velocity, as in
this chapter, the effects of the weak structure cannot be controlled by using only
measurements of the motor angular positions. This is the case here, which can
be seen in Figure 5.14 by the deviation of the measured tool position from the
reference tool path.

1362 1364 1366 1368 1370 1372
−884

−882

−880

−878

−876

−874

−872

X [mm]

Y
 [
m

m
]

reference

kinematics

measured

Figure 5.14: Tool performance after 10 iterations. The reference path (refer-
ence) is compared to the resulting path computed from the measured motor
angular positions transformed by the forward kinematics (kinematics) and
the measured tool position (measured).

i
i

main: 2011-01-11 10:21 — 98 (“80”) i
i

i
i

i
i

80 5 Motivation to estimation-based ILC

5.4 Simulation study

The results from the ILC experiments in the previous sections all have in com-
mon that the errors used in the ILC update equation, the motor angular position
errors, are significantly reduced. However, in the experiments on the serial robot,
the resulting tool position is improved when using one set of ILC design vari-
ables, while another set gives worsened tool behaviour. In the parallel robot ex-
periments, the reduction of the tool-position error is smaller than the reduction
of the motor angular position errors.

The experimental results illustrate that one has to be careful when dealing with
systems with unmodelled dynamics. The ILC algorithm can increase the oscil-
lations in the system. This can be the case in particular when the controlled
variable, here the robot tool position, is not directly measured and included in
the ILC algorithm. Therefore, a simulation study is performed by applying an
ILC algorithm to the flexible two-mass model illustrated in Figure 5.15, which
represents an idealised model of a single robot joint.

τ(t), qm(t)

qa(t)

Mm

Ma

k, d
η

fm

Figure 5.15: A flexible two-mass model characterised by spring coefficient k,
damping coefficient d, viscous friction fm, gear ratio η, moments of iner-
tia Mm, Ma, motor angular position qm(t), joint angular position qa(t) and
motor torque τ(t), generated by a torque constant kτ times the input voltage.

5.4.1 Simulation setup

Two-mass system

Two variables are needed to describe the deflection of the flexible joint; the mo-
tor angular position qm(t) seen from the motor side of the joint and the joint
angular position qa(t) seen from the link side of the joint. In this simulation ex-
ample it is assumed that the motor angular position can be measured, while the
controlled variable is the joint angular position. The model equations are given
in Section 2.3.3, with the model parameter values in Table 5.1. The parameter
values correspond with some minor modifications to the ones obtained for the
flexible robot used in Gunnarsson et al. [2007] for studying ILC applied to flexi-
ble mechanical systems.

In the simulation, a discrete-time PD-controller including a low-pass filter reg-
ulates the motor angular performance. Moderate requirements for the feedback

i
i

main: 2011-01-11 10:21 — 99 (“81”) i
i

i
i

i
i

5.4 Simulation study 81

can be chosen, since the desired servo performance is achieved by the ILC algo-
rithm. The controller F(q) is obtained by manual tuning, resulting in

F(q) = K1 +
K2q − K3

q − K4

with the controller parameters given in Table 5.2. A block diagram9 of the system
and controller is given in Figure 5.16. The motor angular position qm(t) is related
to the joint angular position qa(t) by the true system T 0

yz(s), see (2.12b). From the
figure, it can also be seen that the ILC input signal uk(t) is added to the motor
angular position reference rm(t). The closed-loop system is driven by a joint an-
gular position reference ra(t), here chosen as a filtered step. The corresponding
motor angular position reference rm(t) is then computed from

rm(t) = Fr (q)ra(t) (5.14)

The pre-filter Fr (q) is given as the inverse of a sampled version of a model Tyz(s) of
the true system T 0

yz(s), multiplied by a factor 1/q to make Fr (q) proper. The closed-
loop system and ILC algorithm are simulated using Simulink with a sampling
interval of Ts = 0.01 s.

Table 5.1: Model parameter values.

η = 0.2 Mm = 0.0021 Ma = 0.0991 k = 8

d = 0.0924 fm = 0.0713 kτ = 0.122

Table 5.2: Controller parameter values.

K1 = 5 K2 = 2 K3 = 2 K4 = 0.905

ra(t)
rm(t)

+

uk(t)

e(t)
FFr

τ(t)
T0

ūy

qm(t)
T0

yz
qa(t)

−1

Figure 5.16: The system illustrated by the true systems T 0
ūy and T 0

yz , relat-
ing motor torque τ(t) to motor angular position qm(t), and motor angular
position qm(t) to joint angular position qa(t), respectively. F represents the
controller. The reference ra(t) is filtered by the pre-filter Fr , giving rm(t), and
the ILC input uk(t) is added to rm(t).

9In Figure 5.16 the subscripts of the transfer operators follow the notation in Chapter 6, with
input ū(t) to the system, measured variable y(t) and controlled variable z(t).

i
i

main: 2011-01-11 10:21 — 100 (“82”) i
i

i
i

i
i

82 5 Motivation to estimation-based ILC

ILC algorithm

A first-order ILC algorithm of the type (5.3) is applied to the two-mass system,
with learning gain γ and time shift of δ samples, see Table 5.3 for the numeri-
cal values. The filter Q(q) is implemented by forward-backward filtering of the
signal through a causal second-order low-pass Butterworth filter with cutoff fre-
quency fc Hz to obtain zero-phase characteristics.

Table 5.3: ILC design parameter values.

γ = 0.95 δ = 10 fc = 9

5.4.2 Simulation results

The resulting improvement of the joint angular position, the controlled variable,
is of interest. In the simulation example, the motor angular position error

ek(t) = rm(t) − qm,k(t) (5.15)

is used in the ILC algorithm (5.3). Assume that the relation between the mea-
sured variable qm(t) and controlled variable qa(t) is completely known, see Fig-
ure 5.16, and that a stable inverse exists. A correct motor angular position refer-
ence rm(t) can then be derived from the joint angular position reference according
to

rm(t) =
(
Tyz(q)

)−1
ra(t) (5.16)

The resulting motor angular position qm(t) is close to the reference rm(t) when
the ILC algorithm has converged, as is illustrated in Figure 5.17. The joint an-
gular position qa(t), the controlled variable, is thereby also driven towards the
correct reference signal ra(t) for the case with nominal system parameters, seen
in Figure 5.18. The improvement compared to the result when no ILC algorithm
is applied is clearly seen.

An uncertain model Tyz(q) would give an incorrect value of qm(t) and thereby
also incorrect qa(t), since a reference rm(t) derived from (5.16) would be followed.
This does not necessarily imply that the resulting joint angular position error is
reduced. It is illustrated by modifying the joint stiffness parameter by +40 %,
motivated by the case when the stiffness of the gearbox is uncertain. Applying
the same ILC algorithm to the modified system results in a motor angular po-
sition qm(t) following the desired trajectory in Figure 5.17. The resulting joint
angular position, see Figure 5.18, is however deteriorated when model errors are
introduced, since the joint angular position converges towards an incorrect ref-
erence signal due to the model error. The motor angular position reference is
thereby essential for the resulting joint angular position after convergence.

Similar results could be seen in the previous experiments. When applying the
ILC algorithms using motor angular positions to the robot, the motor perfor-
mance is significantly improved. Learning of the frequency components of the

i
i

main: 2011-01-11 10:21 — 101 (“83”) i
i

i
i

i
i

5.4 Simulation study 83

0 1 2 3 4 5
0

1

2

3

4

5

[r
a

d
]

Time [s]

Motor angular position

r
m

q
m, 0

, nominal

q
m, ∞

, nominal

q
m, ∞

, model error

Figure 5.17: Resulting motor angular position when the ILC algorithm has
converged (denoted ∞). The performance is improved both in the nominal
case and the case with model error, compared to when no ILC algorithm is
applied (denoted 0).

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

[r
a

d
]

Time [s]

Joint angular position

r
a

q
a, 0

, nominal

q
a, ∞

, nominal

q
a, ∞

, model error

Figure 5.18: Resulting joint angular position when the ILC algorithm has
converged (denoted ∞). The performance is improved in the nominal case.
However, when introducing model errors, the performance is deteriorated
compared to when no ILC algorithm is applied (denoted 0).

i
i

main: 2011-01-11 10:21 — 102 (“84”) i
i

i
i

i
i

84 5 Motivation to estimation-based ILC

error up to around 10 Hz for the serial robot also implies improved tool perfor-
mance. For higher frequencies of the robot system, the motor angular position
reference does not correspond to the desired tool reference due to uncertainties
in the model of the robot dynamics. For example, if the dominating resonance
frequency of the robot is not modelled sufficiently well, it means that although
the part of the motor angular position error up to and above this frequency is
reduced, an oscillatory behaviour could appear in the tool position since an in-
correct reference signal is followed. For the experiments with the Gantry-Tau
parallel robot, the motor angular position reference is calculated from the tool
position reference transformed by the inverse kinematics. In this case reduced
motor angular position error does not mean a similar level of reduction of the
tool position error. The flexible dynamic structure of the robot is not taken into
account at all in the generation of the motor reference.

The results from both experiments and simulations clearly motivate the need for
using an estimate of the controlled variable in the ILC algorithm, that is,

ek(t) = ra(t) − q̂a,k(t) (5.17)

in the case with the two-mass model. One way of forming the estimate q̂a,k(t) of
the joint angular position is by using the nominal model Tyz(q), as in

q̂a,k(t) = Tyz(q)qm,k(t) (5.18)

By inserting (5.18) into (5.17), the error (5.17) used in the ILC algorithm can
be rewritten as the motor angular position error filtered through the nominal
model Tyz(q), as in

ek(t) = Tyz(q)
(
rm(t) − qm,k(t)

)
which has similarity with (5.16). The resulting system performance qa(t) clearly
depends on the accuracy of the model. An alternative way to obtain estimates of
the controlled variable is to use additional sensors, like accelerometers, in combi-
nation with signal processing and estimation techniques, see for example Karls-
son and Norrlöf [2005]. These estimates can then be used in an ILC algorithm to
be able to improve the performance of the controlled variable. Estimation-based
ILC will be the topic for Chapters 6 to 8.

5.5 Conclusions

Traditionally ILC has been applied to systems where the controlled variable also
is the measured variable. In industrial robot applications this is typically not the
case; in a commercial robot system the motor angular positions are measured,
while the control objective is to follow a desired tool path. Measuring the tool
position in an acceptable way both economically and practically is difficult.

This chapter discusses experimental results when an ILC algorithm using mea-
sured motor angular positions is applied to both a serial robot and a parallel
robot. It is shown that an improved motor angular position does not necessar-

i
i

main: 2011-01-11 10:21 — 103 (“85”) i
i

i
i

i
i

5.5 Conclusions 85

ily imply an improved tool position. The underlying problem can be described
by difficulties in improving performance of the controlled variable by ILC algo-
rithms based on only measured variables when the dynamic model suffers from
uncertainties. This problem is studied in simulations of a flexible two-mass sys-
tem, representing an idealised model of a single robot joint. When only the motor
angular position error is used in the ILC update equation, the joint angular posi-
tion converges towards an incorrect signal when model errors are introduced, as
expected. This is explained by the motor angular position reference, computed
from the inverse of the nominal system relating motor angular position to joint
angular position.

One way of handling the difficulties described above is to use an estimate of the
controlled variable in the ILC algorithm. The estimate could, for example, be ob-
tained by using additional sensors in combination with signal processing and es-
timation algorithms. In Chapter 6 the theoretical basis for analysis of estimation-
based ILC is given, together with simulations and experiments in Chapters 7 to 8.

i
i

main: 2011-01-11 10:21 — 104 (“86”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 105 (“87”) i
i

i
i

i
i

6
A framework for analysis of

estimation-based ILC

A framework for analysis of ILC algorithms is proposed for the situation
when an ILC algorithm uses an estimate of the controlled variable. Under

the assumption that the ILC input converges to a bounded signal, a general ex-
pression for the asymptotic error of the controlled variable is given. The expres-
sion for the asymptotic error is illustrated by a numerical example where an ILC
algorithm is applied to a flexible two-mass model of a robot joint. The chapter is
based on Wallén et al. [2009c, 2011].

6.1 Introduction

The aim of this chapter is to present a framework for analysis of the situation
when an ILC algorithm is combined with a procedure for generating an estimate
of the controlled variable. Estimation techniques and ILC have been combined
in only a few publications. One example is Gunnarsson et al. [2007], where the
ILC algorithm uses an estimate of the joint angular position, computed using
measurements of the motor angular position and the joint angular acceleration
of a flexible one-link robot arm. In Ratcliffe et al. [2006] a norm-optimal ILC
algorithm is applied to a gantry robot, and the states are estimated by means
of a full-state observer. In Schöllig and D’Andrea [2009] a state-space model is
obtained by linearisation along the desired trajectory. The model error is then
estimated using a Kalman filter in the iteration domain. The control signal at
next iteration is given by minimising the deviation of the states from the desired
trajectory. Another example is Tayebi and Xu [2003], where the estimated states
for a class of time-varying nonlinear systems are used in an ILC algorithm and
the asymptotic behaviour of the system is discussed. The focus in these papers
is on specific estimation and/or ILC algorithm techniques, while the following

87

i
i

main: 2011-01-11 10:21 — 106 (“88”) i
i

i
i

i
i

88 6 A framework for analysis of estimation-based ILC

aspects are of main interest here:

• A framework for analysis of the properties of the ILC algorithm when an
estimate of the controlled variable is used in the ILC algorithm.

• An expression for the asymptotic error of the controlled variable when an
ILC algorithm using an estimate of the controlled variable has converged.

6.2 System description

Consider the system shown in Figure 6.1. The linear discrete-time system T has
two inputs; the reference r(t) and the ILC input signal uk(t), with k denoting the
iteration number. The outputs are the measured variable yk(t) and the controlled
variable zk(t). Throughout the chapter the variable zk(t) should follow the refer-
ence r(t). The system T can have internal feedback, which means that it contains
the system to be controlled as well as the controller.

T
r(t)

uk(t)

yk(t)

zk(t)

Figure 6.1: Description of the system T with reference r(t), ILC input uk(t),
measured variable yk(t) and controlled variable zk(t) at iteration k.

Denoting the true system by the superscript “0”, the description of the system T
at iteration k is

yk(t) = T 0
ry(q)r(t) + T 0

uy(q)uk(t) (6.1a)

zk(t) = T 0
rz(q)r(t) + T 0

uz(q)uk(t) (6.1b)

The transfer operators T 0
ry(q), T 0

uy(q), T 0
rz(q) and T 0

uz(q) are assumed to be stable
and causal. System and measurement disturbances are not included here for
simplicity reasons. In the following two examples it is illustrated how the system
description (6.1) incorporates both open-loop and closed-loop systems.

Example 6.1: Open-loop system
First, an example of the description (6.1) is given by the stable open-loop system
shown in Figure 6.2. The true system, denotedG0(q), is given by the discrete-time
state-space description

xk(t + 1) = A0xk(t) + B0uk(t) (6.2a)

yk(t) = C0xk(t) (6.2b)

zk(t) = M0xk(t) (6.2c)

with the ILC input signal uk(t) at iteration k. A sampling interval of Ts = 1 is
assumed in the remainder of the chapter if nothing else is stated. The outputs are

i
i

main: 2011-01-11 10:21 — 107 (“89”) i
i

i
i

i
i

6.2 System description 89

the measured variable yk(t) and controlled variable zk(t). From (6.2) the transfer
operators T 0

uy(q) and T 0
uz(q) are given by

T 0
uy(q) = C0(qI − A0)−1B0 (6.3a)

T 0
uz(q) = M0(qI − A0)−1B0 (6.3b)

G0uk(t)
yk(t)

zk(t)

Figure 6.2: Stable open-loop system; an example of the system descrip-
tion (6.1) with input uk(t) and outputs yk(t) and zk(t).

Example 6.2: Closed-loop system
The system description (6.1) with inputs r(t), uk(t) and outputs yk(t), zk(t) can
also be exemplified by the closed-loop system shown in Figure 6.3. It means that
the system T has internal feedback and contains both the system to be controlled
and the controller in operation. In a real application the controller structure can
be more complex than the one shown in Figure 6.3, where the structure consid-
ered here is used for illustration purposes.

The system to be controlled is given by the description (6.2), with input ūk(t),
which is the control signal from the controller F(q) at iteration k. The transfer
operators are similarly to (6.3) denoted T 0

ūy(q) and T 0
ūz(q). Throughout the chap-

ter it is assumed that the controller F(q) is given, and that the closed-loop system
is stable. Noting the choice of adding the ILC input uk(t) to the reference r(t)
in this example, it gives the closed-loop system from inputs r(t) and uk(t) to out-

r(t) +

−

uk(t)

F
ūk(t)

G0

zk(t)

yk(t)

Figure 6.3: Closed-loop system; an example of the system description (6.1)
with inputs r(t), uk(t) and outputs yk(t), zk(t). The input to G0(q) is ūk(t)
from the controller F(q).

i
i

main: 2011-01-11 10:21 — 108 (“90”) i
i

i
i

i
i

90 6 A framework for analysis of estimation-based ILC

puts yk(t) and zk(t) as

yk(t) =
F(q)T 0

ūy(q)

1 + F(q)T 0
ūy(q)

r(t) +
F(q)T 0

ūy(q)

1 + F(q)T 0
ūy(q)

uk(t)

= T 0
ry(q)r(t) + T 0

uy(q)uk(t) (6.4a)

zk(t) =
F(q)T 0

ūz(q)

1 + F(q)T 0
ūy(q)

r(t) +
F(q)T 0

ūz(q)

1 + F(q)T 0
ūy(q)

uk(t)

= T 0
rz(q)r(t) + T 0

uz(q)uk(t) (6.4b)

where the transfer operators T 0
ry(q), T 0

uy(q), T 0
rz(q) and T 0

uz(q) can be identified by
comparison with (6.1). They are stable according to the assumption about the
closed-loop system.

Finally it can be noted that the system description (6.1) is a natural extension of
the description (4.1), presented in Norrlöf and Gunnarsson [2002a]. With system
and measurement disturbances omitted, the system description (4.1) is

yk(t) = Tr (q)r(t) + Tu(q)uk(t)

This system is then controlled by an ILC algorithm and the properties of the
resulting ILC system are analysed with focus on the measured variable yk(t) in
Chapter 4, as well as in Norrlöf and Gunnarsson [2002a].

For the analysis in Section 6.5, a matrix description of the system and the ILC
algorithm is used. The system description (6.1) is then rewritten in matrix form
as

yk = T 0
ryr + T 0

uyuk (6.5a)

zk = T 0
rzr + T 0

uzuk (6.5b)

with the system matrices derived from the pulse-response coefficients of the cor-
responding transfer operators. This is further described in Section 4.4.

6.3 Estimation of the controlled variable

In the system description (6.1) the measured variable yk(t) and controlled vari-
able zk(t) are involved. Consider a system where yk(t) and zk(t) in some sense
reflects the same quantity, and assume that if yk(t) follows the reference r(t), it
does not give the desired value of zk(t). Obviously, if an ILC input uk(t) is ap-
plied to the system where the ILC algorithm is using the error r(t) − yk(t), it will
drive the controlled variable zk(t) towards an incorrect value since the dynamics
between yk(t) and zk(t) is neglected. It is therefore natural to use an estimate
of zk(t), denoted ẑk(t), in the ILC algorithm. The following representation of
the estimate ẑk(t) is proposed, where the estimate is generated using the refer-

i
i

main: 2011-01-11 10:21 — 109 (“91”) i
i

i
i

i
i

6.3 Estimation of the controlled variable 91

ence r(t), ILC input uk(t) and measured variable yk(t) as

ẑk(t) = Fr (q)r(t) + Fu(q)uk(t) + Fy(q)yk(t) (6.6)

and the filters Fr (q), Fu(q) and Fy(q) are assumed to be stable. See Figure 6.4 for
an illustration of the system T together with the estimator (6.6). Using the matrix
description, the relation (6.6) can be rewritten as

ẑk = Frr + Fuuk + Fyyk (6.7)

with the matrices derived from the pulse-response coefficients of the filters Fr (q),
Fu(q) and Fy(q), similarly as in (4.3).

T

Estimation

r(t)

uk(t)

yk(t)

zk(t)

ẑk(t)

Figure 6.4: Description of the system T with reference r(t), ILC input uk(t),
measured variable yk(t) and controlled variable zk(t) at iteration k. The esti-
mator (6.6) results in an estimate ẑk(t) of the controlled variable. The vari-
able zk(t) should track the reference r(t).

The relation (6.6) will now be illustrated in three examples, showing how the
estimate ẑk(t) can be created. The cases are also discussed in more detail in Sec-
tion 6.6.

Example 6.3: Case 1
A naive way of estimating zk(t) would be to neglect the dynamics between the
measured variable yk(t) and controlled variable zk(t) and to let

ẑk(t) = yk(t)

With the representation (6.6), this means choosing

Fr (q) = 0, Fu(q) = 0, Fy(q) = 1

Example 6.4: Case 2A
There are situations where the relationship between the measured variable yk(t)
and controlled variable zk(t) can be explicitly described by the stable discrete-
time relation1

zk(t) = T 0
yz(q)yk(t) (6.8)

1See Section 6.6.5 for an example where (6.8) holds.

i
i

main: 2011-01-11 10:21 — 110 (“92”) i
i

i
i

i
i

92 6 A framework for analysis of estimation-based ILC

By using a nominal model Tyz(q) of the relationship (6.8) between yk(t) and zk(t),
it suggests an estimate in the form

ẑk(t) = Tyz(q)yk(t) (6.9)

which can be incorporated in the description (6.6) with

Fr (q) = 0, Fu(q) = 0, Fy(q) = Tyz(q)

In the third example zk(t) is estimated from the system input ūk(t) and measure-
ment yk(t) using an observer. An important aspect of using observers is the ability
of fusing information from additional sensors together with the original measure-
ments available in the system. This is discussed in some more detail in Chapter 3,
with focus on Kalman filtering and complementary filtering. The ability of fus-
ing information together to form estimates of relevant signals is a prerequisite
for the results presented in Chapters 7 and 8. In Chapter 7 the joint angular po-
sitions of a flexible nonlinear two-link robot model are estimated using an EKF
based on measurements of the motor angular position and the tool acceleration.
In Chapter 8 the tool position of a parallel robot is estimated experimentally by
using measured motor angular positions and tool acceleration in a complemen-
tary filter and a Kalman filter, respectively. These estimates are thereafter used
in ILC algorithms to improve the robot performance.

Example 6.5: Case 2B
Based on a nominal model of the state-space description (6.2) with input ūk(t),
an observer can be formed as

x̂k(t + 1) = Ax̂k(t) + Būk(t) + K
(
yk(t) − Cx̂k(t)

)
(6.10a)

ẑk(t) = Mx̂k(t) (6.10b)

where yk(t) can be a vector consisting of several measurements. Using transfer
operators the estimate of the controlled variable can be expressed by

ẑk(t) = M
(
qI − (A − KC)

)−1
Būk(t) + M

(
qI − (A − KC)

)−1
Kyk(t)

= Fū(q)ūk(t) + Fȳ(q)yk(t)
(6.11)

From the closed-loop system in Figure 6.3, the filters in (6.6) can be identified as

ẑk(t) = Fū(q)F(q)r(t) + Fū(q)F(q)uk(t) +
(
Fȳ(q) − Fū(q)F(q)

)
yk(t)

= Fr (q)r(t) + Fu(q)uk(t) + Fy(q)yk(t)
(6.12)

To summarise, from Examples 6.3 to 6.5 it can be seen that the representation (6.6)
covers different ways of generating the estimate ẑk(t); by neglecting the dynamics,
by using a nominal model of the relation between yk(t) and zk(t), and by using
observers. It is therefore natural to use the relation (6.6) in the ILC algorithm, as
is seen in the forthcoming section.

i
i

main: 2011-01-11 10:21 — 111 (“93”) i
i

i
i

i
i

6.4 ILC algorithm 93

6.4 ILC algorithm

In this chapter the structure (4.12) for an ILC algorithm in transfer-operator form
is considered, where the update equation is given by

uk+1(t) = Q(q)
(
uk(t) + L(q)εk(t)

)
(6.13)

The error used in the ILC algorithm,

εk(t) = r(t) − ẑk(t)

is the difference between the reference r(t) and the estimate ẑk(t) from (6.6) of
the controlled variable zk(t). The controlled variable zk(t) should follow the ref-
erence r(t). Then, the following error

ek(t) = r(t) − zk(t)

is used to evaluate the performance of the system. Using the matrices L and Q, it
results in the matrix form of the ILC update equation and error used in the ILC
algorithm as follows

uk+1 = Q(uk + Lεk) (6.14a)

εk = r − ẑk (6.14b)

while the system performance (6.4) is evaluated by

ek = r − zk (6.15)

6.5 Analysis

To support the analysis and make it easier to follow the derivations in this section,
the main equations (6.5), (6.7), and (6.14) to (6.15) from previous sections are
summarised here. The system given by

yk = T 0
ryr + T 0

uyuk (6.16a)

zk = T 0
rzr + T 0

uzuk (6.16b)

is controlled by using the ILC input signal uk , updated by

uk+1 = Q(uk + Lεk) (6.17a)

εk = r − ẑk (6.17b)

using the estimate

ẑk = Frr + Fuuk + Fyyk (6.18)

The system performance is evaluated by

ek = r − zk (6.19)

From the relations (6.16) to (6.19) the ILC system equation is now derived, which
will be used in the stability analysis.

i
i

main: 2011-01-11 10:21 — 112 (“94”) i
i

i
i

i
i

94 6 A framework for analysis of estimation-based ILC

Lemma 6.1 (ILC system equation). Consider the system in (6.16) using the ILC
update equation (6.17) and the estimate ẑk from (6.18). Then the ILC system
equation is given by

uk+1 = Huk + Hrr (6.20)

where

H = Q
(
I − L(Fu + FyT

0
uy)

)
(6.21a)

Hr = QL
(
I − (Fr + FyT

0
ry)

)
(6.21b)

Proof: Using (6.16), the error εk in (6.17b) can be written

εk = r − Frr − Fuuk − Fy(T 0
ryr + T 0

uyuk)

=
(
I − (Fr + FyT

0
ry)

)
r − (Fu + FyT

0
uy)uk

Inserting the error εk into the ILC update equation (6.17a) then gives

uk+1 = Q
(
I − L(Fu + FyT

0
uy)

)
uk + QL

(
I − (Fr + FyT

0
ry)

)
r

and the result follows.

Stability of the ILC system in Lemma 6.1 can be expressed based on the results
in Chapter 4.

Theorem 6.1 (Stability). Consider the ILC system equation (6.20) in Lemma 6.1,

uk+1 = Huk + Hrr

This system is stable if and only if ρ(H) < 1, where ρ(·) is the spectral radius of
the matrix.

Proof: Follows from Theorem 4.5 with the ILC system (6.20).

The system performance ek when the number of iterations goes to infinity is given
by the following lemma.

Lemma 6.2 (Asymptotic behaviour). Under the assumption that the input uk
in the ILC system equation (6.20) from Lemma 6.1 converges to a bounded signal
as k →∞, the limit is given by

u∞ =
(
I −Q

(
I − L(Fu + FyT

0
uy)

))−1
QL

(
I − (Fr + FyT

0
ry)

)
r (6.22)

The corresponding asymptotic error r − z∞ becomes

e∞ =
(
I − T 0

rz − T 0
uz

(
I −Q(I − L(Fu + FyT

0
uy))

)−1
QL

(
I − (Fr + FyT

0
ry)

))
r (6.23)

i
i

main: 2011-01-11 10:21 — 113 (“95”) i
i

i
i

i
i

6.5 Analysis 95

Proof: Let k →∞ and solve the ILC system equation (6.20) from Lemma 6.1,

u∞ = Q
(
I − L(Fu + FyT

0
uy)

)
u∞ + QL

(
I − (Fr + FyT

0
ry)

)
r

for u∞. Insert u∞ in the relation for the error of the controlled variable, us-
ing (6.16b),

e∞ = r − z∞ = r − (T 0
rzr + T 0

uzu∞)

to derive the asymptotic error.

From the expression (6.23) it can be seen that the asymptotic error e∞ depends
on:

• The feedback controller via the possibly closed-loop system matrices T 0
ry ,

T 0
uy , T 0

rz and T 0
uz , as seen in Example 6.2.

• The method to estimate ẑ via the representation (6.7) and the matrices Fr ,
Fu and Fy , see Examples 6.3 to 6.5.

• The magnitude of the model errors via the matrices Fr , Fu and Fy , see Ex-
amples 6.3 to 6.5.

• The choice of ILC algorithm, via the matrices Q and L.

The influence of the individual elements on the asymptotic error is not obvious
from the expression (6.23). The next section discusses various aspects of how the
choice of estimation filters and the magnitude of model errors affect the resulting
value of e∞, both by studying the expression (6.23) in detail for four different
cases and by a numerical example.

From a design perspective the following result has an important impact.

Theorem 6.2 (Monotone convergence). Consider the ILC system (6.20). If the
maximum singular value satisfies σ̄ (H) ≤ λ < 1, then the system is stable, and

‖u∞ − uk‖2 ≤ λk‖u∞ − u0‖2
with u∞ from (6.22) in Lemma 6.2.

Proof: Follows from Theorem 4.6 with the ILC system equation (6.20) and with
the asymptotic ILC input u∞ from Lemma 6.2.

Monotone convergence of uk is a good design criterion in applications. From
Theorem 6.2 it can be seen that the smaller the maximum singular value of the
matrix H , the faster the convergence. It is also necessary to check e0 and e∞ such
that the error is reduced as desired. A design criterion therefore should include
minimising the maximum singular value σ̄ (H) as well as the asymptotic error e∞.

i
i

main: 2011-01-11 10:21 — 114 (“96”) i
i

i
i

i
i

96 6 A framework for analysis of estimation-based ILC

6.6 Illustration of the results

The asymptotic error e∞ of the controlled variable from Lemma 6.2 is discussed
in this section. First, in Sections 6.6.1 to 6.6.4 it is assumed that L can be cho-
sen such that uk converges to a bounded signal when Q = I in the ILC algo-
rithm (6.17). Although this idealised choice of Q is seldom possible in practice, it
is fruitful in the analysis of e∞, since by this choice only the influence of estima-
tion matrices Fr , Fu and Fy is studied and the result is independent of the choice
of ILC matrices Q and L. In addition to this idealised discussion, a numerical
example with a flexible two-mass system is given in Section 6.6.5, with a general
matrix Q (different from I). The transient and asymptotic behaviour of the two-
mass system is discussed when an ILC algorithm is applied to the system, using
different estimates ẑk .

To support the intuition of the results in Sections 6.6.1 to 6.6.4, the relations are
illustrated for a system where it is possible to write an explicit stable relation-
ship (6.8) between the measured variable yk(t) and controlled variable zk(t),

zk(t) = T 0
yz(q)yk(t)

See Section 6.6.5 for further details, where such a system is exemplified. From
the pulse-response coefficients of the system T 0

yz(q), the matrix T 0
yz can be defined

similarly as in (4.3), resulting in

zk = T 0
yzyk (6.24)

The ILC algorithm (6.17) is in this section applied to the system (6.16) for the
following cases:

1. The ILC input is updated using εk = r − yk , that is, the dynamics between
yk and zk is neglected.

2A. The ILC input is updated using εk = r − Tyzyk , that is, ẑk is estimated from
a nominal model of the relation (6.24).

2B. The ILC input is updated using εk = r − ẑk , where ẑk = Frr + Fuuk + Fyyk .
The filters Fr , Fu and Fy are obtained from the observer (6.10).

3. As a comparison, in order to show what ideally can be achieved, it is as-
sumed that the controlled variable zk can be measured and that the ILC
input is updated using εk = r − zk .

The choices of filters Fr (q), Fu(q) and Fy(q) in (6.6) to implement the cases 1,
2A and 2B were previously discussed in Examples 6.3 to 6.5 in Section 6.3. In
Table 6.1 the resulting ILC system equation (6.20) and the asymptotic error e∞(t)
of the controlled variable zk(t), see Lemma 6.2, are summarised for the cases
above. These relations are next discussed in more detail.

6.6.1 Case 1 — ILC using measured variable

For case 1 the dynamics between the measured variable yk and the controlled
variable zk is neglected, giving the estimate ẑk = yk , see Example 6.3. The actual

i
i

main: 2011-01-11 10:21 — 115 (“97”) i
i

i
i

i
i

6.6 Illustration of the results 97

Ta
b
le

6.
1:

Su
m

m
ar

y
of

th
e

d
es

cr
ip

ti
on

of
a

sy
st

em
u

si
ng

IL
C

an
d

p
er

fo
rm

an
ce

w
he

n
th

e
IL

C
al

go
ri

th
m

u
se

s
va

ri
ou

s
er

ro
rs

,c
as

es
1

to
3,

fo
r

th
e

id
ea

lc
ho

ic
e
Q

(q
)

=
1.

C
as

e
ε k

u
k+

1
=
H
u
k

+
H
rr

e ∞
(t

)
=
r(
t)
−
z ∞

(t
),

Q
(q

)
=

1

1
r
−
y k

H
=
Q

(I
−
L
T

0 u
y

)
(1
−
T

0 yz
(q

)) r(t)
H
r

=
Q
L

(I
−
T

0 ry
)

2A
r
−
T
y
z
y k

H
=
Q

(I
−
L
T
y
z
T

0 u
y

)
(1
−
T

0 yz
(q

)T
−1 yz

(q
)) r(t)

H
r

=
Q
L

(I
−
T
y
z
T

0 ry
)

2B
r
−

(F
rr

+
F u
u
k

+
F y
y k

)
H

=
Q
(I−

L
(F
u

+
F y
T

0 u
y

))     1−
T

0 yz
(q

)T
0 ry

(q
)F
u

(q
)+

(1
−
F
r(
q)
) T0 uy

(q
)

F
u

(q
)+

F
y

(q
)T

0 u
y

(q
)

     r(t)
H
r

=
Q
L
(I−(

F r
+
F y
T

0 ry
))

3
r
−
z k

H
=
Q

(I
−
L
T

0 yz
T

0 u
y

)
0

H
r

=
Q
L

(I
−
T

0 yz
T

0 ry
)

i
i

main: 2011-01-11 10:21 — 116 (“98”) i
i

i
i

i
i

98 6 A framework for analysis of estimation-based ILC

relation between yk and zk is given by (6.16). The assumption in Section 6.6
that L can be chosen such that Q = I implies ε∞ = 0. The asymptotic error e∞
from Lemma 6.2 is then given by

e∞ =
(
I − T 0

rz − T 0
uz(LT

0
uy)−1L(I − T 0

ry)
)
r (6.25)

Using the assumption that the system can be described by an explicit relation be-
tween the measured and controlled variable, see (6.24), it results in the relations

T 0
rz = T 0

yzT
0
ry (6.26a)

T 0
uz = T 0

yzT
0
uy (6.26b)

For the SISO system described by (6.1), the relation (6.25) can under the assump-
tion (6.26) be rewritten in transfer-operator form as

e∞(t) =
(
1 − T 0

yz(q)
)
r(t)

In general, T 0
yz(q) , 1 results in an asymptotic error e∞(t) , 0 of the controlled

variable, as expected.

For the situation with a general matrix Q, it can be seen that the expression (6.23)
for the asymptotic error e∞ is equal to (4.32) when Tyz = T 0

yz = I .

6.6.2 Case 2A — ILC using estimate from model of direct relation

Under the assumption that the relation (6.24) between yk and zk holds, a straight-
forward way to estimate zk is by using the nominal dynamics, giving ẑk = Tyzyk .
The asymptotic error e∞ from Lemma 6.2, for Q = I and using the approxima-
tion (6.26), results in

e∞ =
(
I − T 0

yz

(
T 0
ry + T 0

uy(LTyzT
0
uy)−1L(I − TyzT 0

ry)
))
r (6.27)

For the SISO system given by (6.1), the relation (6.27) for the asymptotic error
can be rewritten as

e∞(t) =
(
1 − T 0

yz(q)T −1
yz (q)

)
r(t)

using transfer operators. From this expression it can be seen that when the nom-
inal model Tyz(q) is equal to the true system T 0

yz(q), the error e∞(t) = 0. An obvi-
ous question is how close Tyz(q) needs to be to T 0

yz(q) to get better performance
using the case 2A compared to case 1. This will depend on the properties of the
particular application.

Study the expression (6.23) of the asymptotic error for case 2A with a general
matrix Q, under the assumption of Tyz = T 0

yz , that is, ẑk = zk ,

e∞ =
(
I − T 0

rz − T 0
uz

(
I −Q(I − LT 0

yzT
0
uy)

)−1
QL

(
I − T 0

yzT
0
ry

))
r (6.28)

Using (6.26), the expression (6.28) can be rewritten to (4.32), with the error
ek = r − zk used in the ILC algorithm (4.13).

i
i

main: 2011-01-11 10:21 — 117 (“99”) i
i

i
i

i
i

6.6 Illustration of the results 99

6.6.3 Case 2B— ILC using estimate from linear observer

The estimate ẑk is now given by (6.18),

ẑk = Frr + Fuuk + Fyyk

Using Q = I , the asymptotic error e∞ from Lemma 6.2 is given by

e∞ =
(
I − T 0

rz − T 0
uz

(
L(Fu + FyT

0
uy)

)−1
L
(
I − (Fr + FyT

0
ry)

))
r

Under the assumption that relation (6.26) holds, the asymptotic error can for the
SISO system (6.1) be rewritten in transfer-operator form as

e∞(t) =
(
1 − T 0

yz(q)
T 0
ry(q)Fu(q) + (1 − Fr (q))T 0

uy(q)

Fu(q) + Fy(q)T 0
uy(q)

)
r(t) (6.29)

The filters Fr (q), Fu(q) and Fy(q) are given from the observer (6.10) in Exam-
ple 6.5, and the closed-loop system is from Example 6.2 given by

yk(t) =
F(q)T 0

ūy(q)

1 + F(q)T 0
ūy(q)︸ ︷︷ ︸

T 0
ry (q)

r(t) +
F(q)T 0

ūy(q)

1 + F(q)T 0
ūy(q)︸ ︷︷ ︸

T 0
uy (q)

uk(t)

The asymptotic error e∞(t) in (6.29) can then be rewritten as

e∞(t) =
(
1 − T 0

yz(q)
T 0
ūy(q)

Fū(q) + Fȳ(q)T 0
ūy(q)

)
r(t) (6.30)

The transfer operators in (6.30) are given by

T 0
ūy(q) = C0(qI − A0)−1B0

T 0
ūz(q) = M0(qI − A0)−1B0

from (6.3) for the system with input ūk(t), and

Fū(q) = M
(
qI − (A − KC)

)−1
B

Fȳ(q) = M
(
qI − (A − KC)

)−1
K

from Example 6.5. It is seen that the expression for e∞(t) in (6.30) is independent
of the controller F(q), and only depends on the magnitude of the model errors.

For an observer (6.10) based on the true system, the denominator of (6.30) is

Fū(q) + Fȳ(q)T 0
ūy(q) = M0(qI − A0)−1B0

= T 0
ūz(q) = T 0

yz(q)T 0
ūy(q)

(6.31)

where the last equality can be realised from (6.8). From this expression it is seen
that the asymptotic error in (6.30) is e∞(t) = 0, which is expected when ẑk(t) re-
sults from an observer based on the true system.

i
i

main: 2011-01-11 10:21 — 118 (“100”) i
i

i
i

i
i

100 6 A framework for analysis of estimation-based ILC

Similarly to the cases above, study now a situation with a general transfer oper-
ator Q(q) and where the nominal model is equal to the true system. The asymp-
totic error e∞(t) is, with the filters Fr (q), Fu(q) and Fy(q) from the observer (6.10),
given by

e∞(t) = 1−T 0
rz(q)−T 0

uz(q)
Q(q)L(q)

(
1 −

(
Fū(q)F(q) + (Fȳ(q) − Fū(q)F(q))T 0

ry(q)
))

1 − Q(q)
(
1 − L(q)

(
Fū(q)F(q) + (Fȳ(q) − Fū(q)F(q))T 0

uy(q)
))

(6.32)
Study now the term Fū(q)F(q)+

(
Fȳ(q)−Fū(q)F(q)

)
T 0
ry(q) in (6.32). It can be rewrit-

ten as

Fū(q)F(q) +
(
Fȳ(q) − Fū(q)F(q)

)
T 0
ry(q) =

F(q)
(
Fū(q) + Fȳ(q)T 0

ūy(q)
)

1 + F(q)T 0
ūy(q)

from the closed-loop system in Example 6.2,

T 0
ry(q) = T 0

uy(q) =
F(q)T 0

ūy(q)

1 + F(q)T 0
ūy(q)

(6.33)

The same result is given for Fū(q)F(q) +
(
Fȳ(q) − Fū(q)F(q)

)
T 0
uy(q) in (6.32). Then,

from (6.31), the relation (6.33) can be written as

F(q)
(
Fū(q) + Fȳ(q)Tūy(q)

)
1 + F(q)Tūy(q)

=
F(q)T 0

yz(q)T 0
ūy(q)

1 + F(q)Tūy(q)
= T 0

yz(q)T 0
ry(q) = T 0

rz(q) = T 0
uz(q)

which is inserted in the expression for the asymptotic error (6.32). It can be seen
that (6.32) is equal to (4.32), when ẑk(t) from an observer based on the true system
is used in the ILC algorithm (4.13).

6.6.4 Case 3 — ILC using controlled variable

The last case is used to show what ideally can be achieved when the ILC algo-
rithm (6.17) uses the error εk = r − zk . For a general matrix Q, the asymptotic
error e∞ of the controlled variable is from Lemma 6.2 given by

e∞ =
(
I − T 0

rz − T 0
uz

(
I −Q(I − LT 0

uz)
)−1
QL(I − T 0

rz)
)
r

As expected, this relation is equal to the asymptotic error (4.32), with the er-
ror ek = r − zk used in the ILC algorithm (4.13). This expression can for a SISO
system described in transfer-operator form (6.1) be rewritten as

e∞(t) =

(
1 − Q(q)

)(
1 − T 0

rz(q)
)

1 − Q(q)
(
1 − L(q)T 0

uz(q)
) r(t)

Clearly e∞(t) is zero when the ILC algorithm converges for the choice Q(q) = 1,
achieving perfect tracking of the controlled variable zk(t).

i
i

main: 2011-01-11 10:21 — 119 (“101”) i
i

i
i

i
i

6.6 Illustration of the results 101

6.6.5 Numerical example

In this section the cases 1 to 3 are illustrated and compared when the ILC algo-
rithm (6.17) is applied to a two-mass system consisting of two masses connected
by a spring-damper pair2, as illustrated in Figure 2.4. The deflection of the sys-
tem is described by the angular position of the first mass, referred to as motor
angular position qm(t), and the angular position of the second mass, called joint
angular position qa(t). The input torque applied to the first mass is denoted ū(t)
to agree with the notation introduced in Example 6.2. The model equations are
given in detail in (2.11), with the model parameter values in Table 6.2.

A state-space description of the two-mass system can be derived using the follow-
ing state vector

x(t) =
(
qa(t) q̇a(t) qm(t) q̇m(t)

)T
The measured variable is the motor angular position qm(t), while the controlled
variable is the joint angular position qa,k(t). From the system dynamics in (2.11)
it is straightforward to compute the transfer operators

qm(t) = T 0
ūy(p)ū(t) (6.34a)

qa(t) = T 0
yz(p)qm(t) (6.34b)

where p is the derivative operator. In Figure 6.5 a block diagram with a system
given by the structure (6.34) is illustrated. This can be compared to the closed-
loop system in Figure 6.3. It is not possible to find an exact discrete-time rep-
resentation of the relation between qm(t) and qa(t) in (6.34b) since qm(t) is an
internal continuous variable in the two-mass system described by (2.11). When
the sampling interval is short it is however possible to find a good approximation,
using for example the Tustin derivative approximation.

The system is stabilised by a controller F(q), and an ILC input signal uk(t) is
added to the reference r(t) at iteration k. Moderate requirements for the feedback
can be chosen, since the desired servo performance is planned to be achieved by
the ILC algorithm. The two-mass system is controlled by using a discrete-time
PD-controller including a low-pass filter obtained by manual tuning, resulting in

F(q) = K1 +
K2q − K3

q − K4

The controller parameters are given in Table 6.3. The closed-loop system and ILC
algorithm is simulated using Simulink with a sampling interval of Ts = 0.01 s.

A model error is introduced in the system by reducing the spring coefficient
by 50 % from the nominal value. This means that the true system has a less
rigid spring than expected. The joint angular position qa(t) is used as an evalua-
tion variable that should follow the desired reference ra(t), which is chosen as a
smooth step for all cases. This is illustrated in Figure 6.7.

2See Section 2.3.3 for the details.

i
i

main: 2011-01-11 10:21 — 120 (“102”) i
i

i
i

i
i

102 6 A framework for analysis of estimation-based ILC

Table 6.2: Model parameter values.

η = 0.2 Mm = 0.0021 Ma = 0.0991 k = 8

d = 0.0924 fm = 0.0713 kτ = 0.122

Table 6.3: Controller parameter values.

K1 = 5 K2 = 2 K3 = 2 K4 = 0.905

r(t)
+

uk(t)

F
ūk(t)

T0
ūy

qm,k(t)
T0

yz

qa,k(t)

−

Figure 6.5: The two-mass system illustrated by T 0
ūy(q) and T 0

yz(q); transfer
function from motor torque ūk(t) to motor angular position qm,k(t) and from
motor angular position qm,k(t) to joint angular position qa,k(t), respectively.
The system is controlled by the feedback controller F(q), and the ILC in-
put uk(t) added to the reference r(t) at iteration k.

Tuning of observers

An observer of the form (6.10) is used, based on the nominal model of the state-
space description (6.2). Two cases 2B1 and 2B2 will be studied. In case 2B1 the
motor angular position qm(t) is measured, while in case 2B2 also the joint angular
acceleration q̈a(t) is measured,

y(t) =

qm(t), case 2B1(
qm(t) q̈a(t)

)T
, case 2B2

The controlled variable, the true joint angular position qa(t), is only used for eval-
uation purposes in the simulation. The objective is to find an observer gain K
giving as small estimation error qa(t) − q̂a(t) as possible, that is, a robust estima-
tion problem. The observer gain K is here given from a stationary discrete-time
Kalman filter with the covariance matrices, Rv for the process noise and Rw for
the measurement noise, as design variables. The following optimisation problem
illustrates the aim to find the best tuning when the model is subject to model

i
i

main: 2011-01-11 10:21 — 121 (“103”) i
i

i
i

i
i

6.6 Illustration of the results 103

errors
min
a,b,c

‖qa − q̂a‖2

subject to Rv = diag
(
0 10a 0 10b

)
Rw =

1, case 2B1

diag
(
1 10c

)
, case 2B2

(6.35)

where the optimisation problem is solved approximately by gridding over the
optimisation parameters and by simulation of the true system. Large elements
in the observer gain K are possible due to ideal sensors with no offset or noise.
The covariance matrices are here determined for the reference trajectory shown
in Figure 6.7 and for a specific model error, and the result is not possible to gen-
eralise to arbitrary trajectories and model errors. Hence, the robustness of the
observer is not evaluated. Although the observer is tuned for a special operating
point with ideal measurements, it can be used for illustrative purposes to discuss
and exemplify the cases 1 to 3.

Tuning of ILC algorithms

For each individual case 1 to 3 an ILC algorithm (6.13) is designed. One possible
choice, which is used here, is L(q) = γqδ. A low-pass second-order Butterworth
filter Q̄(q) is chosen, with cutoff frequency fc above the bandwidth and resonance
frequency of the closed-loop system. This enables correction also of errors asso-
ciated with the resonance frequency. The filter Q(q) is then given by filtering the
signal forwards and backwards through the filter Q̄(q) to give zero-phase charac-
teristics. The corresponding matrices Q and L are found by forming the Toeplitz
matrices similarly as in (4.3) from the pulse response coefficients3 of the transfer
operators Q(q) and L(q).

The ILC design parameters fc (resolution 1 Hz), δ (integer) and γ (resolution 0.1)
are heuristically tuned for the cases 1 to 3, based on the reduction of the 2-norm
of the error εk used in the ILC algorithm. The ILC algorithms are tuned such that
‖ε∞‖2 is approximately 3 % of ‖ε0‖2, that is, when no ILC algorithm is applied
(see Table 6.4). The tuning is a trade-off between transient performance and sim-
ilar level of error reduction for εk for the cases. The cutoff frequency fc is chosen
as large as possible to be able to suppress also higher frequencies of the error. For
all cases it results in σ̄ (H) < 1 for the true system, giving monotone convergence
according to Theorem 6.2. The tuning for the cases results in:

1. ILC design parameters fc = 9 Hz, δ = 10, γ = 0.4, results in σ̄ (H) ≈ 0.969.

2A. ILC design parameters fc = 9 Hz, δ = 27, γ = 0.3, results in σ̄ (H) ≈ 0.990.

2B1. Joint angular position q̂a estimated by a Kalman filter from measurements
of motor angular position qm. ILC design parameters fc = 9 Hz, δ = 17,
γ = 1.4 results in σ̄ (H) ≈ 0.999.

3The matrix L is formed according to the implementation alternative B and the matrixQ according
to alternative I as described in Section 9.5.2.

i
i

main: 2011-01-11 10:21 — 122 (“104”) i
i

i
i

i
i

104 6 A framework for analysis of estimation-based ILC

2B2. Joint angular position q̂a estimated by a Kalman filter from measurements
of motor angular position qm and joint angular acceleration q̈a. ILC design
parameters fc = 7 Hz, δ = 27, γ = 0.5, results in σ̄ (H) ≈ 0.982.

3. ILC design parameters fc = 7 Hz, δ = 28, γ = 0.5, results in σ̄ (H) ≈ 0.982.

Evaluation measure

The performance of the two-mass system in the simulations for the different cases
is evaluated with respect to the error ek = r − qa,k of the controlled variable. The
reduction of the 2-norm of the error for the joint angular position is calculated as

ered,k = 100 ·
‖ek‖2
‖e0‖2

[%] (6.36)

The reduction of the 2-norm of the error εk = r − q̂a,k used in the ILC algo-
rithm (6.14) is given by

εred,k = 100 ·
‖εk‖2
‖ε0‖2

[%] (6.37)

The quantities (6.36) and (6.37) measure the relative reduction of the 2-norm of
the error, expressed in percentage of the 2-norm of the error when no ILC algo-
rithm is applied (k = 0). In this numerical example it is possible to compute these
quantities since the true system is known, see (2.11), with the model parameter
values in Table 6.2.

Discussion

The evaluation measures (6.36) and (6.37) for the resulting asymptotic errors e∞
and ε∞, computed using the true system (2.11) for the cases 1 to 3, are sum-
marised in Table 6.4. It can clearly be seen that the resulting error reduction of
the joint angular position qa,k depends on the quality of the estimate. The same
conclusion can be drawn from Figure 6.6, where the error reduction (6.36) of the
joint angular position qa,k for the cases is illustrated for the first 250 iterations. It
can also be noted from Figure 6.6 that we can have non-monotone convergence
of the joint angular position error ek = r − qa,k , since the ILC algorithm is tuned
with respect to the estimated joint angular position error εk = r − q̂a,k .

From Figure 6.6 and Table 6.4 it can be seen that case 1 gives a poor reduction of
the joint angular position error, with ered,∞ ≈ 110 %. However, the ILC algorithm
manages to significantly reduce the error εk used in the ILC algorithm, resulting
in εred,∞ ≈ 3.1 % from Table 6.4. This result is expected for the two-mass model,
where there is a significant dynamic relationship between the variables qm and qa
which is completely neglected in case 1. The same conclusion can also be drawn
from the illustration of the resulting joint angular position qa after 1000 itera-
tions seen in Figure 6.7. Only the time delay is compensated, while the overshoot
is even larger compared to the performance without any ILC algorithm applied
to the system.

i
i

main: 2011-01-11 10:21 — 123 (“105”) i
i

i
i

i
i

6.6 Illustration of the results 105

Table 6.4: Summary of the asymptotic error reduction for the two-mass sys-
tem when the ILC algorithm uses various estimates of the controlled vari-
able qa; cases 1 to 3.

Case q̂a,k εred,∞ ered,∞

1 ηqm,k 3.09 109.95

2A Tyzqm,k 2.97 54.83

2B1 Fr r + Fuuk + Fyqm,k 2.98 44.14

2B2 Fr r + Fuuk + Fy


qm,k

q̈a,k

 3.05 3.12

3 qa 3.07 3.07

0 50 100 150 200 250
3

4
5

10

20

50

100

Error reduction of controlled variable

Iteration

e
re

d
,k

 [
%

]

1

2A

2B
1

2B
2

3

Figure 6.6: Reduction of ek given by (6.36) for the first 250 iterations for
the cases 1 to 3. The error reduction highly depends on the quality of the
estimate q̂a,k .

i
i

main: 2011-01-11 10:21 — 124 (“106”) i
i

i
i

i
i

106 6 A framework for analysis of estimation-based ILC

0 1 2 3 4 5
0

0.5

1

1.5

Controlled variable

[r
a

d
]

Time [s]

1.75 2 2.25 2.5
0.96

0.98

1

Time [s]

[r
a

d
]

r
q

a
, k = 0

q
a
, 1

q
a
, 2A

q
a
, 2B

1

r
q

a
, 2B

2

q
a
, 3

Figure 6.7: Actual joint angular position qa(t) after 1000 iterations for the
cases 1 to 2B1 compared to the joint angular position when no ILC algorithm
is applied (denoted k = 0) in the upper figure. The lower figure shows qa(t)
after 1000 iterations for the cases 2B2 and 3. Note the different axes in the
figures. The performance highly depends on the quality of the estimate q̂a(t).

Remark 6.1. It can be seen that case 2A is a special case of the observer in case 2B with a
particular choice of the design variables R1 and R2 in the Kalman filter, see (6.35). With

Rv = diag
(
0 1 0 α

)
, α →∞

Rw = 1

only the process noise on the motor angular acceleration q̈m(t) is entered. Relatively
small process noise on the joint angular acceleration q̈a(t) implies that the estimate q̂a(t)
is derived by simulating the motor angular position qm(t) through the nominal dynam-
ics Tyz(q).

Numerical calculations show that the Kalman filter approaches

Fū(q)→ 0, Fȳ (q)→ Tyz(q)

when increasing the value of α. Hence, the estimate of the joint angular position is ob-
tained by simulating the motor angular position through the nominal dynamics, which
gives case 2A.

i
i

main: 2011-01-11 10:21 — 125 (“107”) i
i

i
i

i
i

6.7 Conclusions 107

The general observer design has more degrees of freedom and this fact can ex-
plain why case 2B1, which only uses the motor angular position in the observer,
still gives a slightly better error reduction of the actual joint angular position
compared to case 2A, with ered,∞ ≈ 44 % compared to ered,∞ ≈ 55 % for case 2A,
see Table 6.4. Case 2A still gives a significant improvement compared to case 1
(ered,∞ ≈ 110 %) and the simple design compared to case 2B can still make case 2A
a preferred choice in a real application.

The major advantage of the general observer, especially considering state-space
formulation and Kalman filter design, is that it is straightforward to include ad-
ditional measurements in the estimation. Additional measurements will make
the tuning more complicated, but it can be done using optimisation techniques
where the estimation error is minimised based on measurements from the true
system, for example as described in (6.35). Using both measured motor angular
position qm and joint angular acceleration q̈a in the observer improves the result
of the joint significantly, because of the improved quality of the estimate. The
result can be seen for case 2B2 in Table 6.4 with ered,∞ ≈ 3.1 %, from Figure 6.6,
and from the true joint angular position in Figure 6.7, which is very close to the
reference.

6.7 Conclusions

In this chapter a framework is proposed for analysis of an ILC algorithm using
an estimate of the controlled variable obtained from an observer-based estima-
tion procedure. The need for such a framework is motivated by the fact that in
some applications the controlled variable is not the measured variable, and the
model suffers from uncertainties. The description is a natural extension of the
system description in Norrlöf and Gunnarsson [2002a] and is focusing on the
performance of the controlled variable. A general expression for the asymptotic
error of the controlled variable when the ILC algorithm has converged is derived
using the framework. The asymptotic error is illustrated for three types of cases
and the influence of model errors is discussed. Furthermore, a numerical exam-
ple of an ILC algorithm applied to a flexible two-mass model of a robot joint is
studied for the case when the system is subject to model errors. The simulation
shows better performance of the controlled variable when the estimate used in
the ILC algorithm is based on a Kalman filter design instead of a nominal model.
The benefit of fusing information from additional sensors with the original mea-
surements available is illustrated. Naturally, a more accurate estimate improves
the ILC system performance. It is also shown how the expression for the asymp-
totic error can be used in analysis and design.

i
i

main: 2011-01-11 10:21 — 126 (“108”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 127 (“109”) i
i

i
i

i
i

7
Estimation-based ILC applied to a

nonlinear robot model

In this chapter an ILC algorithm is applied to a nonlinear two-link robot
model with flexible joints, where the joint angular positions are estimated

by an extended Kalman filter (EKF) in two ways:

1. Using measurements of motor angular positions.

2. Using measurements of both motor angular positions and tool acceleration.

These estimates are then used in an ILC algorithm. The simulation results show
that the performance of the joint angular positions is clearly improved compared
to when only motor angular positions are used in the ILC algorithm. This is the
case even if model errors are introduced. The work presented in this chapter
serves as a case study for combining EKF and ILC for estimation-based ILC. The
main reference is Wallén et al. [2009b].

7.1 Two-link robot model

The flexible nonlinear two-link robot model shown in Figure 7.1 is used in the
simulation study. The model is fully described in Moberg et al. [2008], and corre-
sponds to the second and third link of a large six-DOF serial industrial robot. The
elasticity in the robot is modelled as flexible joints, while the links are assumed
rigid. The deflection in each joint is described by the motor angular position qm(t)
on the motor side of the joint and the joint angular position qa(t) on the link side
of the joint. The robot tool position P , see Figure 7.1, is derived from the joint
angular positions by the forward kinematics1.

1The main equations for the robot model are summarised in Section 2.3.3.

109

i
i

main: 2011-01-11 10:21 — 128 (“110”) i
i

i
i

i
i

110 7 Estimation-based ILC applied to a nonlinear robot model

0x̂

0ẑ

1aq

2aq

P

1111 ,,, ljm ξ

2222 ,,, ljm ξ

11),(ds ⋅τ

22),(ds ⋅τ

1111),(,, η⋅mmm fqj

1mu

2mu

2222),(,, η⋅mmm fqj

Figure 7.1: The two-link robot model used in the simulation. The rigid links
are described by mass m, link length l, center of mass ξ and inertia j with
respect to the center of mass. The elastic joints are described by gear ratio η,
nonlinear spring torque τs and linear damping d. The nonlinear friction
torque f acts on the motors. The deflection in each joint is described by the
motor angular position qm and joint angular position qa.

Each link is modelled as a rigid body with mass m, link length l, center of mass ξ
and inertia j with respect to the center of mass. Each elastic joint is described by
a nonlinear spring torque τs, linear damping d and gear ratio η. The nonlinear
friction torque f is approximated as acting only on the motors. The motor angu-
lar position vector qm(t) is the measured variable of the robot system2, and it is
subject to one-sample time delay. Additionally, the motor torque vector um(t) is
subject to saturation. Now introduce the vector q(t) of angular positions,

q(t) =
(
qa1(t) qa2(t) qm1(t)/η1 qm2(t)/η2

)T
The robot dynamics is described by

M(q)q̈ + C(q, q̇) + G(q) + Dq̇ + K(q) + F(q̇) = u(t) (7.1)

where the time dependence of the vector of angular positions, q(t), is omitted
for brevity, see Section 2.3.3 for the details. The robot dynamics is described by
the inertia matrix M(q), the vector C(q, q̇) of speed-dependent torques (Coriolis
and centripetal terms), the vector G(q) of gravity torques, the joint flexibilities de-
scribed by linear viscous damping D and nonlinear stiffness K(q). The vector F(q̇)
denotes nonlinear friction torques and u(t) is the vector of input torques. If the

2This reflects the properties of a commercial robot system, where normally only the motor angular
positions are measured [Brogårdh, 2009, Spong et al., 2006].

i
i

main: 2011-01-11 10:21 — 129 (“111”) i
i

i
i

i
i

7.1 Two-link robot model 111

terms Dq̇ and K(q) are omitted, the robot dynamics (7.1) results in a standard
rigid-body model. By introducing the state vector x(t) as

x(t) =
(
q(t)T q̇(t)T

)T
and denoting

x1(t) =
(
qa1(t) qa2(t)

)T
x2(t) =

(
qm1(t)/η1 qm2(t)/η2

)T
x3(t) = ẋ1(t)

x4(t) = ẋ2(t)

the robot dynamics (7.1) can be described by the nonlinear state-space model

ẋ(t) =


x3(t)
x4(t)

M−1
a

(
x1(t)

)(
− C

(
x1(t), x3(t)

)
− G

(
x1(t)

)
− A

(
x(t)

))
M−1
m

(
A
(
x(t)

)
+ F

(
x4(t)

)
+ um(t)

)
 (7.3)

with Ma

(
x1(t)

)
and Mm denoting the inertia matrices for the links and motors,

respectively, and

A
(
x(t)

)
= D

(
x3(t) − x4(t)

)
+ K

(
x1(t), x2(t)

)
(7.4)

The robot system used in the simulation is schematically pictured in Figure 7.2.
The joint angular position reference ra(t) is computed from the desired tool tra-
jectory by means of the kinematic robot model. The corresponding motor an-
gular position reference rm(t) is derived from the dynamic robot model. The
robot model is controlled using independent joint control, represented by the
controller block in Figure 7.2, and by a model-based feedforward term uff(t). The
figure also illustrates how the ILC input signal uk(t) at iteration k is added to the
motor angular position reference rm(t), and thereby works as a complement to
the conventional controller. The robot system is implemented in Matlab and
Simulink with a sampling interval Ts = 0.25 ms.

In the simulation an accelerometer is attached to the robot tool. The tool accelera-
tion equations can be derived by differentiating the velocity kinematics, resulting
in

ab(t) = J
(
qa(t)

)
q̈a(t) + J̇

(
qa(t)

)
q̇a(t)

where qa(t) denotes the joint angular position vector and J(·) is the Jacobian,
see (2.6). The tool acceleration is expressed in the base coordinate frame of the
robot, denoted by subscript b. The measured acceleration aM (t) includes the
effect of gravity gb and is expressed in the coordinate system of the sensor. This
can be described by the relation

aMs (t) = Rbs
(
qa(t)

)(
ab(t) − gb

)
+ δs(t) + ws(t)

i
i

main: 2011-01-11 10:21 — 130 (“112”) i
i

i
i

i
i

112 7 Estimation-based ILC applied to a nonlinear robot model

ra(t)

rm(t)

qa(t)

qm(t)

+
+

uk(t)

u f f (t)

Trajectory generator
Motor reference

generator

Controller Robot model

Figure 7.2: The robot system used in the simulation. The motor angular po-
sition reference rm(t) is computed using the kinematic and dynamic models.
The robot model is controlled by independent joint control, represented by
the controller block, and by a model-based feedforward term uff(t). The ILC
input signal uk(t) at iteration k is added to rm(t).

where the accelerometer measurement is subject to drift δs(t) and measurement
noise ws(t), both expressed in the sensor coordinate frame. The transformation
from the base frame to the coordinate frame of the sensor (denoted s) is described
by the transformation matrix Rbs (·). The measured acceleration can then be mod-
elled as

as(t) = Rbs
(
x1(t)

)(
J
(
x1(t)

)
ẋ3(t) + J̇

(
x1(t)

)
x3(t) − gb

)
+ δs(t) + ws(t) (7.5)

In the simulations the drift and disturbances are set to zero for simplicity. To
avoid problems with drift in the estimates as described in Henriksson et al. [2009],
the assumption is made that the robot is subject to no gravitation, that is, G(·)
and gb is zero. The tool motion studied in the simulation is half a circle in the
x̂0 ẑ0-plane with radius 5 mm. The resulting joint angular position vector qa(t)
when following the desired trajectory can be seen in Figure 7.3. Since the aim of
this chapter is to perform a case study when combining ILC and EKF, the motion
is kept near the working point in order to keep the nonlinear properties of the
system small.

Linearisation of the robot model

For the EKF, the state-space description (7.3) is discretised using the Euler for-
ward difference approximation, and is thereafter linearised around the previous
estimate, as described in Section 3.2.2.

For analysis of the convergence properties of the two-link robot model controlled
by an ILC algorithm, the robot dynamics is linearised around the working point.
This gives a relation from uk(t) as input and the motor and joint angular positions
as output.

i
i

main: 2011-01-11 10:21 — 131 (“113”) i
i

i
i

i
i

7.2 Estimation algorithms 113

q
[r

a
d
]

a
1

0 0.5 1 1.5 2 2.5 3
-0.4

-0.395

-0.39

-0.385

-0.38

0 0.5 1 1.5 2 2.5 3
-10

-5

0

5
x 10

-3

Time [s]

q
[r

a
d
]

a
2

Figure 7.3: The desired tool motion is half a circle, with the resulting joint
angular positions qa1(t) and qa2(t) shown in the figure.

7.2 Estimation algorithms

In this chapter an EKF algorithm is used to estimate the joint angular position
vector qa(t). The reader is directed to Section 3.2.2 and the general references An-
derson and Moore [1979] or Kailath et al. [2000] for a description of the estima-
tion algorithm.

The work is based on the results presented in Henriksson et al. [2009]. In this pa-
per different versions of the EKF as well as the deterministic observer by De Luca
et al. [2007] are used for estimating the robot tool position, and the methods are
verified experimentally on an industrial robot. For the details regarding the es-
timation, tuning process and robustness of the methods, the reader is directed
to Henriksson et al. [2009]. In this chapter the following two ways of producing
the estimate q̂a(t) are used, called EKF Motor and EKF Complete.

EKF Motor The joint angular position qa(t) is estimated from measurements of
motor angular position qm(t). The measurement equation (3.1b) is then given by

h
(
x(t), u(t)

)
= x2(t)

The resulting estimate is denoted q̂a,M(t). The EKF Motor approach is used as
a baseline for what can be achieved in the estimation without having additional
sensors.

EKF Complete The joint angular position qa(t) is estimated from measurements
of the motor angular position qm(t) and the tool acceleration a(t). The measure-

i
i

main: 2011-01-11 10:21 — 132 (“114”) i
i

i
i

i
i

114 7 Estimation-based ILC applied to a nonlinear robot model

ment equation (3.1b) is now given by

h
(
x(t), u(t)

)
=

(
x2(t)
as(t)

)
with the measurement equation of the acceleration given by (7.5). The resulting
estimate is denoted q̂a,C(t). For EKF Complete the description of the two-link
robot model is fully utilised, including friction and nonlinear stiffness.

The tuning of the noise covariances in the estimation approaches are performed
automatically, as is described in Henriksson et al. [2009]. In the tuning, the objec-
tive is to minimise the error qa(t) − q̂a(t) on a set of data from simulations where
the robot performs various movements near the actual working point.

In Figure 7.4 the estimation error for the estimates q̂a,M(t) and q̂a,C(t) are com-
pared when the robot tool performs the circular motion described in Section 7.1.
The case with nominal model parameters is compared to when model errors are
introduced by modifying the joint stiffness parameters by −30 %. It can be seen
that the estimate q̂a,C(t) from EKF Complete is better than the estimate q̂a,M(t)
from EKF Motor, especially for the case with model errors, as is also noted in Hen-
riksson et al. [2009]. This is natural, since EKF Motor relies on only motor an-
gular position measurements and the dynamic robot model to estimate the tool
position. EKF Complete is therefore more robust with respect to model errors,
since it also includes measurements of the tool behaviour.

It should be noted that more computational resources are required for EKF Com-
plete than for EKF Motor. Although the EKF in combination with ILC is applied
offline, this will become an important issue for the experimental implementation
for problems with larger dimensions.

7.3 ILC algorithms

For the analysis, a linear system in the disturbance-free case is studied, described
by the model (6.1),

yk(t) = Try(q)r(t) + Tuy(q)uk(t) (7.6a)

zk(t) = Trz(q)r(t) + Tuz(q)uk(t) (7.6b)

with the measured variable yk(t) and controlled variable zk(t). The system is
controlled by an ILC algorithm of the form (4.12),

uk+1(t) = Q(q)
(
uk(t) + L(q)εk(t)

)
(7.7)

with the error εk(t) given by

εk(t) = r(t) − ẑk(t) (7.8)

and where ẑk(t) is an estimate of the controlled variable zk(t). For the two-link
robot model studied in this chapter, the controlled variable is the joint angular
position qa(t).

i
i

main: 2011-01-11 10:21 — 133 (“115”) i
i

i
i

i
i

7.3 ILC algorithms 115

0 1 2 3

-5

0

5

x 10
-5

q
-

q
a
1

a
1

Nominal

0 1 2 3

-5

0

5

x 10
-5

Time [s]

q
-

q
a
2

a
2

�

0 1 2 3

-5

0

5

x 10
-5 Error -30%

0 1 2 3

-5

0

5

x 10
-5

Time [s]

�

(a) EKF Motor

0 1 2 3

-5

0

5

x 10
-5 Nominal

0 1 2 3

-5

0

5

x 10
-5

Time [s]

q
-

q
a
2

a
2

�

0 1 2 3

-5

0

5

x 10
-5 Error -30%

0 1 2 3

-5

0

5

x 10
-5

Time [s]

q
-

q
a
1

a
1

�

(b) EKF Complete

Figure 7.4: The estimation error qa(t)− q̂a(t) shown for the two joint angular
positions for the case with nominal parameters and modified joint stiffness
parameters by −30 %. a) EKF based on motor angular position measure-
ments (EKF Motor). b) EKF based on measurements of motor angular posi-
tion and tool acceleration (EKF Complete).

The cases to be studied can be divided into:

1. qm(t) is the measured variable. In the ILC update equation the following
error εk(t) = rm(t) − qm,k(t) is used.

2A. qa(t) is estimated based on measurements of qm(t), resulting in the esti-
mate q̂a,M(t) from EKF Motor. The error εk(t) = Π

(
ra(t) − q̂a,M,k(t)

)
, where

Π is a matrix of gear ratios, is used in the ILC update equation.

2B. qa(t) is estimated based on measurements of qm(t) and tool acceleration a(t),
resulting in the estimate q̂a,C(t) by using EKF Complete. The ILC update
equation uses the error εk(t) = Π

(
ra(t) − q̂a,C,k(t)

)
.

In this chapter an ILC algorithm with a diagonal structure is assumed, that is,
the joints will be treated individually as decoupled systems with a separate ILC
algorithm (7.7) for each joint. The following choices of filters Q(q) and L(q) are
used in the simulation study:

Q(q): Low-pass second-order Butterworth filter with cutoff frequency fc above
the resonance frequency of the controlled system. The filter is applied by
filtering the signal forwards and backwards in time to give zero-phase char-
acteristics of the filter Q(q).

L(q): The filter is given by L(q) = γqδ, with learning gain γ and time shift of δ
samples.

The same ILC filters are used for both motors for simplicity.

i
i

main: 2011-01-11 10:21 — 134 (“116”) i
i

i
i

i
i

116 7 Estimation-based ILC applied to a nonlinear robot model

7.4 Simulation results

The results achieved when using estimates of the joint angular positions in the
ILC update equation (estimation-based ILC) are compared to the results when
using the measured motor angular positions directly in the ILC algorithm. The
flexible nonlinear robot model described in Section 7.1 is used in the simulation.
The reference rm(t) is computed from the nominal system, see Figure 7.2, and
can be seen as a filtered version of the joint angular position reference ra(t). In
the simulation the joint angular position tracking error ra(t) − qa(t) is used as
evaluation variable for all cases.

To evaluate performance and robustness when using estimated joint angular po-
sition in the ILC update equation (7.7), the stiffness parameters of the joints are
changed by −30 % in the robot model. The reduction of the error vector de-
noted ek(t) is evaluated by

ēk = 100 ·
‖ek‖
‖e0‖

[%] (7.9)

where ek is normalised by the error when no ILC algorithm is applied (iteration 0),
and is studied in both 2-norm and∞-norm.

7.4.1 Case 1 — ILC using measured motor angular position

For case 1 the motor angular position error εk(t) = rm(t) − qm(t) is used in the
ILC update equation (7.7). The ILC parameters used in the simulation are cutoff
frequency fc = 8 Hz, gain γ = 0.5 and time shift δ = 70.

For the robot system, the relation from the vector of ILC input signals to the
measured motor angular positions (measured variable yk(t)) is described by(

yk,1(t)
yk,2(t)

)
=

(
Tuy,11(q) Tuy,12(q)
Tuy,21(q) Tuy,22(q)

)
︸ ︷︷ ︸

Tuy (q)

(
uk,1(t)
uk,2(t)

)
+

(
Try,11(q) Try,12(q)
Try,21(q) Try,22(q)

)
︸ ︷︷ ︸

Try (q)

(
r1(t)
r2(t)

)

When applying the ILC algorithm for each motor i = 1, 2,

uk+1,i(t) = Qi(q)
(
uk,i(t) + Li(q)εk,i(t)

)
it results in the ILC system(

uk+1,1(t)
uk+1,2(t)

)
=

Q1(q)
(
1 − L1(q)Tuy,11(q)

)
−Q1(q)L1(q)Tuy,12(q)

−Q2(q)L2(q)Tuy,21(q) Q2(q)
(
1 − L2(q)Tuy,22(q)

)︸ ︷︷ ︸
H(q)

(
uk,1(t)
uk,2(t)

)

+

Q1(q)L1(q)
(
1 − Try,11(q)

)
−Q1(q)L1(q)Try,12(q)

−Q2(q)L2(q)Try,21(q) Q2(q)L2(q)
(
1 − Try,22(q)

)︸ ︷︷ ︸
Hr (q)

(
r1(t)
r2(t)

)

i
i

main: 2011-01-11 10:21 — 135 (“117”) i
i

i
i

i
i

7.4 Simulation results 117

This can be written more compactly as

uk+1(t) = Q(q)
(
I − L(q)Tuy(q)

)
uk(t) + Q(q)L(q)

(
I − Try(q)

)
r(t) (7.10)

where

Q(q) =
(
Q1(q) 0

0 Q2(q)

)
, L(q) =

(
L1(q) 0

0 L2(q)

)
The same ILC filters are used for both motors for simplicity, that is, Q1(q) = Q2(q)
and L1(q) = L2(q). The ILC system (7.10) is stable with monotone convergence of
the ILC input signal uk if the maximum singular value satisfies σ̄ (H) < 1, accord-
ing to Theorem 6.2. For case 1 and the parameters used in the simulation, it
results in σ̄ (H) ≈ 0.9 < 1 for both the model with nominal parameters and when
model errors are introduced.

In Figure 7.5 the motor and joint angular position errors are shown when no ILC
algorithm is applied to the system (denoted iteration k = 0), together with the
errors after iteration k = 50. The case for a model with nominal parameters is
compared to when a model error of −30 % for the stiffness parameters is intro-
duced. In Figure 7.6 the error measure (7.9) in 2-norm for the resulting motor an-
gular position errors and joint angular position errors are shown. As can be seen,
the error reduction for the joints for iteration k = 50 is smaller for the case with
model errors introduced compared to the case with nominal stiffness parameters.

0 1 2 3
−2

0

2
x 10

−4

r a
1
 −

 q
a
1

k = 0

0 1 2 3
−2

0

2
x 10

−4

r a
2
 −

 q
a
2

0 1 2 3
−0.04
−0.02

0
0.02
0.04

r m
1
 −

 q
m

1

0 1 2 3
−0.04
−0.02

0
0.02
0.04

Time [s]

r m
2
 −

 q
m

2

0 1 2 3
−2

0

2
x 10

−4 k = 50

0 1 2 3
−2

0

2
x 10

−4

0 1 2 3
−0.04
−0.02

0
0.02
0.04

0 1 2 3
−0.04
−0.02

0
0.02
0.04

Time [s]

(a) Nominal model parameters

0 1 2 3
−2

0

2
x 10

−4

r a
1
 −

 q
a
1

k = 0

0 1 2 3
−2

0

2
x 10

−4

r a
2
 −

 q
a
2

0 1 2 3
−0.04
−0.02

0
0.02
0.04

r m
1
 −

 q
m

1

0 1 2 3
−0.04
−0.02

0
0.02
0.04

Time [s]

r m
2
 −

 q
m

2

0 1 2 3
−2

0

2
x 10

−4 k = 50

0 1 2 3
−2

0

2
x 10

−4

0 1 2 3
−0.04
−0.02

0
0.02
0.04

0 1 2 3
−0.04
−0.02

0
0.02
0.04

Time [s]

(b) Model error

Figure 7.5: Case 1: Resulting motor and joint angular position errors for ILC
iteration k = 50, compared to the errors when no ILC algorithm is applied to
the system (denoted k = 0). a) nominal system parameters, b) model errors
introduced. The error reduction is smaller for the case with model errors, as
expected. The different scaling for motor angular position and joint angular
position is due to the gear ratio η = 200.

i
i

main: 2011-01-11 10:21 — 136 (“118”) i
i

i
i

i
i

118 7 Estimation-based ILC applied to a nonlinear robot model

0 50
5

10

20

40
60

100

R
e

d
.

q
a
1
 [

%
]

0 50
5

10

20

40
60

100

R
e

d
.

q
a
2
 [

%
]

0 50
2

5
10
20
40
60

100

R
e

d
.

q
m

1
 [

%
]

Iteration
0 50

2

5
10
20
40
60

100

R
e

d
.

q
m

2
 [

%
]

Iteration

Figure 7.6: Case 1: Error measure (7.9) in 2-norm as a function of iteration
number for the motor and joint angular position errors. System with nomi-
nal parameters (black) and the system with model errors (grey).

It can be explained by the fact that the motor angular position reference rm(t)
is a filtered version of the joint angular position reference ra(t). This works as
long as the model from actual motor angular position qm(t) to actual joint angu-
lar position qa(t) is correct, so that controlling qm(t) towards rm(t) will give qa(t)
close to ra(t). In the case of model errors, qm(t) is still controlled towards rm(t),
but qm(t) now does not result in correct value of qa(t). This behaviour was also
confirmed in the results from simulations and experiments discussed in Chap-
ter 5.

7.4.2 Case 2 — ILC using estimated joint angular position

The result in the previous section is now compared to the case when an esti-
mate q̂a(t) is used in the ILC update equation (7.7). The ILC parameters are
tuned in simulation to give a convergent ILC system for case 2A and case 2B, for
both the system with nominal parameters and for the model-error case.

Case 2A

For case 2A the ILC update equation (7.7) uses the estimate q̂a,M(t) from EKF
Motor. Tuning of the ILC parameters results in fc = 8 Hz for the cutoff frequency
of the ILC filter Q(q), gain γ = 0.5 and time shift δ = 220. The simulation results
can be seen in Figures 7.7 and 7.8. Compared to the results for case 1, shown
in Figures 7.5 and 7.6, it can be seen that the gap is reduced between the error
reduction for the case with nominal model parameters and when model errors
are introduced. This is also seen in Table 7.1, where the 2-norm and ∞-norm
of error measure (7.9) for the joint angular position errors for iteration k = 50

i
i

main: 2011-01-11 10:21 — 137 (“119”) i
i

i
i

i
i

7.4 Simulation results 119

0 1 2 3
-2

0

2
x 10

-4

r
-

q
a

1
a

1
k = 0

0 1 2 3
-2

0

2
x 10

-4

r
-

q
a

2
a

2

0 1 2 3
-2

0

2
x 10

-4

0 1 2 3
-2

0

2
x 10

-4

Time [s]

0 1 2 3
-2

0

2
x 10

-4 k = 50

0 1 2 3
-2

0

2
x 10

-4

0 1 2 3
-2

0

2
x 10

-4

0 1 2 3
-2

0

2
x 10

-4

Time [s]

r
-

q
a

1
a

1
r

-
q

a
2

a
2

�

r
-

q
a

1
a

1

�

r
-

q
a

1
a

1

�

r
-

q
a

2
a

2

�

r
-

q
a

2
a

2

(a) Nominal model parameters

0 1 2 3
-2

0

2
x 10

-4

r
-

q
a

1
a

1

k = 0

0 1 2 3
-2

0

2
x 10

-4

0 1 2 3
-2

0

2
x 10

-4

�

0 1 2 3
-2

0

2
x 10

-4

Time [s]

0 1 2 3
-2

0

2
x 10

-4 k = 50

0 1 2 3
-2

0

2
x 10

-4

0 1 2 3
-2

0

2
x 10

-4

0 1 2 3
-2

0

2
x 10

-4

Time [s]

r
-

q
a

1
a

1

r
-

q
a

2
a

2
r

-
q

a
1

a
1

r
-

q
a

1
a

1
r

-
q

a
2

a
2

r
-

q
a

2
a

2

r
-

q
a

2
a

2

�
� �

(b) Model error

Figure 7.7: Case 2A: Resulting motor and joint angular position errors for
ILC iteration k = 50, compared to the errors when no ILC algorithm is ap-
plied to the system (denoted k = 0). a) nominal system parameters, b) model
errors.

are compared. For example, from Table 7.1 it can be seen that the maximum
gap between the error reduction in 2-norm for the nominal case and in case of
model errors is 22 percentage points (motor 2). For case 2A the corresponding
value is 13 percentage points (motor 2). In case of model errors, this means that
the actual joint angular position is improved for case 2B compared to case 2A.
However, since the cases represent different approaches and tuning of the ILC
algorithms, it is only possible to do a qualitative comparison.

Case 2B

For case 2B the ILC update equation (7.7) uses the estimate q̂a,C(t) from EKF
Complete. Since the results only show a minor difference compared to the cor-
responding results for case 2A shown in Figure 7.7, this figure is omitted here.
As can be seen in Figure 7.9 and Table 7.1, the error reduction is slightly bet-
ter for EKF Complete than for EKF Motor in Figure 7.6. The maximum gap be-
tween the error reduction for the system with nominal parameters compared to
when introducing model errors is now reduced to approximately 10 percentage
points for case 2B (compare 13 percentage points for case 2A) when the 2-norm
of the error measure (7.9) is studied. This result can be explained by the rather
small reduction of estimation error with EKF Complete compared to EKF Motor,
seen in Figure 7.4. This agrees with the result shown in Henriksson et al. [2009],
where EKF Motor and EKF Complete show similar performance for some evalua-
tion measures. However, EKF Complete will show its advantages for the case of

i
i

main: 2011-01-11 10:21 — 138 (“120”) i
i

i
i

i
i

120 7 Estimation-based ILC applied to a nonlinear robot model

0 50
5

10

20

40
60

100
R

e
d
.
q

a
1

[%
]

0 50
5

10

20

40
60

100

R
e
d
.
q

a
2

[%
]

0 50
5

10

20

40
60

100

R
e
d
.
q

a
1

[%
]

0 50
5

10

20

40
60

100

R
e
d
.
q

a
2

[%
]

0 50
5

10

20

40
60

100

R
e
d
.
q

m
1

[%
]

Iteration
0 50

5

10

20

40
60

100

R
e
d
.
q

m
2

[%
]

Iteration

� �

Figure 7.8: Case 2A: Error measure (7.9) in 2-norm as a function of iteration
number for the motor and joint angular position errors, for the case with
nominal system parameters (black) and the system with model errors (grey).

Table 7.1: 2-norm and∞-norm of the error measure (7.9) for the joint angu-
lar positions for iteration k = 50, for the cases with a system with nominal
parameters and when the joint stiffness parameters are modified by −30 %.

Conditions Nom. Nom. Mod. err. Mod. err.
ea1 ea2 ea1 ea2

Case 1, ‖ · ‖2 14.6 % 16.3 % 34.7 % 38.2 %
‖ · ‖∞ 11.7 % 15.6 % 21.1 % 39.0 %

Case 2A, ‖ · ‖2 11.7 % 5.8 % 21.8 % 18.8 %
‖ · ‖∞ 9.6 % 6.5 % 14.5 % 20.5 %

Case 2B, ‖ · ‖2 7.6 % 5.6 % 17.5 % 14.6 %
‖ · ‖∞ 6.2 % 6.0 % 11.9 % 21.1 %

i
i

main: 2011-01-11 10:21 — 139 (“121”) i
i

i
i

i
i

7.5 Conclusions 121

0 50
5

10

20

40
60

100

R
e

d
.

q
a

1
[%

]

0 50
5

10

20

40
60

100

R
e

d
.

q
a

2
[%

]
0 50

5

10

20

40
60

100

R
e

d
.

q
a

1
[%

]

0 50
5

10

20

40
60

100

R
e

d
.

q
a

2
[%

]

0 50
5

10

20

40
60

100

R
e

d
.

q
m

1
[%

]

Iteration
0 50

5

10

20

40
60

100
R

e
d

.
q

m
2

[%
]

Iteration

� �

Figure 7.9: Case 2B: Error measure (7.9) as a function of iteration number for
the motor and joint angular position errors for the case with nominal system
parameters (black) and the system with model errors (grey).

a tool-force disturbance, as seen in Henriksson et al. [2009], which is a scenario
not investigated here.

To summarise, the overall conclusion is that it is possible to achieve better perfor-
mance of the tool by using an estimate of the joint angular position qa(t) in the
ILC algorithm. Tuning of the EKF and/or the ILC algorithm with respect to the
model error can improve the results further.

7.5 Conclusions

In this chapter an extended Kalman filter (EKF) and an ILC algorithm are com-
bined for a flexible nonlinear two-link robot model, and the simulation study
serves as a case study of estimation-based ILC. Estimates of the joint angular po-
sitions are derived in two ways; 1) using measurements from motor angular po-
sitions, and 2) using measurements from both motor angular positions and tool
acceleration. The case where the ILC update equation is based on only motor an-
gular positions is compared to the case where estimated joint angular positions

i
i

main: 2011-01-11 10:21 — 140 (“122”) i
i

i
i

i
i

122 7 Estimation-based ILC applied to a nonlinear robot model

are used in the ILC algorithm. Robustness and performance are studied for the
different cases. The results show that it is possible to improve tool performance
when an estimate is used in the ILC algorithm, compared to when only originally
available measurements of motor angular positions are used. In Chapter 8, an
experimental comparison of ILC using tool-position estimates is performed on a
parallel robot.

i
i

main: 2011-01-11 10:21 — 141 (“123”) i
i

i
i

i
i

8
Estimation-based ILC applied to a

parallel robot

Three different approaches of ILC applied to a parallel robot are studied
in this chapter. First, the ILC algorithm is using measured motor angular

positions, which normally are the only measurements available in a commercial
robot system. Second, tool-position estimates are used in the ILC algorithm. Fi-
nally, for evaluation purposes, the ILC algorithm uses the actual tool position
measured by external sensors. The approaches are evaluated experimentally on
a Gantry-Tau parallel robot prototype, and compared by means of the resulting
tool performance. The principal experimental result of ILC using estimates is dis-
cussed and serves as an experimental evaluation of the results presented in Chap-
ters 6 and 7. It is concluded from the experiments that the tool performance can
be improved by using tool-position estimates in the ILC algorithm, compared to
when directly using measurements of motor angular positions in the algorithm.

The case when applying an ILC algorithm to a system following trajectories with
lead-in/lead-out is considered. Dynamic modelling of the Gantry-Tau robot is
also discussed. The derived models are used for estimation of the robot tool
position and for tuning of the ILC filters, thus enabling learning of frequency
components of the error also above the dominating resonance frequencies of the
system. The work presented in this chapter is based on Wallén et al. [2010a,b].

8.1 Introduction

Parallel robots have potential of high performance due to their higher stiffness,
accuracy and achievable accelerations compared to serial robots. Although the
interest in parallel robots was renewed by the Stewart-Gogh platform, only the
Delta structure has found a noteworthy application in industry [Merlet, 2006].

123

i
i

main: 2011-01-11 10:21 — 142 (“124”) i
i

i
i

i
i

124 8 Estimation-based ILC applied to a parallel robot

The first challenge regarding parallel robots is to develop a mechanical structure
useful for high-performance applications [Brogårdh, 2002]. Most parallel robots
have the disadvantage of a small workspace. However, the Gantry-Tau configura-
tion [Johannesson et al., 2004], which is shown in Figures 8.1 and 8.2, has a large
workspace compared to other parallel robots, while still being stiff compared to
serial robots. Another advantage of the Gantry-Tau robot is the possibility of a
modular construction and reconfiguration for flexible manufacturing of small lot
sizes [Dressler et al., 2007a] or of machining large components with high accu-
racy, for example in aerospace industry [Crothers et al., 2010].

The second challenge is the performance needed for applications where the se-
rial robot technology is unsatisfactory [Brogårdh, 2002]. Dressler et al. [2010]
showed the importance of kinematic calibration and accurate dynamic modelling
to achieve high precision manufacturing with the Gantry-Tau robot. One way of
improving robot performance is to rely on high-precision components and as-
sembly together with highly accurate and often expensive measurement devices,
as well as very detailed models. Another method of performance improvement
could be to use ILC. It is difficult to achieve good results with only motor angular
positions in the ILC algorithm, since the tool position converges towards an in-
correct value when the robot model suffers from uncertainties, see Chapter 5. By
using additional sensors in combination with signal processing and estimation
algorithms, estimates of the robot tool position can be obtained, as is discussed
in Karlsson and Norrlöf [2005]. These estimates can then be used in an ILC al-
gorithm, and hence be able to compensate for errors originating from the robot
structure.

q1(t)

q2(t)

q3(t)

X
Y

Z

Xt

Yt

Zt

TCP T

Figure 8.1: Schematic picture of the Gantry-Tau parallel robot, with the base
coordinate frame XYZ, the coordinate frame XtYtZt of the end-effector plate
and the tool position T . Three carts move on guideways. The corresponding
cart positions are denoted q1(t), q2(t) and q3(t).

i
i

main: 2011-01-11 10:21 — 143 (“125”) i
i

i
i

i
i

8.1 Introduction 125

In this chapter, experimental results for ILC algorithms using measurements of
motor angular positions are compared to results for ILC algorithms using tool-
position estimates. For evaluation purposes, the tool performance is measured
by length gauges, which are not available in practical applications. Experiments
are also performed to illustrate the improvement for the (ideal) case when mea-
surements of the controlled variable are available for usage in the ILC algorithm.
The main contributions of this chapter are:

• Experimental evaluation of estimation-based ILC by applying an ILC algo-
rithm using tool-position estimates on the Gantry-Tau parallel robot.

• Learning of frequency components of the error up to and above the domi-
nating resonance frequencies of the robot system by model-based tuning of
the ILC filter Q(q).

• Experimental study of the case with ILC algorithms applied to a system
following trajectories with lead-in/lead-out.

There are only few earlier contributions where ILC algorithms are applied to par-
allel robots. In for example Abdellatif et al. [2006] and Abdellatif and Heimann
[2010], linear ILC algorithms are applied to a direct-driven hexapod with arm
slider length of 1 m. The ILC algorithms use the measured joint positions, and
evaluation of the tool performance is performed by transforming the joint posi-
tions by the forward kinematics to a corresponding tool position. In Cheung and
Hung [2009], an ILC algorithm using measured joint positions is applied to a pla-
nar parallel direct-driven robot prototype with a small workspace (4 × 2 cm) in-
tended for semiconductor packaging operations. The ILC algorithm is intended
to reduce the low-frequency error components, and therefore higher frequency
components of the error, especially around the resonance frequency of the system,
are not learned. A high-precision laser measurement system provides measure-
ments of the resulting tool position. In Burdet et al. [2001], ILC algorithms using
the feedback motor torque at the previous iteration are applied to a three-DOF
micro-Delta parallel robot and two sizes of two-DOF parallel robots with arm
lengths of 12 cm and 80 cm, respectively. To overcome problems with a robot
structure containing mechanical flexibilities, the learning algorithm has a low
bandwidth to prevent instability. A three-DOF direct-driven Stewart platform
with arm lengths of approximately 0.5 m is used in Chuang and Chang [2001].
The performance is improved by using an ILC algorithm based on measured joint
angular positions.

To summarise, the experiments in the experimental studies mentioned above are
performed on small parallel robots with different design and in many cases stiffer
mechanical structure compared to the Gantry-Tau robot. Problems with flexible
dynamics are solved by learning of the frequency-components of the error only
below the resonance frequencies of the system.

i
i

main: 2011-01-11 10:21 — 144 (“126”) i
i

i
i

i
i

126 8 Estimation-based ILC applied to a parallel robot

8.2 Robot and sensors

In this section the Gantry-Tau robot prototype is presented in more detail, as well
as the external sensors used in the experiments.

8.2.1 Gantry-Tau robot

The Gantry-Tau robot, shown in Figures 8.1 and 8.2, is a Gantry variant of the
Tau parallel robot [Crothers et al., 2010]. Each chain is driven by a linear actuator
consisting of a cart moving on a guideway. The three carts are connected to the
end-effector plate via link clusters, grouped in a 3-2-1 configuration. The links,
with lengths of 1.8 – 2 m, are connected to the carts and end effector by spheri-
cal joints. The resulting cross-section area in the YZ-plane of the workspace is
1.1 × 0.95 m. The Tau configuration is such that the links belonging to one cluster
form parallelograms. This results in a constant end-effector orientation, and the
Gantry-Tau robot has three purely translational DOF. There exist several possibil-
ities of extending the Gantry-Tau configuration to a robot with higher DOF. One,
which is implemented on the prototype used in this work, is to add a two-axis
serial wrist on the end-effector plate of the parallel robot, see Figure 8.2b, to give
altogether five DOF. The wrist joints are not used in the experiments.

For the robot prototype used here and the calibrated nominal kinematic model,
the mean static end-effector positioning error over the whole workspace is exper-
imentally identified to be 140 µm.

8.2.2 Control system

The Gantry-Tau robot is controlled by an industrial ABB IRC5 system, where the
trajectory generator is based on the kinematic model in Dressler et al. [2007b]. Im-
plementation of customised control solutions and integration of external sensors
are enabled by an extension to the IRC5 system [Blomdell et al., 2005], where sig-
nals sent from the IRC5 main system can be read and modified externally. Data
from external sensors are obtained directly in the shared memory, and are syn-
chronised with the robot system at 250 Hz sampling rate.

Each motor is controlled independently with a standard cascade P/PI-controller
with outer position and inner velocity loop1. For the ILC experiments, the motor
position references and motor velocity references are modified.

8.2.3 External sensors

In the experiments, the acceleration of the robot tool is measured by an addi-
tional accelerometer placed on the end-effector plate. The actual tool position is
evaluated using length gauges.

3-DOF accelerometer The accelerometer MMA7361L from Freescale [2010], is
mounted on the three-DOF end effector, see Figure 8.2b. The Gantry-Tau robot

1Independent joint control, see Section 2.4.2.

i
i

main: 2011-01-11 10:21 — 145 (“127”) i
i

i
i

i
i

8.3 System properties 127

(a) Robot (b) External sensors

Figure 8.2: Experimental setup of the Gantry-Tau robot; a) robot structure,
b) mounting of length gauges and accelerometer.

has a constant end-effector orientation, which means that the accelerometer orien-
tation is not changed during the experiments. The measured standard deviation
of the measurement noise for all channels is 0.06–0.07 m/s2.

Length gauges Two length gauges ST 3078 from Heidenhain [2010] mounted
on a stand are used for measuring the tool position, see Figure 8.2b. As only two
gauges are available, only the motion in the XY -direction (horizontal motion) is
measured. The gauges have a range of 30 mm and accuracy of ± 1 µm.

8.3 System properties

In this section, the nominal performance of the robot is discussed. The dynamic
behaviour as well as the dynamic repeatability are investigated when following a
rectangular path.

8.3.1 Trajectory

In the experiments, a rectangular path with side 10 mm is used, see Figure 8.3b,
with v(t) = 100 mm/s being the highest achievable tool velocity due to accelera-
tion limits. Sharp edges, due to the velocity references set to zero in the corners,
and a large tool velocity in between pronounce the dynamic characteristics of the
robot. The motion is performed in two consecutive rounds. This enables to di-

i
i

main: 2011-01-11 10:21 — 146 (“128”) i
i

i
i

i
i

128 8 Estimation-based ILC applied to a parallel robot

vide the trajectory into an initial motion, called lead-in, followed by the actual
trajectory to be learned, called learning part, and a lead-out. Lead-in/lead-out is
useful in practical applications, for example laser cutting where a constant tool
velocity along the path is required. The full potential of lead-in is not utilised in
this work, since the path corners are programmed with zero velocity. The usage
of lead-in/lead-out can still be motivated by the experimental evaluation of the
new combination of ILC and lead-in/lead-out, see Section 8.5.

8.3.2 Nominal performance

To illustrate the dynamic properties of the Gantry-Tau robot, the rectangular path
is first programmed with a low tool velocity of v(t) = 10 mm/s. The resulting tool
performance is then compared with an experiment following the same path with
a high programmed tool velocity of v(t) = 100 mm/s. The results are depicted
in Figure 8.3, where the actual tool behaviour measured in the XY -direction is
compared to the reference path. The influence of dynamic effects in the robot
structure can be considered as small for the low-velocity motion. One possible
explanation of the remaining errors seen in Figure 8.3a can therefore be friction
in the motors and drivelines. The oscillatory behaviour, especially seen in the
lower left corner, could possibly be explained by static friction when measuring
the tool position by the length gauges sliding on the tool plate, see Figure 8.2b. In
Figure 8.3b the corresponding result is shown for the high-velocity experiment.
The larger deviation from the reference can be explained both by larger motor
control errors compared to the low-velocity motion and by dynamic effects in the
robot structure. As is discussed in more detail in Section 8.4, the robot is stiff in
the X-direction, while it has a distinct resonance frequency at around 11.5 Hz in
the Y -direction in this operating point. One possible explanation of the overshoot
after each corner could be the flexible structure.

8.3.3 Repeatability

Repeatability of a system is a key property for success when using ILC, since only
the repetitive part of the error can be corrected by the ILC algorithm. In order to
investigate the repeatability of the Gantry-Tau robot, five identical experiments
have been performed. The repeatability is evaluated by the difference

erep(t) = q̄1
i (t) − q̄ji (t), i = 1, . . . , 3, j = 2, . . . , 5 (8.1)

with q̄ji (t) denoting the calculated cart position for cart i and experiment j, given

by q
j
m,i(t)/η, the motor angular position divided by the gear ratio. Figure 8.4

illustrates the difference (8.1) for cart 3 and is representative for the results for
all carts. The maximum value of erep(t) of around 40 µm is small compared to the
maximum initial error of around 1.5 mm (see Figure 5.13). The non-repeatability
can probably be explained by static friction, which requires a varying amount of
time to integrate the torques to overcome the friction for different experiments.
Changed experimental conditions, like temperature, can cause larger differences
and experiments have shown that it is beneficial with lead-in/lead-out.

i
i

main: 2011-01-11 10:21 — 147 (“129”) i
i

i
i

i
i

8.3 System properties 129

1362 1364 1366 1368 1370 1372
−884

−882

−880

−878

−876

−874

−872

•

v = 10 mm/s

X [mm]

Y
 [

m
m

]

reference

measured

(a) Low velocity

1362 1364 1366 1368 1370 1372
−884

−882

−880

−878

−876

−874

−872

•

v = 100 mm/s

X [mm]

Y
 [
m

m
]

reference

measured

(b) High velocity

Figure 8.3: Nominal performance of the robot for low tool velocity
(v(t) = 10 mm/s) and high tool velocity (v(t) = 100 mm/s). The motion starts
at the point and is directed downwards. The tool reference path (reference)
is drawn together with the actual tool behaviour measured by length gauges
(measured). The deviation from the reference is larger in b) compared to
the deviation shown in a). It can be explained both by larger motor control
errors and by dynamic effects in the robot structure.

i
i

main: 2011-01-11 10:21 — 148 (“130”) i
i

i
i

i
i

130 8 Estimation-based ILC applied to a parallel robot

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

[m
m

]

Time [s]

 Cart 3

Figure 8.4: The difference (8.1) for cart 3, for five identical experiments il-
lustrates the repeatability of the system.

8.4 Robot models

Previous work on dynamic modelling of the Gantry-Tau robot includes rigid-
body dynamic modelling in Dressler et al. [2007b] and black-box identification of
flexible dynamics in Cescon et al. [2009]. Identification and dynamic modelling
of a slightly different Gantry-Tau prototype of the same size as the robot used in
this chapter is presented in for example Tyapin et al. [2002] and Hovland et al.
[2007]. While Tyapin et al. [2002] calculated the lowest mechanical resonance
frequency of the Gantry-Tau robot to be larger than 50 Hz, it was measured to lie
around 14 Hz in Cescon et al. [2009]. The experimental results presented in this
thesis show a notable flexible behaviour, which implies that a rigid-body model
is not sufficient. Most of the flexibilities are assumed to lie in the carbon fibre
links and the framework, as the newly developed spherical joints are very stiff
and a comparison of measured motor angular positions and cart positions show
considerably less flexibility than the tool motion. The serial wrist has been added
since the work presented in Cescon et al. [2009], which has changed the dynamic
properties of the robot. Therefore, a new modelling needs to be done.

As the trajectory is confined to a small part of the workspace, see Figure 8.2, lo-
cal linear models are identified. In Figure 8.5, a schematic picture is given of
the robot system and the signals used in the identification. The motor angular
position reference rm(t) is derived from the tool-position reference r(t) by using
the inverse kinematics. A calculated tool position zc(t) is derived from measured
motor angular positions qm(t) transformed by the forward kinematics. The mea-
sured tool position is denoted z(t). The relation between the identified models
is illustrated in Figure 8.6. The first section presents the identified SISO models
for each of the carts, with motor angular position reference rm(t) as input and
measured motor angular position qm(t) as output. The models are used for tun-
ing the ILC algorithm using motor angular position measurements. Thereafter
modelling and identification of the complete robot structure is summarised. The
pulse-response experiments in Cescon et al. [2009] are repeated to update infor-
mation about the resonance frequencies of the robot system. Furthermore, mod-
els used for tuning and analysis of the ILC algorithm using tool position and for

i
i

main: 2011-01-11 10:21 — 149 (“131”) i
i

i
i

i
i

8.4 Robot models 131

estimating the tool motion are described. It should however be emphasised that
the linear models derived are only valid for a small operating range due to the
highly nonlinear robot system. The models are therefore to be used as a guidance
for the design of the ILC filters, while the final choice is made by experimental
tuning. The main modelling focus for the models used in the ILC filter design is
to capture the main resonance frequencies of the system. Future work includes
an extensive modelling of the nonlinear properties of the system, including the
entire flexible dynamics, friction and backlash.

q1()t

q2()t

q3()t

X
Y

Z

X t

Yt

Zt

TCPT

r(t)
rm(t)

qm(t)

zc(t)

z(t)

Inverse

kinematics

Forward

kinematics

Figure 8.5: Robot system with signals used in the identification. The mo-
tor angular position reference rm(t) is derived from the tool-position refer-
ence r(t) using the inverse kinematics. A calculated tool position zc(t) is
derived from measured motor angular position qm(t) transformed by the for-
ward kinematics. The measured tool position is denoted z(t).

r(t) qm(t)

zc(t)

z(t)

z(t)

rm(t)Inverse

kinematics
Gm(q)

Grc(q)

Gct(q)

Grt(q)

Figure 8.6: Illustration of the relation between the identified models.

8.4.1 Motor models

Identification experiments are performed, where linear SISO models with mo-
tor angular position reference rm(t) as input and measured motor angular posi-
tion qm(t) as output are derived for the three carts. In order to disregard the
nonlinear coupling effects between the carts, step-response experiments are per-
formed with all carts moving simultaneously, giving a resulting motion in the X-
direction, see Figure 8.1. This procedure facilitates obtaining linear SISO models,
but it also limits the validity of the identified models for other movements involv-

i
i

main: 2011-01-11 10:21 — 150 (“132”) i
i

i
i

i
i

132 8 Estimation-based ILC applied to a parallel robot

ing coupling effects. The amplitude of the steps are chosen as 1 mm, 1.5 mm and
2 mm, respectively, motivated by the sensor limitations.

A model structure with few parameters is sufficient for analysis and design of the
ILC algorithm using motor angular positions, since the chosen design approach
only requires the static gain and delay of the system, see Section 8.8. Therefore a
first-order ARX model structure [Ljung, 1999] is identified from data, using the
System Identification Toolbox in Matlab [Ljung, 2010]. The resulting models
for the three carts are given by

Gm,1(q) = q−5 0.03527
1 − 0.9647q−1 (8.2a)

Gm,2(q) = q−5 0.03425
1 − 0.9656q−1 (8.2b)

Gm,3(q) = q−5 0.02748
1 − 0.9728q−1 (8.2c)

with the sampling interval Ts = 4 ms. Results from validation of the models can
be seen in Figure 8.7, using validation data from the 1.5 mm step-response exper-
iment. However, even if different data are used for identification and validation,
still the same type of movement is used. Validation with data from the rectan-
gular high-velocity motion shows that the identified models (8.2) have too low
bandwidth concerning this type of movement, where also stronger coupling be-
tween the motors appear. Still, the system has the same time delay and static gain.

0 0.5 1 1.5 2 2.5 3 3.5

−550

−549

−549.5

−550.5

C
a
rt

 1

Cart position [mm]

0 0.5 1 1.5 2 2.5 3 3.5

−174

−173

−173.5

−174.5

C
a
rt

 2

0 0.5 1 1.5 2 2.5 3 3.53.5

−680

−679

−679.5

−680.5

C
a
rt

 3

Time [s]

reference

measured

model

Figure 8.7: Model validation of the cart positions. Output (model) from the
motor models (8.2) for the three carts, validated using data (measured) from
the step-response experiments.

i
i

main: 2011-01-11 10:21 — 151 (“133”) i
i

i
i

i
i

8.4 Robot models 133

The five samples delay seen in (8.2) is caused by internal data communication in
the IRC5 system. Linear models performing well for all kinds of movements are
very difficult to find, but the identified models still fulfill their purpose for tun-
ing the ILC algorithm using measured motor angular positions.

8.4.2 Models of the complete robot structure

Resonance frequency

Pulse-response experiments are performed to determine the resonance frequen-
cies of the robot including the serial wrist. A force pulse is generated by the
impact of a hammer on the end-effector plate in the X- and Y -direction, respec-
tively. The resulting tool position is measured by the linear gauges in the X- and
Y -direction, from which the tool vibration can be determined by inspection in the
time domain. When the force is applied in the X-direction, a resonance of 7.4 Hz
is observed in the X-direction. The tool vibration is between 11.4 and 11.9 Hz
in the Y -direction, which after a few oscillations turns into a 7.4 Hz vibration.
When the force is applied in the Y -direction, the resonance frequency in the X-
direction is around 10.5 Hz and in the Y -direction around 11.5 Hz, see Table 8.1.
The resonance in the Y -direction is larger in magnitude than the resonance in the
X-direction and consequently dominant for the robot behaviour.

Table 8.1: Results from force pulse-response experiments. The table shows
the resulting robot tool vibration in the X- and Y -direction, with the reso-
nance in the Y -direction being dominant for the robot behaviour.

Force-pulse direction

X Y

To
ol

vi
br

at
io

n
[H

z]

X 7.4 10.5

Y 11.4 − 11.9 11.5

7.4

Linear black-box models

Different linear black-box models have been identified for usage in the ILC al-
gorithm and for Kalman filter design. As only two-dimensional measurements
are available, the identified MIMO models include only the XY -components of
the tool position. In the identification experiments, a pseudo random binary se-
quence (PRBS) signal with an amplitude of 1 mm is added to each of the motor
angular position references. As it is difficult to obtain a model performing well
enough for estimation, identification is also made on data from experiments for
the rectangular trajectory with high-velocity motion. A schematic picture of the
robot system with the signals used in the identification is given in Figure 8.5. The
relation between the identified models is illustrated in Figure 8.6.

i
i

main: 2011-01-11 10:21 — 152 (“134”) i
i

i
i

i
i

134 8 Estimation-based ILC applied to a parallel robot

First, a model from tool-position reference r(t) to measured tool position z(t) is
identified from PRBS data. The model can be described by the relation

z(t) = Grt(q) r(t) (8.3)

where the subscripts r and t denote “reference” and “tool”, respectively. The iden-
tification procedure aims at identifying a model capturing the resonance frequen-
cies of the robot system, since the model is used for design of the ILC algorithm
using measured tool position2.

Thereafter a model is identified with input r(t) and output zc(t),

zc(t) = Grc(q) r(t) (8.4)

where zc(t) is the calculated tool position from measured motor angular posi-
tions transformed by the forward kinematics. The subscript c is introduced for
“calculated”. This model is used for stability analysis of the ILC algorithms using
estimates of the robot tool position3.

A state-space model with calculated tool position zc(t) as input and measured
tool position z(t) as output is identified, to be used in the estimation of the robot
tool position4. The model can be written

z(t) = Gct(q) zc(t) (8.5)

The model is identified from data when following the rectangular trajectory with
high tool velocity, since it is difficult to obtain a model performing well enough
for estimation from PRBS data.

8.5 ILC algorithms

For analysis, the descriptions of the system and ILC algorithm introduced in
Chapter 6 are used, and are shortly summarised here for convenience.

A stable system is studied, given by the following discrete-time description

yk(t) = Try(q)r(t) + Tuy(q)uk(t) (8.6a)

zk(t) = Trz(q)r(t) + Tuz(q)uk(t) (8.6b)

with measured variable yk(t), controlled variable zk(t) and reference r(t) to be
followed by the controlled variable. An ILC algorithm of the type

uk+1(t) = Q(q)
(
uk(t) + L(q)εk(t)

)
(8.7)

is applied to the system (8.6), using the error

εk(t) = r(t) − ẑk(t) (8.8)

2See Section 8.8.3.
3Described in Section 8.8.2.
4See Section 8.6 for the details.

i
i

main: 2011-01-11 10:21 — 153 (“135”) i
i

i
i

i
i

8.5 ILC algorithms 135

The estimate ẑk(t) of the controlled variable is described by (6.6),

ẑk(t) = Fr (q)rz(t) + Fu(q)uk(t) + Fy(q)yk(t) (8.9)

with the stable filters Fr (q), Fu(q) and Fy(q). Now, expressing (8.6) to (8.9) in
matrix form, and if

σ̄
(
Q
(
I − L(Fu + FyTuy)

))
< 1 (8.10)

then the ILC system is stable and uk converges monotonically to the asymptotic
ILC input u∞, according to Theorem 6.2.

Implementation

The filter L(q) in (8.7) is chosen as L(q) = γqδ in the experiments, and is imple-
mented by extending the error signal using the last value. The filter Q(q) is cho-
sen as a non-causal filter with zero-phase characteristics. This is implemented by
filtering the signal forwards and backwards in time through a causal filter Q̄(q)
with no extension of the signal5. The filter Q̄(q) is designed for each specific
experiment.

The resulting ILC input signal uk(t) is applied to a system where the reference
trajectory to be learned (learning part of the trajectory) is preceded and followed
by lead-in and lead-out parts. Therefore, the ends of the ILC input signal are
weighted in the time domain by a vector

w =
(
w(1) . . . w(n)

)T
(8.11)

with n elements to give a smooth transition between the learning part and the
lead-in/lead-out parts of the trajectory. A vector with n = 100 elements is used in
the experiments, generated by the Matlab command tukeywin(2*n, 0.95),
to give a flat curve at the ends and a smooth increase of the weighting coefficients
in between, see Figure 8.8.

Time-domain weighting of the ILC input signal has previously been discussed
in for example van Oosten et al. [2004], where however only zero or identity
weights are used to choose actuation and observation intervals for the ILC algo-
rithm in a point-to-point application. Experiments on a flexible beam in point-
to-point motions are presented in van de Wijdeven and Bosgra [2007], where
also non-diagonal weighting matrices with arbitrary elements are used. The idea
of smoothing the input signal of an RC algorithm is evaluated by simulations
in Chen and Longman [1999], where the learning input signals are applied in a
smooth manner and at an appropriate time. The resulting learning rate and fi-
nal error level are improved by gradually converting from one control action to
the next over 12 time steps with a time weighting linear in time or determined
from cubic splines. To the best knowledge of the author, no experimental results
have been published previously in an ILC application where the trajectory to be
followed has lead-in/lead-out.

5This means that implementation alternative B-I is used, see Chapter 9.

i
i

main: 2011-01-11 10:21 — 154 (“136”) i
i

i
i

i
i

136 8 Estimation-based ILC applied to a parallel robot

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Weighting coefficients

Sampling index

Figure 8.8: Coefficients for time-domain weighting of the ends of the ILC
input signal.

8.6 Estimation of robot tool position

Two approaches for estimating the robot tool position will be evaluated:

• Complementary filtering.

• Kalman filtering.

Only the XY -direction is considered, motivated by the measurements available
for evaluation.

Complementary filtering For the system with moderate load considered in this
chapter, experimental results show that the calculated tool position zc(t) is a rea-
sonable tool-position estimate for low frequencies. The signal za(t), obtained by
double integration of the measured tool acceleration a(t), is a reasonably accu-
rate tool-position estimate for higher frequencies. These two signals can be fused
together by a complementary filter6, giving the tool-position estimate

ẑ(t) = G(q)zc(t) +
(
1 − G(q)

)
za(t) (8.12)

In the experiments, the filter G(q) is chosen as a second-order low-pass Butter-
worth filter, applied to give zero-phase characteristics by using filtfilt in
Matlab. The cutoff frequency of the filter is tuned to give the smallest maxi-
mum estimation error e(t) = z(t) − ẑ(t) for the rectangular motion.

It can be noted that a similar approach with double integration and high-pass fil-
tering of the measured tool acceleration is used in Nordström [2006]. Evaluation
in both simulations and experiments conclude improved feedback control of a
commercial industrial robot using the accelerometer as an additional sensor.

6See Section 3.2.3 for the details.

i
i

main: 2011-01-11 10:21 — 155 (“137”) i
i

i
i

i
i

8.6 Estimation of robot tool position 137

Kalman filtering The tool position is estimated using a stationary Kalman filter7,
based on the linear model (8.5) with input zc(t) and output z(t). The predicted
position is numerically differentiated twice, and the tool position is estimated by
a stationary Kalman filter using the calculated tool position zc(t) and the mea-
sured tool acceleration a(t). The covariance matrix for the process noise is chosen
as Rv = αI , with the factor α determined by minimising the maximum estimation
error for the rectangular motion. The covariance matrix Rw for the measurement
noise is determined from experiments.

In Figure 8.9, the estimation error e(t) = z(t) − ẑ(t) is shown for the rectangu-
lar motion, with the measured tool position z(t). It can be seen that the esti-
mation error is decreased when using the complementary filter estimate (8.12)
compared to using the estimate ẑ(t) = zc(t), especially in the Y -direction. This
can be explained by the fact that the robot is flexible in this direction and thereby
the accelerometer mounted on the end-effector plate provides more information
than for the stiffer X-direction. The Kalman filter estimate performs slightly bet-
ter than the complementary filter estimate. It is likely that the quality of the
tool-position estimate can be further increased by using a better model for the
specific working point in for example an EKF.

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

X
 [

m
m

]

Estimation error

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

Time [s]

Y
 [

m
m

]

kinematics

comp. filter

Kalman

Figure 8.9: Estimation error e(t) = z(t) − ẑ(t) for the rectangular motion. Re-
sult for the calculated tool position zc(t) from motor angular positions trans-
formed by the forward kinematics (kinematics) compared to results from the
complementary filter (comp. filter) and the Kalman filter (Kalman).

7See Algorithm 2 in Chapter 3.

i
i

main: 2011-01-11 10:21 — 156 (“138”) i
i

i
i

i
i

138 8 Estimation-based ILC applied to a parallel robot

8.7 Conditions for ILC experiments

In the experiments, the rectangular motion is used with a programmed tool ve-
locity of v(t) = 100 mm/s. The experiments are categorised into the following
cases with the ILC algorithm (8.7) using the following errors:

1) Measured motor angular position, giving εk(t) = rm(t) − qm(t).

2) Estimated tool position, giving εk(t) = r(t) − ẑk(t).

3) Measured tool position, giving εk(t) = r(t) − zk(t).

Case 2 is thereafter divided into:

A) Estimate ẑk(t) derived using complementary filter.

B) Estimate ẑk(t) derived using Kalman filter.

ILC is only performed in the XY -direction due to the experimental setup, and the
error in the Z-direction is neglected. For the same reason, the tool performance
is evaluated in the XY -plane. Before each iteration the motors are driven to their
initial positions to minimise the effect of initial state errors.

For all experiments, the filter L(q) in (8.7) has a time shift of δ = 5 samples and a
learning gain of γ = 0.9, based on knowledge of time delay and static gain of the
closed-loop system. The filter Q(q) is chosen differently for each specific case.

8.7.1 Evaluation measures

The experimental evaluation is based on the nominal error when no ILC algo-
rithm is applied (k = 0). The vector of nominal errors for the motor angular
positions for the three carts is given by

e1
m,0
e2
m,0
e3
m,0

 =

r
1
m
r2
m
r3
m

 −

q1
m,0
q2
m,0
q3
m,0

 (8.13)

with eim,0 denoting the motor angular position error and qim,0 being the measured
motor angular position for cart i at iteration 0 and rim being the corresponding
reference. The vector of nominal tool-position errors is analogously defined as(

eXz,0
eYz,0

)
=

(
rX

rY

)
−
(
zX0
zY0

)
(8.14)

in the X- and Y -direction.

The reduction of the 2-norm of the motor angular position error at iteration k for

i
i

main: 2011-01-11 10:21 — 157 (“139”) i
i

i
i

i
i

8.8 Experimental results 139

each of the three carts is given in percentage of the nominal error (8.13), as in

ē1
m,k = 100 ·

‖e1
m,k‖2
‖e1
m,0‖2

[%] (8.15a)

ē2
m,k = 100 ·

‖e2
m,k‖2
‖e2
m,0‖2

[%] (8.15b)

ē3
m,k = 100 ·

‖e3
m,k‖2
‖e3
m,0‖2

[%] (8.15c)

The reduction of the tool error is similarly normalised by (8.14), resulting in

ēXz,k = 100 ·
‖eXz,k‖2
‖eXz,0‖2

[%] (8.16a)

ēYz,k = 100 ·
‖eYz,k‖2
‖eYz,0‖2

[%] (8.16b)

The quantities (8.15) and (8.16) are in the evaluation of the experimental results
based on the part of the trajectory to be corrected by the ILC algorithm. See Sec-
tion 8.3.1 for how the trajectory is divided into a learning part and lead-in/lead-
out parts.

8.8 Experimental results

First, the resulting tool performance is investigated for case 1. This result is then
compared to the result when the ILC algorithm uses an estimate of the tool po-
sition, case 2, with estimation alternative A and B. Finally, the result when the
measured tool position is used in the ILC algorithm, case 3, is discussed.

8.8.1 Case 1 — ILC using measurements of motor angular
position

For low velocities, most of the components of the tool-position error can be cor-
rected by an ILC algorithm using motor angular positions, since the influence
of the dynamic effects in the robot structure is small, see Figure 8.3a. This can
be regarded as if the ILC algorithm is based on the estimate ẑ(t) = zc(t), the mo-
tor angular positions transformed by the forward kinematics to a calculated tool
position, which is a reasonable estimate for low-velocity motions and moderate
load. When performing ILC experiments for a motion with higher velocity, a
smaller error reduction (8.16) of the robot tool is expected than for low-velocity
motions. This can be explained by dynamic effects introduced in the system8 due
to the robot structure containing mechanical flexibilities, as is discussed in detail
in Chapter 5.

8See Figure 8.3b.

i
i

main: 2011-01-11 10:21 — 158 (“140”) i
i

i
i

i
i

140 8 Estimation-based ILC applied to a parallel robot

For case 1, an ILC algorithm is implemented independently for each motor. The
same ILC design variables are applied to all motors, since the models (8.2) of
the motor dynamics for the carts are close to each other. The causal filter Q̄(q)
is chosen as a second-order low-pass Butterworth filter with cutoff frequency
fc = 10 Hz, and is implemented to give a zero-phase filter Q(q) as described in
Section 8.7. The ILC input signal is added to the motor angular position reference,
giving Tuy(q) in (8.6) equal to Gm,i(q) from (8.2) for the three motors i = 1, 2, 3.
Using the measured motor angular positions in the ILC update equation results
in Fr (q) = Fu(q) = 0, Fy(q) = 1 in (8.9). The criterion (8.10) for motor i is given by

σ̄i,case 1 = σ̄
(
Q(I − LTuy)

)
< 1

For the three motors it results in

σ̄1,case 1 ≈ 0.90, σ̄2,case 1 ≈ 0.91, σ̄3,case 1 ≈ 0.93

This analysis results in stability and monotone convergence when each of the
three motor models (8.2) is controlled independently by the ILC algorithm. From
these values, it can also be seen that there is a robustness margin to model errors.

Some results from the experimental investigation of the properties of the algo-
rithm have already been shown in Chapter 5, and are therefore only briefly sum-
marised here. The reader is directed to Chapter 5 for the relevant diagrams. In
Figure 5.12 it can be seen that the error measure (8.15) for each motor is reduced
to nearly 2 % after only five iterations. The large error reduction can also be con-
cluded from Figure 5.13, showing small remaining motor angular position errors
compared to the nominal errors. In Figure 5.14 it is illustrated that the measured
tool position has a larger deviation from the tool-position reference compared to
what is the case for the calculated tool position zc(t), as is expected due to the
flexible robot structure. Still, the tool performance is improved compared to the
nominal tool performance shown in Figure 8.3b.

The effect of the time-weighting of the ILC input signal, discussed in Section 8.5,
can also be seen in Figure 5.13. The curves illustrate how the learning is smoothly
increased until the learning part starts (t = 1.6 s) and is smoothly decreased at the
start of the lead-out part (t = 4.1 s).

Repeatability

To examine the repeatability properties, the same ILC experiment is repeated five
times under as identical conditions as possible. An ILC input signal u1(t) to the
first iteration is calculated from the nominal motor angular position errors. The
signal is applied to the system and the iterations k = 1, . . . , 5 are performed. This
is repeated five times with the same input signal u1(t) at the first iteration. The
error measure (8.15) for each motor and iteration is shown in Figure 8.10 for the
five repeated experiments. It can be seen that the behaviour with slightly non-
monotone convergence in Figure 5.12 may be explained by this spread of the er-
ror measure (8.15) for each iteration. The spread of the error measure (8.15) may
be even larger due to varying experimental conditions, for example temperature.

i
i

main: 2011-01-11 10:21 — 159 (“141”) i
i

i
i

i
i

8.8 Experimental results 141

1 2 3 4 5
2

4

6
8

10
12

C
a
rt

 1
 [
%

]

Reduction of motor error

1 2 3 4 5
2

4

6
8

10
12

C
a
rt

 2
 [
%

]

1 2 3 4 5
2

4

6
8

10
12

C
a
rt

 3
 [
%

]

Iteration

Figure 8.10: Case 1: Error measure (8.15) for each cart when performing five
experiments with identical ILC input signal at first iteration.

8.8.2 Case 2 — ILC using estimates of tool position

Next, results are compared for experiments with an ILC algorithm using tool-
position estimates from the complementary filter, case 2A, and the Kalman fil-
ter, case 2B. From the identification experiments discussed in Section 8.4.2 it is
concluded that the robot system has a distinct resonance frequency of around
11.5 Hz in the Y -direction and not so pronounced resonance frequencies at ap-
proximately 7.4 Hz and 10.5 Hz in the X-direction. To be able to learn error com-
ponents around and above the dominating resonance frequencies of the system,
it is not sufficient to simply choose a low-pass filter Q(q) with cutoff frequency
below the lowest resonance frequency. Instead, the filter design has to be based
on a model from the input point of the ILC input signal, here the reference r(t),
to the estimate ẑk(t) used in the algorithm. For case 2A, the tool-position estimate
is derived from (8.12) by using complementary filtering, which gives

ẑk(t) =
(
G(q) 1 − G(q)

) (zc,k(t)
za,k(t)

)
=

(
G(q) 1 − G(q)

) (Grc(q)
Grt(q)

)
r(t)

= Fy(q)Tuy(q)r(t)

from the measurement vector consisting of zc,k(t) and za,k(t), with the repre-
sentation (8.9) of the estimate and the system description (8.6). The measure-
ment zc,k(t) relates to the reference r(t) by the model (8.4). z(t) is obtained

i
i

main: 2011-01-11 10:21 — 160 (“142”) i
i

i
i

i
i

142 8 Estimation-based ILC applied to a parallel robot

from r(t) by (8.3), where numerical double differentiation followed by numeri-
cal double integration gives za,k(t).

Case 2B is treated similarly with the measurement vector consisting of zc,k(t)
and ak(t),

ẑk(t) = Fy(q)
(
zc,k(t)
ak(t)

)
where the estimation filter Fy(q) is given from the relations for the Kalman esti-
mator, similar to the observer in Example (6.5).

The tuning of the diagonal filter Q(q) aims at being robust to large model er-
rors especially around the resonance frequencies. The filter is obtained by fil-
tering the signal forwards and backwards in time through a causal filter Q̄(q).
The filter Q̄(q) is designed from the magnitude of the X- and Y -elements of
the relation 1 − L(q)

(
Fu(q) + Fy(q)Tuy(q)

)
, depicted in Figure 8.11. Due to high-

frequency measurement noise, learning of the error components up to 30 Hz
is chosen, which is above the dominating resonance frequencies of the system.
Therefore, Q(q) is also designed to have large attenuation for frequencies above
30 Hz. In Figure 8.11 the robustness properties of the algorithm around the res-
onance frequencies of the system can be seen, together with the attenuation for
higher frequencies (over 30 Hz). The choice of filter Q(q) is then experimentally
evaluated for cases 2A and 2B to give a good error reduction, with the same filter

10
−1

10
0

10
1

10
2

−6

−3

0

3

6
Magnitude

X
 [
d
B

]

Cutoff filter
Case 2A
Case 2B

10
−1

10
0

10
1

10
2

−6

−3

0

3

6

Frequency [Hz]

Y
 [
d
B

]

Figure 8.11: Case 2A, 2B: The magnitude |Q̄−1(eiωTs)| of the filter Q̄(q) cut-
ting off the learning over about 30 Hz illustrated together with the magni-
tude |1 − L(eiωTs)(Fu(eiωTs) + Fy(eiωTs)Tuy(eiωTs))| in the X- and Y -direction.

i
i

main: 2011-01-11 10:21 — 161 (“143”) i
i

i
i

i
i

8.8 Experimental results 143

used for both cases. The criterion (8.10) then results in

σ̄case 2A ≈ 0.86

σ̄case 2B ≈ 0.93

with robustness to model errors.

The behaviour of the ILC algorithm applied to the system is then evaluated exper-
imentally. By comparing the resulting tool path shown in Figure 8.12 to the result
for case 1 shown in Figure 5.14, it is seen that the tool performance after 10 iter-
ations are improved for case 2A compared to case 1. Similar results are achieved
for case 2B, and the corresponding figure is omitted here. The same conclusion of
smaller tool-position error for cases 2A and 2B compared to case 1 can be made
from Figure 8.13, where the error measure (8.16) of the tool position can be seen
for all cases. For illustration, the mean of the error reduction (8.16) for iteration 5
to 10 is given in Table 8.2. Case 2A seems to give a slightly larger error reduction
than case 2B. Since different ILC algorithms are tuned and applied to the robot,
it is difficult to compare the results quantitatively. Another tuning could for ex-
ample give a larger error in the X-direction, maybe resulting in smaller error in
the Y -direction. However, the resulting overall behaviour is an improved tool per-
formance for cases 2A and 2B compared to case 1, especially in the Y -direction.
Since the robot is stiff in the X-direction compared to the Y -direction, most of
the errors in the X-direction can be compensated already by using motor angular
position measurements. The accelerometer signal gives additional information
about the tool position in the Y -direction compared to when only measuring mo-
tor angular positions, which makes it possible to improve the performance in that
direction when using tool-position estimates in the ILC algorithm.

1362 1364 1366 1368 1370 1372
−884

−882

−880

−878

−876

−874

−872

X [mm]

Y
 [
m

m
]

reference

measured

Figure 8.12: Case 2A: Tool performance after 10 iterations, with reference
path compared to measured tool path.

i
i

main: 2011-01-11 10:21 — 162 (“144”) i
i

i
i

i
i

144 8 Estimation-based ILC applied to a parallel robot

0 1 2 3 4 5 6 7 8 9 10

10

15
20

30

50

100
X

 [
%

]
Reduction of tool error

Case 1

Case 2A

Case 2B

Case 3

0 1 2 3 4 5 6 7 8 9 10
20
25
30

50

100

Y
 [
%

]

Iteration

Figure 8.13: Comparison of error measure (8.16) of the robot tool position
for the cases 1, 2A, 2B, and 3 in the X- and Y -direction, respectively..

Table 8.2: Comparison of mean value for iteration 5 to 10 of error mea-
sure (8.16) of the robot tool position for the cases 1, 2A, 2B, and 3 in the X-
and Y -direction, respectively.

Case 1 Case 2A Case 2B Case 3

X 13.3 % 12.6 % 13.3 % 10.3 %

Y 36.1 % 23.9 % 25.2 % 24.9 %

8.8.3 Case 3 — ILC using measurements of tool position

Finally, the ILC algorithm uses the measured tool position in the XY -direction.
This case illustrates the improvement in the (ideal) case when measurements of
the robot tool position are available for usage in the ILC algorithm. The design
of the filter Q̄(q) follows the reasoning for case 2, with a need for a filter giving
an algorithm robust to large model errors and with learning up to 30 Hz to avoid
high-frequency measurement noise to be included in the learning. For case 3,
with the ILC input signal added to the reference r(t), it gives Tuy(q) = Grt(q)
in (8.3) and Fr (q) = Fu(q) = 0, Fy(q) = 1 in (8.9). The model-based design of Q̄(q)
is followed by experimental fine-tuning to give a stable ILC system having good
error reduction. The resulting filter Q̄(q) is identical to the filter for case 2 in the
Y -direction, while the gain around the resonance frequency is only slightly larger
in the X-direction. The resulting magnitude diagrams in the X-and Y -directions
are very similar to the diagrams for case 2 shown in Figure 8.11. This is natural,

i
i

main: 2011-01-11 10:21 — 163 (“145”) i
i

i
i

i
i

8.9 Conclusions 145

since the relation
(
1 − G(q)

)
Grt(q) is close to Grt(q) for higher frequencies. The

corresponding figure is therefore omitted here. The criterion (8.10) results in

σ̄case 3 ≈ 0.95

The resulting error measure (8.16) of the tool is shown in Figure 8.13 and the
mean for iterations 5 to 10 is given in Table 8.2. It can be seen that the error
reduction (8.16) is slightly larger for case 3 compared to case 2 in the Y -direction.
As mentioned earlier, it is difficult to compare the experimental results quantita-
tively. It is for example possible that there is a more aggressive tuning of the ILC
algorithm using the measured tool position that results in a larger error reduc-
tion for case 3. Still, it can be concluded that an ILC algorithm using estimates
of the tool position is able to improve the tool performance compared to an ILC
algorithm using measured motor angular positions directly.

8.9 Conclusions

In this chapter, three different approaches to ILC have been experimentally evalu-
ated when applied to the Gantry-Tau parallel robot. First, the ILC algorithm uses
measured motor angular positions, which usually are the only measurements
available in commercial industrial robot systems. Second, the ILC algorithm uses
tool-position estimates. The estimates are obtained by using complementary and
Kalman filtering, based on motor angular position measurements transformed by
the forward kinematics and tool-acceleration measurements. Third, the ILC algo-
rithm uses the measured tool position. This approach is for evaluation purposes
only, as it is difficult to measure the actual tool position in industrial applications.
The ILC filters are designed to enable learning error components also above the
dominant resonance frequencies of the robot system. Linear models identified in
the specific working point is used for tuning of the ILC filters and analysis of the
resulting stability.

In the chapter some practical aspects have also been discussed. The different
ILC approaches are evaluated on a high-velocity rectangular trajectory, preceded
and followed by lead-in/lead-out parts of the trajectory. Therefore, the begin-
ning and end of the ILC input signal are weighted in the time domain to give a
smooth transition from the lead-in/lead-out parts to the parts of the trajectory to
be learned.

From the experiments it can be concluded that an ILC algorithm using estimates
of the robot tool position improves the tool performance compared to an ILC al-
gorithm using the measured motor angular positions directly. The experimental
evaluation illustrates the principle of estimation-based ILC. Better robot models
might improve the results, due to a more efficient model-based design of the ILC
filters and more accurate tool-position estimates.

i
i

main: 2011-01-11 10:21 — 164 (“146”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 165 (“147”) i
i

i
i

i
i

9
Implementation aspects

Some implementation aspects of ILC are considered in this chapter. An
ILC algorithm involves filtering of various signals over finite-time intervals,

often using non-causal filters. It is therefore important that the boundary effects
of the filtering operations are handled in an appropriate way when implementing
the ILC algorithm. It is illustrated in both theoretical analysis, using a matrix de-
scription in the time domain of the system and ILC algorithm, and in simulations
of a two-mass system that the method of implementation for handling the bound-
ary effects can have large influence over stability and convergence properties of
the ILC algorithm. The main reference for the chapter is Wallén et al. [2010].

9.1 Introduction

The purpose of the chapter is twofold. First, to study some implementation al-
ternatives for handling the boundary effects that occur in the filtering operations
in the ILC algorithm. Second, to show how to systematically analyse their effects
on the performance. The analysis is performed in the time domain by involving
the implementation aspects of the filtering in the matrix formulation of the ILC
algorithm.

The topic regarding implementation of ILC algorithms appears to have received
fairly limited attention in the literature, even though it can be of large practi-
cal importance. Some comments are given in the literature on implementation
aspects and boundary effects, for example a short note about extending the finite-
time error signal with the last value at the end [Moore, 1998a, Wang and Zhang,
2009] or briefly discussing extensions at the beginning and the end of the sig-
nal before filtering [Elci et al., 2002]. However, the group around Longman has

147

i
i

main: 2011-01-11 10:21 — 166 (“148”) i
i

i
i

i
i

148 9 Implementation aspects

studied various aspects of ILC/RC, including filtering and implementation. An
overview of many of the ideas is given in Longman [2000], including references
to relevant publications. One of the most important publications related to the
results presented in this chapter is Plotnik and Longman [1999]. In the paper
different aspects of filtering are discussed in detail; which type of filter to use,
which signal to filter and how to perform the filtering when implementing the
ILC algorithm. The resulting performance when using the different filtering and
extension alternatives are then compared in simulations of a model of a single
robot joint controlled using an ILC algorithm. The subject of implementation is
also discussed in Longman and Songchon [1999]. There it is assumed that the
boundary effects can be ignored, so that it is possible to analyse the ILC updating
law in the frequency domain. In the publications mentioned above the effects
of the filtering operations are discussed with focus on zero-phase filtering of the
signal in order to cut off the learning above a desired frequency. The problem
of initial conditions in the zero-phase filtering operation is highlighted, and it is
discussed how to perform the filtering so that the choice of these initial values
has negligible influence on the resulting behaviour. Stability and monotone con-
vergence properties of the ILC algorithm are analysed in the frequency domain,
since the effects of the filtering operations are made as small as possible so that
frequency-domain analysis can be applied. This can be contrasted with the work
in this chapter, where the main objective is to investigate the actual effects of the
chosen implementation, with the analysis performed in the time domain.

9.2 System and ILC algorithm

The types of systems and ILC algorithms considered in this chapter are given
here, together with a short repetition of some convergence results that will be
used in the analysis1.

9.2.1 System description

Consider the linear discrete-time system

yk(t) = Tr (q)r(t) + Tu(q)uk(t) (9.1)

where load and measurement disturbances are omitted for simplicity. All signals
are defined on a finite time interval t = nTs, n ∈ [0, N − 1] with N number of sam-
ples. The sampling interval Ts = 1 is used for brevity in this chapter, if nothing
else is stated. Parallel to the system description (9.1) in filter form, the matrix
description2 is used. The system description (9.1) is then reformulated into

yk = Trr + Tuuk (9.2)

with the lower-triangular Toeplitz matrices Tr and Tu derived from the pulse-
response coefficients of the causal transfer operators Tr (q) and Tu(q).

1The reader is directed to Chapter 4 for a detailed description.
2See Section 4.4 for the details.

i
i

main: 2011-01-11 10:21 — 167 (“149”) i
i

i
i

i
i

9.2 System and ILC algorithm 149

9.2.2 ILC algorithm

Considering linear discrete-time ILC algorithms, two main alternative ways to
implement a particular algorithm are discussed in the thesis. The first alternative
is the matrix formulation (4.13), in which the ILC input signal vector for the next
iteration is computed according to the expression

uk+1 = Q(uk + Lek) (9.3)

where the error used in the algorithm is given by

ek = r − yk (9.4)

and whereQ and L are N ×N matrices, not necessarily lower triangular. One way
to determine Q and L is by using an optimisation approach, see Section 4.8.2.

Another implementation alternative is the filter formulation (4.12), where the
ILC input signal is computed as

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
(9.5)

with the error ek(t) is given by

ek(t) = r(t) − yk(t) (9.6)

and where Q(q) and L(q) may be non-causal filters.

Each of the two alternatives has advantages and disadvantages. The matrix for-
mulation (9.3) is in general more computational demanding, but covers a larger
class of algorithms. The filter form (9.5) is on the other hand less general and
requires less computations. For both alternatives it is necessary to take care of
the boundary effects in the implementation of the ILC algorithm. The main pur-
pose of this chapter is to illustrate that the matrix formulation offers a systematic
framework for analysing how this will affect the algorithm properties. Therefore,
the implementation of the ILC algorithm in filter form (9.5) is interpreted using
the matrix formulation (9.3). This will be discussed in more detail in Sections 9.3
and 9.4.

9.2.3 Stability and convergence properties

Controlling the system (9.2) by the ILC algorithm (9.3) based on the error (9.4)
gives the ILC system equation (4.21),

uk+1 = Q
(
I − LTu)uk + QL

(
I − Tr)r (9.7)

Theorem 4.5 states that the ILC system (9.7) is stable if and only if

ρ
(
Q(I − LTu)

)
< 1 (9.8)

A useful result from Theorem 4.6 concerning the properties of the ILC input
signal uk is that if the system (9.2) is controlled by the ILC algorithm (9.3) and

σ̄
(
Q(I − LTu)

)
≤ λ < 1 (9.9)

i
i

main: 2011-01-11 10:21 — 168 (“150”) i
i

i
i

i
i

150 9 Implementation aspects

that is, the largest singular value is less than one, then the ILC system is stable
and

‖u∞ − uk‖2 ≤ λk‖u∞ − u0‖2 (9.10)

with the asymptotic control signal u∞ defined as

u∞ =
(
I −Q(I − LTu)

)−1
QL(I − Tr)r

Satisfying the condition (9.9) results in monotone convergence of uk to the limit
value u∞. Using the asymptotic control signal u∞ from (9.2.3) it is then straight-
forward to derive the asymptotic error as

e∞ =
(
I − Tr − Tu

(
I −Q(I − LTu)

)−1
QL(I − Tr)

)
r

Now study the corresponding ILC system in filter form, and assume that the
length of the finite time interval goes to infinity. From (4.33) it is stated that if

sup
ω∈[−π,π]

|Q(eiω)
(
1 − L(eiω)Tu(eiω)

)
| < 1 (9.11)

then the ILC system is stable with monotone convergence of the ILC input signal.
This is an approximation of the ILC system operating in finite time, as will be
discussed in more detail in Section 9.5.2.

The relation between the time-domain criterion (9.9) and the frequency-domain
criterion (9.11), given by Theorem 4.4, is as follows. Study a causal system given
by the relation F(q) = Q(q)

(
1 − L(q)Tu(q)

)
. Now, if

sup
ω∈[−π,π]

|F(eiω)| < 1 (9.12)

then

σ̄ (FN) < 1 (9.13)

where the lower-triangular matrix FN consists of the N first pulse-response coef-
ficients of F(q).

9.3 Motivating example

In order to illustrate the alternatives for handling the boundary effects of the
filtering operations, now assume that the ILC algorithm is given by (9.5),

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
(9.14)

where

L(q) = γqδ (9.15)

with the integer δ > 0 and the scalar γ > 0. This means that the error signal ek(t)
is shifted δ steps and scaled by a factor γ when filtered using the filter L(q).
Since ek(t) only is defined on a finite time interval t ∈ [0, N − 1], an assumption

i
i

main: 2011-01-11 10:21 — 169 (“151”) i
i

i
i

i
i

9.4 Handling of boundary effects 151

has to be made concerning the values of ek(t) outside this time interval. As an
illustration, two alternatives will be studied. The first alternative is to let

ek(t) = 0, t > N − 1 (9.16)

where it is implicitly assumed that the error has reached zero at the end of the
given time interval. This implies that filtering ek(t) using the filter L(q) = γqδ

with the condition (9.16) corresponds to multiplying the error signal vector

ek =
(
ek(0) . . . ek(N − 1)

)T
by the matrix

L =



0 . . . 0 γ 0 . . . 0
0 . . . 0 0 γ . . . 0
...

...
. . .

...
0 . . . 0 0 0 . . . γ
0 . . . 0 0 0 . . . 0
...

...
...

0 . . . 0 0 0 . . . 0


(9.17)

A second alternative to handle the boundary effect is to put

ek(t) = ek(N − 1), t > N − 1 (9.18)

This alternative can be motivated by situations where the error has not reached
zero by the end of the movement. It can also be noted that the alternative (9.18) is
used in for instance Moore [1998a], Longman [2000] and Wang and Zhang [2009].
This alternative corresponds to the matrix L given by

L =



0 . . . 0 γ 0 . . . 0
0 . . . 0 0 γ . . . 0
...

...
. . .

...
0 . . . 0 0 0 . . . γ
0 . . . 0 0 0 . . . γ
...

...
...

0 . . . 0 0 0 . . . γ


(9.19)

Since the two alternatives (9.16) and (9.18) for handling the boundary effects cor-
respond to different matrices L, it is clear that this will influence the criteria (9.8)
and (9.9), respectively. This is studied in a numerical illustration in Section 9.5.

9.4 Handling of boundary effects

In this section a systematic approach is presented for analysis of how different
ways to handle the boundary effects of the filtering operations will influence the
properties of the ILC algorithm. The key idea is to extend the signal to be fil-
tered and include assumptions concerning the properties of the signal outside the

i
i

main: 2011-01-11 10:21 — 170 (“152”) i
i

i
i

i
i

152 9 Implementation aspects

given time interval t ∈ [0, N − 1]. The emphasis will be on handling the bound-
ary effects when filtering using the filter Q(q) or the matrix Q, depending on the
chosen implementation of the ILC algorithm. A similar procedure can however
also be used to represent the filtering using the filter L(q) or the matrix L.

As mentioned in Section 9.2, the matrix form (9.3) of the ILC algorithm is more
general and better suited for analysis, but the filter formulation (9.5) is less com-
putational demanding. For analysis of the effects of the chosen implementation,
it is therefore of interest to be able to interpret the filtering using the filter Q(q)
in the matrix formulation. An important special case is when implementing non-
causal filters in order to obtain zero-phase shift. A standard way to carry out
such filtering is to use a conventional causal filter, for example of Butterworth
type, and carry out forward-backward filtering. Consider a causal filter Q̄(q)
given by

Q̄(q) =
∞∑
n=0

gQ̄(n)q−n

and the corresponding N × N Toeplitz matrix

Q̄ =


gQ̄(0) 0 . . . 0
gQ̄(1) gQ̄(0) . . . 0
...

...
. . .

...
gQ̄(N − 1) gQ̄(N − 2) . . . gQ̄(0)

 (9.20)

Now consider a signal x(t), t ∈ [0, N − 1] with the elements stacked in a vector

x =
(
x(0) . . . x(N − 1)

)T
(9.21)

Filtering the signal x(t) through the filter Q̄(q) can then be interpreted as the
following matrix-vector multiplication

xf = Q̄x

Zero-phase filtering is then obtained by reversing the order of the data points
in the vector xf , filtering the data once more through the causal filter Q̄(q), and
finally reversing the order of the data points again. Using the matrix representa-
tion this corresponds to the operation

xf f = Qx (9.22)

with the matrix Q given by

Q = Q̄T Q̄ (9.23)

which can be used in the ILC update equation (9.3).

Now consider again the vector x defined by (9.21). Introduce a corresponding
extended vector xe, where the original vector x is extended by m samples at the

i
i

main: 2011-01-11 10:21 — 171 (“153”) i
i

i
i

i
i

9.4 Handling of boundary effects 153

beginning and at the end of the time interval, that is,

xe =
(
x(−m) . . . x(0) . . . x(N − 1) . . . x(N − 1 + m)

)T
(9.24)

where m is a design variable. The extension of the signal vector can be generated
by the multiplication

xe = Qex (9.25)

where the N × (N + 2m) matrix Qe can be used to impose assumptions about the
properties of the signal vector x outside the given time interval. One alternative
is to assume that the signal has the same value outside the time interval as at the
end points, similar to the assumption in (9.18). This corresponds to the matrix

Qe =



1 0 0 . . . 0 0 0
...

...
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

. . .
...

0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1
...

...
0 0 0 . . . 0 0 1



(9.26)

Another alternative is to do a linear extrapolation of the signal outside the given
time interval, and for example let

x(−l) = x(0) +
(
x(0) − x(l)

)
= 2x(0) − x(l) (9.27)

at the beginning of the signal and

x(N − 1 + l) = x(N − 1) +
(
x(N − 1) − x(N − 1 − l)

)
= 2x(N − 1) − x(N − 1 − l)

(9.28)

at the end of the signal. This corresponds to the matrix

Qe =



... . .
. ...

2 0 −1 . . . 0 0 0
2 −1 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

. . .
...

0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1
0 0 0 . . . 0 −1 2
0 0 0 . . . −1 0 2
... . .

. ...



(9.29)

i
i

main: 2011-01-11 10:21 — 172 (“154”) i
i

i
i

i
i

154 9 Implementation aspects

It can be noted that this method is used in the filtfilt command [Matlab
Signal Processing Toolbox, 2010], where the signal is extended by m samples at
the beginning and at the end of the given time interval. The extension length is
given as three times the filter order, as in

m = 3
(

max{length(a), length(b)} − 1
)

(9.30)

for a filter with denominator coefficients a and numerator coefficients b. This way
of reflecting the signal at the end points is also discussed in Elci et al. [2002].

In the next step the extended vector xe, given by (9.25), is filtered via the matrix-
vector multiplication

ye = Q̃xe

where Q̃ is the (N + 2m) × (N + 2m) matrix generated from the pulse-response
coefficients {gQ̄(0), . . . , gQ̄(N − 1 + 2m)} of the corresponding filter Q̄(q), similarly
to how Q is generated in (9.23). In the last step the signal ye is truncated by
removing the first and last m samples of the filtered vector. This is carried out
via the relation

y = Qtye

where

Qt =
(
0N×m IN×N 0N×m

)
The entire filtering can hence be summarised as

y = QtQ̃Qex = Qx (9.31)

with the matrix Q, which can be used in the ILC update equation (9.3). A simi-
lar procedure can be used to represent the filtering using the filter L(q) in (9.5),
but for simplicity this study will be limited to the cases represented by (9.16)
and (9.18).

9.5 Numerical illustration

The purpose is now to provide a qualitative illustration that the implementation
of the ILC algorithm can play an important role for the algorithm behaviour. The
case where an ILC algorithm is applied to a two-mass model is used as an illus-
trative example of the implementation aspects.

9.5.1 System description

The two-mass system used for the illustration consists of two masses connected
by a spring-damper pair3. The input to the system is the torque τ(t) applied to
the first mass. In the simulation study the continuous-time two-mass system is
discretised with the Matlab command c2d using the zero-order hold method
with a sampling interval Ts = 0.01 s. The motor angular position qm(t) of the first

3See Section 2.3.3 for the details, and an illustration of the model in Figure 2.4.

i
i

main: 2011-01-11 10:21 — 173 (“155”) i
i

i
i

i
i

9.5 Numerical illustration 155

mass is the output of the discrete-time system, denoted G(q) in Figure 9.1, and
it is controlled by using a discrete-time PD-controller F(q) including a low-pass
filter. The controller is obtained by manual tuning, and is given by

F(q) = K1 +
K2q − K3

q − K4

The model parameter values in Table 9.1 and the controller parameter values in
Table 9.2 will be used in the simulations. The structure of the control system is
depicted in Figure 9.1, where it is seen that the ILC input signal uk(t) is added
to the reference signal rm(t) of the existing control system. In the simulation
example it means that, referring to the relation (9.1),

Tr (q) = Tu(q) =
F(q)G(q)

1 + F(q)G(q)
(9.32)

rm(t) +

uk(t)

F
τk(t)

G qm,k(t)

−

Figure 9.1: Simulation setup with the two-mass system represented by G(q)
in discrete time. The variable τk(t) denotes the motor torque from the feed-
back controller F(q) at iteration k. The ILC input signal uk(t) is added to the
reference signal rm(t) of the feedback control system. The system output in
the simulation study is the motor angular position qm,k(t) at iteration k.

The numerical illustration will be based on the ILC algorithm (9.14) with the
filter L(q) given as in (9.15), that is,

uk+1(t) = Q(q)
(
uk(t) + γqδek(t)

)
(9.33)

with the motor angular position error at iteration k given by

ek(t) = rm(t) − qm,k(t) (9.34)

The filterQ(q) is chosen as a zero-phase low-pass filter. The zero-phase filtering is
carried out via forward-backward filtering using a second-order low-pass Butter-
worth filter with cutoff frequency fc = 10 Hz. The ILC design parameter values
are given in Table 9.3, together with the length m of the signal extension seen
in (9.24). The choice m = 6 corresponds to the signal extension given by (9.30)
when using the Matlab function filtfilt and having a second-order filter.

i
i

main: 2011-01-11 10:21 — 174 (“156”) i
i

i
i

i
i

156 9 Implementation aspects

Table 9.1: Model parameter values.

η = 0.2 Mm = 0.0021 Ma = 0.0991 k = 8

d = 0.0924 fm = 0.0713 kτ = 0.122

Table 9.2: Controller parameter values.

K1 = 5 K2 = 2 K3 = 2 K4 = 0.905

Table 9.3: ILC design parameter values.

γ = 0.9 δ = 10 fc = 10 m = 6

9.5.2 Analysis

First, stability of the ILC algorithm (9.33) applied to the discrete-time descrip-
tion of the two-mass system in previous section with parameter values given in
Tables 9.1 to 9.3 is analysed in the frequency domain. The convergence condi-
tion (9.11) results in

sup
ω∈[−π,π]

|Q(eiω)
(
1 − L(eiω)Tu(eiω)

)
| = 0.904 (9.35)

from which it can be concluded that the ILC system is stable, and results in mono-
tone convergence of the ILC input signal to the limit u∞(t).

However, the relation (9.35) cannot reflect any implementation issues regarding
filtering over finite-time intervals of the signals through the (possibly non-causal)
ILC filters involved. The frequency-domain analysis is an approximation, and
only reflects the properties under the assumption of infinite time horizon. There-
fore, the criterion (9.35) cannot take the boundary effects into account, which is
an important part of the ILC system performance since the time horizon is finite
in all practical applications of ILC.

The time-domain analysis of how the boundary effects will affect the properties
of the ILC algorithm will be carried out using the matrix representation of the
discrete-time system and ILC algorithm. Therefore, the matrix Tu is generated
from the pulse-response coefficients of the transfer operator Tu(q) in (9.32) of
the two-mass system described in Section 9.5.1. In a similar way, the ILC al-
gorithm (9.33) is converted to matrix form (9.3) represented by the matrices Q
and L, respectively.

The cases to be studied in the numerical example are the following. When fil-
tering the error signal ek(t) using the filter L(q), the error signal is assumed to
be:

A: zero outside the time interval, that is, L is interpreted according to (9.17).

B: extended with the last value, that is, L is interpreted according to (9.19).

i
i

main: 2011-01-11 10:21 — 175 (“157”) i
i

i
i

i
i

9.5 Numerical illustration 157

When filtering through Q(q), the signal is assumed to be:

I: not extended.

II: extended using the first and last value, that is, Qe is interpreted according
to (9.26).

III: extended according to extrapolation, that is, Qe is interpreted according
to (9.29).

First the time-domain stability criterion (9.8) is investigated. Inserting the ma-
trices Tu , Q, and L into (9.8) gives the results shown in Table 9.4 for the combi-
nations of the cases A-B and I-III. N = 400 number of samples is used in the
calculations, motivated by simulation of the system during 4 s with a sampling
interval of Ts = 0.01 s in the forthcoming section. The values of the stability cri-
terion (9.8) presented in Table 9.4 show that the implementation plays a crucial
role for the properties of the ILC algorithm. Alternatives A-II, A-III and B-III give
a divergent algorithm with ρ

(
Q(I − LTu)

)
> 1, while the other alternatives imply

convergence. For alternative II it can also be seen that it plays an important role
how the filtering via L(q) is handled.

Since the implementation aspects now are involved in the matrix formulation
of the individual ILC filters, it could give a possibly different result compared to
the resulting frequency-domain convergence criterion (9.35). Table 9.5 shows the
singular value condition (9.9) for the different implementation alternatives. The
pattern is similar to the one seen in Table 9.4, with monotone convergence accord-
ing to (9.10) for case I. Results for case I also show that it can be expected that
the choice of L will have influence on the convergence rate of the ILC algorithm.
This will be further investigated in simulations.

Table 9.4: Stability criterion (9.8) for the extension alternatives
A-B for filter L(q) and I-III for filter Q(q). Alternatives A-II, A-III and B-III
give a divergent algorithm, while the other alternatives imply convergence.

I I I I I I

A 0.895 1.007 1.101

B 0.891 0.931 1.080

Table 9.5: Singular value condition (9.9) for the extension alternatives
A-B for filter L(q) and I-III for filter Q(q). Alternatives A-I and B-I gives
monotone convergence.

I I I I I I

A 0.944 1.048 1.371

B 0.904 1.018 1.397

i
i

main: 2011-01-11 10:21 — 176 (“158”) i
i

i
i

i
i

158 9 Implementation aspects

9.5.3 Simulation results

The properties of the ILC algorithm (9.33) applied the discrete-time two-mass
system are evaluated using simulations in Matlab for the different implementa-
tion alternatives A-B and I-III. The motor angular position reference rm(t) for the
two-mass system is shown in Figure 9.2 with a duration of 4 s and sampling inter-
val Ts = 0.01 s. For the simulations, the ILC algorithm (9.33) is converted to the
matrix form (9.3) according to the descriptions in Sections 9.3 and 9.4. The sys-
tem performance is evaluated using the 2-norm of the vector of the error (9.34),

ek =
(
ek(0) . . . ek((N − 1)Ts)

)T
(9.36)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Reference

Time [s]

r m
(t

)
[r

a
d
]

Figure 9.2: Motor angular position reference rm(t) used in the simulations.

Case I: Figure 9.3 shows the 2-norm of the error (9.36) as a function of iteration
number for the cases A-I and B-I. The curves can be compared to the first column
of Tables 9.4 and 9.5, respectively. The values for the spectral radius are about the
same for the two cases. The largest singular value is smaller for case B-I, which re-
sults in a better guaranteed convergence rate than for case A-I, see (9.9) to (9.10).
A better convergence rate for case B-I compared to case A-I can also be noticed in
Figure 9.3. Furthermore, it is seen that the magnitude of the final error is affected
by how the boundary conditions are handled.

Case II: Figure 9.4 shows the corresponding curves for cases A-II and B-II, re-
spectively. In case B-II the largest eigenvalue is slightly larger than for cases A-I
and B-I, while the eigenvalue for case A-II is just outside the stability boundary.
This property with ρ

(
Q(I − LTu)

)
> 1 is seen in the simulation results, where the

norm of the error for case A-II decreases during the first 50 iterations and then
starts to increase.

Case III: Figure 9.5 illustrates the behaviour for cases A-III and B-III, respec-
tively. Here the eigenvalues shown in the third column of Table 9.4 indicate that
the ILC system is unstable for both cases, and this is confirmed by the simulation
results in Figure 9.5.

i
i

main: 2011-01-11 10:21 — 177 (“159”) i
i

i
i

i
i

9.5 Numerical illustration 159

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Iteration k

||
e

k
||

2

A−I

B−I

Figure 9.3: 2-norm of the error as function of iteration index for the cases
A-I and B-I.

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

Iteration k

||
e

k
||

2

A−II

B−II

Figure 9.4: 2-norm of the error as function of iteration index for the cases
A-II and B-II.

i
i

main: 2011-01-11 10:21 — 178 (“160”) i
i

i
i

i
i

160 9 Implementation aspects

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Iteration k

||
e

k
||

2

A−III

B−III

Figure 9.5: 2-norm of the error as function of iteration index for the cases
A-III and B-III.

The function filtfilt handles boundary conditions similar to the implemen-
tation alternative III above, see Matlab Signal Processing Toolbox [2010]. The
function also involves a way of handling initial conditions that depends on the sig-
nal itself, which implies that the behaviour is not predictable without knowledge
of the filtered signal. In order to illustrate some properties, the filtfilt alter-
native is also investigated. Figure 9.6 shows the 2-norm of the error (9.36) when
the filter form (9.33) of the ILC algorithm is used together with the filtfilt
command, combined with the two alternative ways A and B of handling the fil-
tering with L(q). Also here it is beneficial to use alternative B. Running the al-
gorithm for more iterations gives that the error signal settles at a constant value
after approximately 1000 iterations for alternative B.

9.6 Conclusions

Some implementation aspects related to the non-causal filtering operations of
the ILC algorithms have been discussed. Different ways to treat the boundary
effects have been analysed both theoretically, by interpreting the filtering in the
matrix description, and by using simulations of a two-mass system controlled
by an ILC algorithm. The results indicate that the implementation method and
how to handle boundary effects can play an important role for the behaviour of
the ILC algorithm in terms of stability, convergence and final error level. More-
over, the conventional frequency-domain convergence criterion only reflects the
properties of the system controlled by ILC under the assumption of infinite time
horizon. It is illustrated that the frequency-domain criterion cannot generally be
used for analysis of how the boundary effects influence the properties of the ILC
algorithm.

i
i

main: 2011-01-11 10:21 — 179 (“161”) i
i

i
i

i
i

9.6 Conclusions 161

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

Iteration k

||
e

k
||

2

A−filtfilt

B−filtfilt

Figure 9.6: 2-norm of the error as function of iteration index when the filter
form (9.33) of the ILC algorithm is used for the cases A and B together with
the filtfilt command.

i
i

main: 2011-01-11 10:21 — 180 (“162”) i
i

i
i

i
i

i
i

main: 2011-01-11 10:21 — 181 (“163”) i
i

i
i

i
i

10
Concluding remarks

This chapter provides a summary of the results presented in Part II of the
thesis. Possible directions for future work are also discussed.

10.1 Conclusions

In Chapter 5 the case is studied when an ILC algorithm is applied to a system
containing mechanical flexibilities. Of particular interest is the situation where
the controlled variable is not the measured variable. Experiments are performed
on both a serial and a parallel robot, using the measured motor angular positions
(measured variables) directly in the ILC algorithm. The main result from the
experiments is that although the motor performance is improved, it does not nec-
essarily imply an improved tool position. The underlying problem is analysed
by a simulation study of a flexible two-mass model. The study illustrates the dif-
ficulties in improving performance of the controlled variable by ILC algorithms
using only the measured variable directly. The results serve as a motivation to
include additional sensors and use estimates of the controlled variable in the ILC
algorithm.

A framework for analysis of estimation-based ILC is presented in Chapter 6. The
system controlled using ILC is a natural extension of the system description
in Norrlöf and Gunnarsson [2002a], where now also the dynamic relationship
between the measured and controlled variable is taken into account. The focus
in the analysis is the performance of the controlled variable, and a general ex-
pression for the asymptotic error of the controlled variable is given under the
assumption that the ILC input converges to a bounded signal. The asymptotic
error depends both on the ILC operators, the controller of the system, the esti-

163

i
i

main: 2011-01-11 10:21 — 182 (“164”) i
i

i
i

i
i

164 10 Concluding remarks

mation algorithm and the model errors. The dependence on the model errors is
discussed for three cases of possible estimates of the controlled variable, and is
exemplified by an ILC algorithm applied to a flexible two-mass model. It can be
seen that an ILC algorithm using an estimate of the controlled variable can im-
prove the system performance. The resulting performance relies on the quality
of the estimate, as expected.

The idea of estimation-based ILC is evaluated in Chapter 7 for a nonlinear two-
link robot model having flexible joints and with an additional accelerometer on
the robot tool. The ILC algorithm uses estimates of the robot tool position de-
rived from an extended Kalman filter (EKF). The work serves as a case study
for estimation-based ILC when combining EKF and ILC. Compared to an ILC
algorithm using only the error of the measured variable directly, it is possible
to improve the performance of the controlled variable (here robot tool position)
when an estimate is used in the ILC algorithm.

Estimation-based ILC is experimentally evaluated on the Gantry-Tau parallel
robot in Chapter 8, where an additional accelerometer is mounted on the end-
effector plate. Estimates of the robot tool position are derived from complemen-
tary filtering and Kalman filtering, respectively. First, the ILC algorithm uses
only the measured motor angular positions directly, the original measurements
available in the robot system. Next, tool-position estimates are used in the ILC
algorithm, with the algorithm tuned such that learning of frequency components
of the error up to and above the dominating resonance frequencies of the system
is possible. From the experiments it can be concluded that the tool performance
can be improved by using estimation-based ILC.

In Chapter 9 time-domain analysis is performed of how different ways to treat
the boundary effects in the filtering operations affect the convergence properties
of the ILC algorithm. A numerical example is studied, where it is illustrated that
the frequency-domain criterion cannot generally be used for analysis of how the
boundary effects will influence the resulting performance — depending on the
handling of the boundary effects, the frequency-domain convergence criterion
can be valid or not valid. Simulation results for cases when handling the bound-
ary effects in different ways indicate that the implementation method can have
large influence on the system performance.

10.2 Future work

In the presented framework for analysis of estimation-based ILC, the individual
contributions — choice of controller for the system, ILC filters and estimation
filters — to the resulting system performance can be seen. This gives possibilities
to analyse how different aspects of control, estimation and ILC affects the whole
system. From a user perspective, the asymptotic error of the controlled variable
is to be minimised under the constraint that the largest singular value of the ILC
system is smaller than one. A future research problem is to formally formulate
the optimisation problem and to find effective solution methods.

i
i

main: 2011-01-11 10:21 — 183 (“165”) i
i

i
i

i
i

10.2 Future work 165

In Chapter 8 an ILC algorithm is applied to the Gantry-Tau parallel robot, using
an estimate of the robot tool position. The choice of estimation algorithm, as
well as the quality of the estimate, rely on how accurately the robot model can
describe the essential dynamics of the robot system. During the experiments the
need for a more comprehensive and nonlinear model has been evident, including
for example flexible dynamics, friction and backlash. This requires comprehen-
sive work regarding the choice of model structure, the design of identification
experiments and suitable identification methods.

The quality of the robot tool-position estimate is fundamental for a successful
application of estimation-based ILC to the system. One possibility is to derive
a nonlinear observer, utilising the particular structure of the nonlinear dynamic
model. Worth discussing is estimation by using measurements from different
types of sensors, for example accelerometers and vision systems, and also utilise
other measurements available in the robot system, for example the motor torque
values. One question to be answered is where to place the sensors and how many
sensors that are needed in order to achieve a sufficiently good estimate to be used
in the ILC algorithm.

A natural continuation of the work presented in Chapter 9 is to experimentally
investigate the effects of different choices of how the boundary effects of the fil-
tering operations are handled. The effects could possibly be decreased by using
a lead-in/lead-out part of the trajectory with time-domain weighting of the ILC
input signal.

There is a constant need for development of control methods to improve the per-
formance of the robot tool. The trend towards more sensors in the robot system
also makes it possible to form estimates of the relevant signals by using informa-
tion from the additional sensors. Hence, commercialisation of estimation-based
ILC is of interest to many robot manufacturers.

i
i

main: 2011-01-11 10:21 — 184 (“166”) i
i

i
i

i
i

166 10 Concluding remarks

i
i

main: 2011-01-11 10:21 — 185 (“167”) i
i

i
i

i
i

Bibliography

ABB Robotics, 2007. Open public archive of robot images. URL: http://www.
abb.se, accessed August, 2007.

Houssem Abdellatif and Bodo Heimann. Advanced model-based control of a
6-DOF hexapod robot: A case study. IEEE/ASME Transactions on Mechatron-
ics, 15(2):269–279, 2010.

Houssem Abdellatif, Matthias Feldt, and Bodo Heimann. Application study on
iterative learning control of high speed motions for parallel robotic manipula-
tor. In Proceedings of IEEE International Conference on Control Applications,
pages 2528–2533, Munich, Germany, October 2006.

Hyo-Sung Ahn, YangQuan Chen, and Kevin L. Moore. Iterative learning con-
trol: Brief survey and categorization. IEEE Transactions on Systems, Man, and
Cybernetics — Part C: Applications and Reviews, 37(6):1099–1121, November
2007.

Tarek Al-Towaim, Andrew D. Barton, Paul L. Lewin, Eric Rogers, and David H.
Owens. Iterative learning control — 2D control systems from theory to appli-
cation. International Journal of Control, 77(9):877–893, 2004.

James S. Albus. Outline for a theory of intelligence. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 21(3):473–509, 1991.

Lawrence J. Alder and Stephen M. Rock. Experiments in control of a flexible-link
robotic manipulator with unknown payload dynamics: An adaptive approach.
The International Journal of Robotics Research, 13(6):481–495, 1994.

Lawrence J. Alder and Stephen M. Rock. Frequency-weighted state estimation
with application to estimation in the presence of sensor bias. IEEE Transactions
on Control Systems Technology, 4(4):427–436, 1996.

Notker Amann, David H. Owens, and Eric Rogers. Iterative learning control us-
ing optimal feedback and feedforward actions. International Journal of Con-
trol, 65(2):277–293, 1996a.

167

i
i

main: 2011-01-11 10:21 — 186 (“168”) i
i

i
i

i
i

168 Bibliography

Notker Amann, David H. Owens, and Eric Rogers. Iterative learning control for
discrete-time systems with exponential rate of convergence. IEE Proceedings,
Part D, Control Theory and Applications, 143(2):217–224, 1996b.

Brian D. O. Anderson and John B. Moore. Optimal Filtering. Prentice-Hall, Inc,
Englewood Cliffs, NJ, USA, 1979.

Suguru Arimoto. Mathematical theory of learning with applications to robot
control. In Proceedings of 4th Yale Workshop on Applications of Adaptive
Systems, New Haven, CN, USA, May 1985.

Suguru Arimoto. Learning control theory for robotic motion. International Jour-
nal of Adaptive Control and Signal Processing, 4(6):543–564, 1990.

Suguru Arimoto. A brief history of iterative learning control. In Zeungnam
Bien and Jian-Xin Xu, editors, Iterative Learning Control: Analysis, Design,
Integration and Applications, pages 3–7. Kluwer Academic Publishers, Boston,
MA, USA, 1998.

Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Iterative learning con-
trol for robot systems. In Proceedings of Annual Conference of the IEEE In-
dustrial Electronics Socitey, IECON, Tokyo, Japan, October 1984a.

Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering operation of
robots by learning. Journal of Robotic Systems, 1(2):123–140, 1984b.

Brian Armstrong-Hélouvry. Control of Machines with Friction. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

Isaac Asimov. Runaround. Astounding Science-Fiction, pages 94–103, March
1942.

Isaac Asimov. Robots and Empire. Grafton Books, London, England, 1985.

Kira Barton, Jeroen van de Wijdeven, Andrew Alleyne, Okko Bosgra, and
Maarten Steinbuch. Norm optimal cross-coupled iterative learning control. In
Proceedings of IEEE Conference on Decision and Control, Cancun, Mexico, De-
cember 2008.

Kira L. Barton and Andrew G. Alleyne. A cross-coupled iterative learning control
design for precision motion control. IEEE Transactions on Control Systems
Technology, 16(6):1218–1231, 2008.

Zeungnam Bien and Kyung M. Huh. Higher-order iterative learning control al-
gorithm. IEE Proceedings, Part D, Control Theory and Applications, 136(3):
105–112, May 1989.

Zeungnam Bien and Jian-Xin Xu, editors. Iterative Learning Control: Analysis,
Design, Integration and Applications. Kluwer Academic Publishers, Boston,
MA, USA, 1998.

Mattias Björkman, Torgny Brogårdh, Sven Hanssen, Sven-Erik Lindström, Stig
Moberg, and Mikael Norrlöf. A new concept for motion control of industrial

i
i

main: 2011-01-11 10:21 — 187 (“169”) i
i

i
i

i
i

Bibliography 169

robots. In Proceedings of IFAC World Congress, pages 15714–15715, Seoul,
Korea, July 2008.

Anders Blomdell, Gunnar Bolmsjö, Torgny Brogårdh, Per Cederberg, Mats Isaks-
son, Rolf Johansson, Mathias Haage, Klas Nilsson, Magnus Olsson, Tomas Ols-
son, Anders Robertsson, and Jianjun Wang. Extending an industrial robot con-
troller: Implementation and applications of a fast open sensor interface. IEEE
Robotics and Automation Magazine, 12(3):85–94, September 2005.

Gunnar S. Bolmsjö. Industriell robotteknik. Studentlitteratur, Lund, 2nd edition,
1992. In Swedish.

Paola Bondi, Giuseppe Casalino, and Lucia Gambardella. On the iterative learn-
ing control theory for robotic manipulators. IEEE Journal of Robotics and Au-
tomation, 4(1):14–22, February 1988.

Douglas A. Bristow, Marina Tharayil, and Andrew G. Alleyne. A survey of it-
erative learning control. IEEE Control Systems Magazine, 26(3):96–114, June
2006.

Torgny Brogårdh. PKM research — important issues, as seen from a product
development perspective at ABB Robotics. In Proceedings of Workshop on
Fundamental issues and future research directions to parallel mechanisms and
manipulators, Quebec City, Canada, October 2002.

Torgny Brogårdh. Present and future robot control development — An industrial
perspective. Annual Reviews in Control, 31(1):69–79, 2007.

Torgny Brogårdh. Robot control overview: An industrial perspective. Modeling,
Identification and Control, 30(3):167–180, 2009.

Etienne Burdet, Laurent Rey, and Alain Codourey. A trivial and efficient learning
method for motion and force control. Engineering Applications of Artificial
Intelligence, 14(4):487–496, 2001.

Giuseppe Casalino and Giorgio Bartolini. A learning procedure for the control of
movements of robotic manipulators. In Proceedings of IASTED Symposium on
Robotics and Automation, pages 108–111, San Francisco, CA, USA, May 1984.

Marzia Cescon, Isolde Dressler, Rolf Johansson, and Anders Robertsson.
Subspace-based identification of compliance dynamics of parallel kinematic
manipulator. In Proceedings of IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics, pages 1028–1033, Singapore, Singapore, July
2009.

Hong-Jen Chen and Richard W. Longman. The importance of smooth updates in
producing good error levels in repetitive control. In Proceedings of IEEE Con-
ference on Decision and Control, pages 258–263, Phoenix, AZ, USA, December
1999.

YangQuan Chen and Changyun Wen. Iterative Learning Control: Convergence,

i
i

main: 2011-01-11 10:21 — 188 (“170”) i
i

i
i

i
i

170 Bibliography

Robustness and Applications, volume 248 of Lecture Notes in Control and In-
formation Sciences. Springer Verlag, London, England, 1999.

YangQuan Chen, Zhiming Gong, and Changyun Wen. Analysis of a high-order
iterative learning control algorithm for uncertain nonlinear systems. Automat-
ica, 34(3):345–353, March 1998.

Yangquan Chen, Leeling Tan, Kiankeong Ooi, Qiang Bi, and Kokhiang Cheong.
Repeatable runout disturbance compensation with a new data collection
method for hard disk drive. United States Patent 6437936, 2002.

YuangQuan Chen and Kevin L. Moore. Comments on United States Patent
3555252 — learning control of actuators in control systems. In Proceedings
of The Sixth International Conference on Control, Automation, Robotics and
Vision, Singapore, Singapore, December 2000.

Jacob W. F. Cheung and Yeung Sam Hung. Robust learning control of a high
precision planar parallel manipulator. Mechatronics, 19(1):42–55, 2009.

Hua-Yi Chuang and Yung-Chih Chang. Dynamics analysis and learning control
for 3-PRPS platform. International Journal of Computer Applications in Tech-
nology, 14(4–6):204–214, 2001.

Peter Corke. An inertial and visual sensing system for s small autonomous heli-
copter. Journal of Robotic Systems, 21(2):43–51, 2004.

John J. Craig. Adaptive control of manipulators through repeated trials. In Pro-
ceedings of American Control Conference, pages 1566–1572, San Diego, CA,
USA, June 1984.

John J. Craig. Introduction to robotics mechanics and control. Addison-Wesley
Publishing Company, Inc, Reading, MA, USA, 2nd edition, 1989.

Phil Crothers, Philip Freeman, Torgny Brogårdh, Isolde Dressler, Klas Nilsson,
Anders Robertsson, Walter Zulauf, Beat Felder, Raimund Loser, and Knut Sier-
cks. Characterisation of the Tau parallel kinematic machine for aerospace ap-
plication. SAE International Journal of Aerospace, 2(1):205–213, March 2010.

Pawel Dabkowski, Krysztof Gałkowski, Biswa Datta, and Eric Rogers. LMI based
stability and stabilization of second-order linear repetitive processes. Asian
Journal of Control, 12(2):136–145, March 2010.

Alessandro De Luca and Wayne Book. Robots with flexible elements. In Bruno
Siciliano and Oussama Khatib, editors, Springer Handbook of Robotics, pages
287–319. Springer Verlag, Berlin Heidelberg, Germany, 2008.

Alessandro De Luca and Giovanni Ulivi. Iterative learning control of robots with
elastic joints. In Proceedings of IEEE International Conference on Robotics and
Automation, pages 1920–1926, Nice, France, May 1992.

Alessandro De Luca, Dierk Schröder, and Michael Thümmel. An acceleration-
based state observer for robot manipulators with elastic joints. In Proceedings

i
i

main: 2011-01-11 10:21 — 189 (“171”) i
i

i
i

i
i

Bibliography 171

of IEEE International Conference on Robotics and Automation, pages 3817–
3823, Roma, Italy, April 2007.

Dick de Roover. Synthesis of a robust iterative learning controller using an H∞
approach. In Proceedings of IEEE Conference on Decision and Control, pages
3044–3049, Kobe, Japan, December 1996.

Jacques Denavit and Richard S. Hartenberg. A kinematic notation for lower-pair
mechanisms based on matrices. ASME Journal of Applied Mechanics, pages
215–221, June 1955.

Branko G. Dijkstra and Okko H. Bosgra. Extrapolation of optimal lifted system
ILC solution with application to a waferstage. In Proceedings of American
Control Conference, pages 2595–2600, Anchorage, AK, USA, May 2002.

DLR, 2010. German Aerospace Center, open public archive of robot images. URL:
http://www.dlr.de/rm/en/, accessed December, 2010.

Isolde Dressler, Mathias Haage, Klas Nilsson, Rolf Johansson, Anders Robertsson,
and Torgny Brogårdh. Configuration support and kinematics for a reconfig-
urable Gantry-Tau manipulator. In Proceedings of IEEE International Confer-
ence on Robotics and Automation, pages 2957–2962, Roma, Italy, April 2007a.

Isolde Dressler, Anders Robertsson, and Rolf Johansson. Accuracy of kinematic
and dynamic models of a Gantry-Tau parallel kinematic robot. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 883–888,
Roma, Italy, April 2007b.

Isolde Dressler, Torgny Brogårdh, and Anders Robertsson. A kinematic error
model for a parallel Gantry-Tau manipulator. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, pages 3709–3714, Anchorage,
AK, USA, May 2010.

Hugh Durrant-Whyte and Thomas C. Henderson. Multisensor data fusion. In
Bruno Siciliano and Oussama Khatib, editors, Springer Handbook of Robotics,
pages 585–610. Springer Verlag, Berlin Heidelberg, Germany, 2008.

Haluk Elci, Richard W. Longman, Minh Q. Phan, Jer-Nan Juang, and Roberto
Ugoletti. Discrete frequency based learning control for precision motion con-
trol. In Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics, pages 2767–2773, San Antonio, TX, USA, October 1994.

Haluk Elci, Richard W. Longman, Minh Q. Phan, Jer-Nan Juang, and Roberto Ugo-
letti. Simple learning control made practical by zero-phase filtering: Applica-
tions to robotics. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 49(6):753–767, June 2002.

Christopher T. Freeman, Paul L. Lewin, Eric Rogers, and James D. Ratcliffe. Iter-
ative learning control applied to a gantry robot and conveyor system. Transac-
tions of the Institute of Measurement and Control, 32(3):251–264, June 2010.

i
i

main: 2011-01-11 10:21 — 190 (“172”) i
i

i
i

i
i

172 Bibliography

Freescale. Product documentation for accelerometer MMA7361L, 2010. URL:
http://www.freescale.com/webapp/sps/site/prod_summary.
jsp?code=KIT3376MMA73x1L, accessed September, 2010.

Murray Garden. Learning control of actuators in control systems. United States
Patent 03555252, January 1971. Leeds & Northrup Company, Philadelphia,
USA.

Peter B. Goldsmith. On the equivalence of causal LTI iterative learning control
and feedback control. Automatica, 38(4):703–708, 2002.

Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics. Addison-
Wesley Publishing Company, Inc, San Francisco, CA, USA, 3rd edition, 2002.

Clement Gosselin and Jorge Angeles. Singularity analysis of closed-loop kine-
matic chains. IEEE Transactions on Robotics and Automation, 6(3):281–290,
1990.

Mohinder S. Grewal and Angus P. Andrews. Kalman filtering: theory and prac-
tice using Matlab. John Wiley & Sons, Ltd, Hoboken, NJ, USA, 3rd edition,
2008.

Svante Gunnarsson and Mikael Norrlöf. On the design of ILC algorithms using
optimization. Automatica, 37(12):2011–2016, December 2001.

Svante Gunnarsson and Mikael Norrlöf. On the disturbance properties of high
order iterative learning control algorithms. Automatica, 42(11):2031–2034,
November 2006.

Svante Gunnarsson, Mikael Norrlöf, Geir Hovland, Ulf Carlsson, Torgny
Brogårdh, Tommy Svensson, and Stig Moberg. Pathcorrection for an industrial
robot. United States Patent 7130718, October 2006.

Svante Gunnarsson, Mikael Norrlöf, Enes Rahic, and Markus Özbek. On the use
of accelerometers in iterative learning control of a flexible robot arm. Interna-
tional Journal of Control, 80(3):363–373, March 2007.

Fredrik Gustafsson. Adaptive filtering and change detection. John Wiley & Sons,
Ltd, Chichester, England, 2000.

Shinji Hara, Yutaka Yamamoto, Tohru Omata, and Michio Nakano. Repetitive
control system: A new type servo system for periodic exogeneous signals. IEEE
Transactions on Automatic Control, 33(7):659–668, July 1988.

Jari J. Hätönen, David H. Owens, and Kevin L. Moore. An algebraic approach to it-
erative learning control. International Journal of Control, 77(1):45–54, January
2004.

Heidenhain. Product documentation for length gauge ST 3078, 2010. URL:
http://www.heidenhain.com, accessed September, 2010.

Robert Henriksson, Mikael Norrlöf, Stig Moberg, Thomas B. Schön, and Erik
Wernholt. Experimental comparison of observers for tool position estimation

i
i

main: 2011-01-11 10:21 — 191 (“173”) i
i

i
i

i
i

Bibliography 173

of industrial robots. In Proceedings of IEEE Conference on Decision and Con-
trol, pages 8065–8070, Shanghai, China, December 2009.

Walter T. Higgins, Jr. A comparison of complementary and Kalman filtering.
IEEE Transactions on Aerospace and Electronic Systems, AES-11(3):321–325,
May 1975.

Lukasz Hladowski, Krzysztof Galkowski, Zonglun Cai, Eric Rogers, Chris T. Free-
man, and Paul L. Lewin. Experimentally supported 2D systems based iterative
learning control law design for error converence and performance. Control
Engineering Practice, 18(4):339–348, 2010.

Geir Hovland, Matthew Murray, and Torgny Brogårdh. Experimental verification
of friction and dynamic models of a parallel kinematic machine. In Proceed-
ings of IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, pages 82–87, Zürich, Switzerland, September 2007.

International Federation of Robotics. World Robotics 2006, Executive Summary,
2006. URL: http://www.ifrstat.org/downloads/2007_Executive_
Summary.pdf, accessed December 2010.

International Federation of Robotics. World Robotics 2010, Executive Sum-
mary, 2010. URL: http://www.worldrobotics.org/downloads/2010_
Executive_Summary.pdf, accessed December 2010.

ISO. Svensk standard SS-EN ISO 8373. Manipulating industrial robots — Vocab-
ulary (ISO 8373:1994), 1996.

Mrdjan Jankovic. Observer based control for elastic joint robots. IEEE Transac-
tions on Robotics and Automation, 11(4):618–623, 1995.

Lars Johannesson, Viktor Berbyuk, and Torgny Brogårdh. Gantry-Tau — a new
three degrees of freedom parallel kinematic robot. In Proceedings of 4th Chem-
nitz Parallel Kinematics Seminar, pages 731–734, Chemnitz, Germany, April
2004.

Thomas Kailath, Ali H. Sayed, and Babak Hassibi. Linear estimation. Prentice-
Hall, Inc, Upper Saddle River, NJ, USA, 2000.

Rudolph E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82:35–45, 1960.

Rickard Karlsson and Mikael Norrlöf. Position estimation and modeling of a flex-
ible industrial robot. In Proceedings of IFAC World Congress, Prague, Czech
Republic, July 2005.

Sadao Kawamura, Fumio Miyazki, and Suguru Arimoto. Realization of robot
motion based on a learning method. IEEE Transactions on Systems, Man, and
Cybernetics, 18(1):126–134, January 1988.

Jerzy E. Kurek and Marek B. Zaremba. Iterative learning control synthesis based

i
i

main: 2011-01-11 10:21 — 192 (“174”) i
i

i
i

i
i

174 Bibliography

on 2-D system theory. IEEE Transactions on Automatic Control, 38(1):121–125,
January 1993.

Kwang Soon Lee and Jay H. Lee. Design of quadratic criterion-based iterative
learning control. In Zeungnam Bien and Jian-Xin Xu, editors, Iterative Learn-
ing Control: Analysis, Design, Integration and Applications, pages 165–192.
Kluwer Academic Publishers, Boston, MA, USA, 1998a.

Kwang Soon Lee and Jay H. Lee. Model-based predictive control combined with
iterative learning for batch or repetitive processes. In Zeungnam Bien and Jian-
Xin Xu, editors, Iterative Learning Control: Analysis, Design, Integration and
Applications, pages 313–334. Kluwer Academic Publishers, Boston, MA, USA,
1998b.

Kyoung H. Lee and Zeungnam Bien. Initial condition problem of learning con-
trol. IEE Proceedings, Part D, Control Theory and Applications, 138(6):525–
528, 1991.

Leica Geosystems. Laser tracker systems, 2010. URL: http://metrology.
leica-geosystems.com/en/Laser-Tracker-Systems_69045.htm,
accessed April, 2010.

Vatchara Lertpiriyasuwat and Martin Berg. Extended Kalman filtering applied to
a two-axis robotic arm with flexible links. The International Journal of Robotics
Research, 19(3):254–270, 2000.

Youfu Li and Daniel X. Chen. End-point sensing and state observation of a
flexible-link robot. IEEE/ASME Transactions on Mechatronics, 6(3):351–356,
2001. ISSN 1083-4435.

Lennart Ljung. System Identification — Theory for the User. Prentice-Hall, Inc,
Upper Saddle River, NJ, USA, 2nd edition, 1999.

Lennart Ljung. System Identification Toolbox 7. User’s Guide. The MathWorks,
2010.

Richard W. Longman. Designing iterative learning and repetitive controllers. In
Zeungnam Bien and Jian-Xin Xu, editors, Iterative Learning Control: Analy-
sis, Design, Integration and Applications, pages 107–146. Kluwer Academic
Publishers, Boston, MA, USA, 1998.

Richard W. Longman. Iterative learning control and repetitive control for engi-
neering practice. International Journal of Control, 73(10):930–954, July 2000.

Richard W. Longman and Thuanthong Songchon. Trade-offs in designing learn-
ing/repetitive controllers using zero-phase filtering for long term stabilization.
Advances in the Astronautical Sciences, 102:243–262, 1999.

Richard W. Longman and Sven-Lennart Wirkander. Automated tuning concepts
for iterative learning and repetitive control laws. In Proceedings of IEEE Con-
ference on Decision and Control, pages 192–198, Tampa, FL, USA, December
1998.

i
i

main: 2011-01-11 10:21 — 193 (“175”) i
i

i
i

i
i

Bibliography 175

Ola Markusson, Håkan Hjalmarsson, and Mikael Norrlöf. Iterative learning con-
trol of nonlinear non-minimum phase systems and its application to system
and model inversion. In Proceedings of IEEE Conference on Decision and Con-
trol, pages 4481–4482, Orlando, FL, USA, December 2001.

Jean-Pierre Merlet. Parallel Robots. Springer, Dordrecht, The Netherlands, 2nd
edition, 2006.

Jean-Pierre Merlet and Clément Gosselin. Parallel mechanisms and robots. In
Bruno Siciliano and Oussama Khatib, editors, Springer Handbook of Robotics,
pages 269–285. Springer Verlag, Berlin Heidelberg, Germany, 2008.

Stig Moberg. Modeling and Control of Flexible Manipulators. Dissertation
No. 1349, Department of Electrical Engineering, Linköping University, Lin-
köping, Sweden, December 2010.

Stig Moberg and Sven Hanssen. A DAE approach to feedforward control of flexi-
ble manipulators. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 3439–3444, Roma, Italy, April 2007.

Stig Moberg, Jonas Öhr, and Svante Gunnarsson. A benchmark problem for ro-
bust control of a multivariable nonlinear flexible manipulator. In Proceed-
ings of IFAC World Congress, Seoul, Korea, July 2008. See: http://www.
robustcontrol.org.

Kevin L. Moore. Iterative learning control for deterministic systems. Springer
Verlag, London, England, 1993.

Kevin L. Moore. Iterative learning control — an expository overview. Applied
and Computational Controls, Signal Processing and Circuits, 1(1):425–488,
1998a.

Kevin L. Moore. Multi-loop control approach to designing iterative learning con-
trollers. In Proceedings of IEEE Conference on Decision and Control, pages
151–214, Tampa, FL, USA, December 1998b.

Kevin L. Moore. An observation about monotonic convergence in discrete-time,
P-type iterative learning control. In Proceedings of IEEE International Sym-
posium on Intelligent Control, pages 45–49, Mexico City, Mexico, September
2001.

Kevin L. Moore and YangQuan Chen. On monotonic convergence of high or-
der iterative learning update laws. In Proceedings of IFAC World Congress,
Barcelona, Spain, July 2002.

Kevin L. Moore, YangQuan Chen, and Vikas Bahl. Monotonically convergent
iterative learning control for linear discrete-time systems. Automatica, 41(9):
1529–1537, September 2005.

Salvatore Nicosia, Patrizio Tomei, and Antonio Tornambé. A nonlinear observer
for elastic robots. IEEE Journal of Robotics and Automation, 4(1):45–52, 1988.

i
i

main: 2011-01-11 10:21 — 194 (“176”) i
i

i
i

i
i

176 Bibliography

Alexander Nordström. Identifiering och reglering av industrirobot med hjälp
av accelerometer. Master’s thesis No. LiTH-ISY-EX-06/3785, Department of
Electrical Engineering, Linköping University, Linköping, Sweden, April 2006.

Mikael Norrlöf. Iterative Learning Control: Analysis, Design and Experiments.
Dissertation No. 653, Department of Electrical Engineering, Linköping Univer-
sity, Linköping, Sweden, October 2000.

Mikael Norrlöf. Iteration varying filters in iterative learning control. In Proceed-
ings of 4th Asian Control Conference, pages 2124–2129, Singapore, Singapore,
September 2002.

Mikael Norrlöf and Svante Gunnarsson. A model based ILC method applied to a
commercial industrial robot. In Proceedings of IFAC 6th symposium on robot
control, SYROCO, pages 477–482, Vienna, Austria, September 2000.

Mikael Norrlöf and Svante Gunnarsson. Time and frequency domain conver-
gence properties in iterative learning control. International Journal of Control,
75(14):1114–1126, 2002a.

Mikael Norrlöf and Svante Gunnarsson. Experimental comparison of some clas-
sical iterative learning control algorithms. IEEE Transactions on Robotics and
Automation, 18(4):636–641, 2002b.

Mikael Norrlöf and Svante Gunnarsson. A note on causal and CITE iterative
learning control algorithms. Automatica, 41(2):345–350, 2005.

NyTeknik. Stopp för slängar, October 2007. Swedish technical magazine.

Henrik Olsson, Karl Johan Åström, Carlos Canudas de Wit, Magnus Gäfvert, and
Pablo Lischinsky. Friction models and friction compensation. European Jour-
nal of Control, 4(3):176–195, December 1998.

David H. Owens and Jari Hätönen. Iterative learning control — an optimization
paradigm. Annual Reviews in Control, 29(1):57–70, 2005.

Antonio Pascoal, Isaac Kaminer, and Paulo Oliveira. Navigation system design
using time-varying complementary filters. IEEE Transactions on Aerospace
and Electronic Systems, 36(4):1099–1114, 2000.

Burton Paul and Jacinto A. Rosa. Kinematics simulation of serial manipulators.
The International Journal of Robotics Research, 5(2):14–31, 1986.

Minh Phan and Richard W. Longman. A mathematical theory of learning control
of linear discrete multivariable systems. In Proceedings of AIAA/AAS Astro-
dynamics Conference, pages 740–746, Minneapolis, MN, USA, August 1988.

Aaron M. Plotnik and Richard W. Longman. Subtleties in the use of zero-phase
low-pass filtering and cliff filtering in learning control. Advances in the Astro-
nautical Sciences, 103:673–692, 1999.

James D. Ratcliffe, Jari J. Hätönen, Paul L. Lewin, Eric Rogers, Thomas J. Harte,
and David H. Owens. P-type iterative learning control for systems that contain

i
i

main: 2011-01-11 10:21 — 195 (“177”) i
i

i
i

i
i

Bibliography 177

resonance. International Journal of Adaptive Control and Signal Processing,
19(10):769–796, December 2005.

James D. Ratcliffe, Paul L. Lewin, Eric Rogers, Jari J. Hätönen, and David H.
Owens. Norm-optimal iterative learning control applied to gantry robots for
automation applications. IEEE Transactions on Robotics, 22(6):1303–1307, De-
cember 2006.

Wilson J. Rugh. Linear system theory. Prentice-Hall, Inc, Upper Saddle River, NJ,
USA, 1996.

Samer S. Saab, William G. Vogt, and Marlin H. Mickle. Learning control algo-
rithms for tracking "slowly" varying trajectories. IEEE Transactions on Systems,
Man, and Cybernetics, 27(4):657–670, August 1997.

Angela Schöllig and Raffaello D’Andrea. Optimization-based iterative learning
control for trajectory tracking. In Proceedings of European Control Conference,
pages 1505–1510, Budapest, Hungary, August 2009.

Lorenzo Sciavicco and Bruno Siciliano. Modelling and Control of Robot Manip-
ulators. Springer Verlag, London, England, 2nd edition, 2000.

Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.
Springer Verlag, Berlin Heidelberg, Germany, 2008.

SMErobot, 2010. URL: http://www.smerobot.org, accessed December,
2010.

Harold W. Sorenson, editor. Kalman Filtering: Theory and Application. IEEE
Press, New York, NY, USA, 1985.

Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Model-
ing and Control. John Wiley & Sons, Ltd, New York, NY, USA, 2006.

Abdelhamid Tayebi. Adaptive iterative learning control for robot manipulators.
Automatica, 40(7):1195–1203, July 2004.

Abdelhamid Tayebi and Jian-Xin Xu. Observer-based iterative learning control
for a class of time-varying nonlinear systems. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 50(3):452–455, March
2003.

Matlab Signal Processing Toolbox. User’s Guide ver. 6. The MathWorks, 2010.

Marina Tharayil and Andrew Alleyne. A time-varying iterative learning control
scheme. In Proceedings of American Control Conference, pages 3782–3787,
Boston, MA, USA, June 2004.

Masaki Togai and Osamu Yamano. Analysis and design of an optimal learning
control scheme for industrial robots: a discrete system approach. In Proceed-
ings of IEEE Conference on Decision and Control, pages 1399–1404, Ft. Laud-
erdale, FL, USA, December 1985.

i
i

main: 2011-01-11 10:21 — 196 (“178”) i
i

i
i

i
i

178 Bibliography

Patrizio Tomei. An observer for flexible joint robots. IEEE Transactions on Auto-
matic Control, 35(6):739–743, June 1990.

Rob Tousain, Eduard van der Meché, and Okko Bosgra. Design strategy for itera-
tive learning control based on optimal control. In Proceedings of IEEE Confer-
ence on Decision and Control, pages 4463–4468, Orlando, FL, USA, December
2001.

Lung-Wen Tsai. Robot Analysis; The Mechanics of Serial and Parallel Manipula-
tors. John Wiley & Sons, Ltd, New York, NY, USA, 1999.

Ilya Tyapin, Geir Hovland, and Torgny Brogårdh. Kinematic and elastodynamic
design optimisation of the 3-DOF Gantry-Tau parallel kinematic manipulator.
In Proceedings of Workshop on Fundamental issues and future research direc-
tions to parallel mechanisms and manipulators, Quebec City, Canada, October
2002.

Masaru Uchiyama. Formulation of high-speed motion pattern of a mechanical
arm by trial. Transactions on Society of Instrumentation and Control Engi-
neering, 14(6):706–712, 1978. Published in Japanese.

Parishwad P. Vaidyanathan. Multirate systems and filter banks. Prentice-Hall,
Inc, Englewood Cliffs, NJ, USA, 1993.

Jeroen van de Wijdeven and Okko Bosgra. Hankel iterative learning control for
residual vibration suppression with MIMO flexible structure experiments. In
Proceedings of American Control Conference, New York City, NY, USA, July
2007.

Casper L. van Oosten, Okko H. Bosgra, and Branko G. Dijkstra. Reducing resid-
ual vibrations through iterative learning control with application to a wafer
stage. In Proceedings of American Control Conference, pages 5150–5155,
Boston, MA, USA, June 2004.

Mark Verwoerd. Iterative learning control – a critical review. Dissertation, Elec-
trical Engineering and Applied Mathematics, University of Twente, Enschede,
The Netherlands, 2005.

Johanna Wallén. On robot modelling using Maple. Technical Report LiTH-ISY-R-
2723, Department of Electrical Engineering, Linköping University, Linköping,
Sweden, August 2007.

Johanna Wallén. On Kinematic Modelling and Iterative Learning Con-
trol of Industrial Robots. Licentiate thesis No. 1343, Department of
Electrical Engineering, Linköping University, Linköping, Sweden, January
2008. Available at: http://www.control.isy.liu.se/research/reports/

LicentiateThesis/Lic1343.pdf.

Johanna Wallén, Svante Gunnarsson, and Mikael Norrlöf. Derivation of kine-
matic relations for a robot using Maple. In Proceedings of Reglermöte 2006,
Royal Institute of Technology, Stockholm, Sweden, May 2006.

i
i

main: 2011-01-11 10:21 — 197 (“179”) i
i

i
i

i
i

Bibliography 179

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Experimental evalua-
tion of ILC applied to a six degrees-of-freedom industrial robot. In Proceedings
of European Control Conference, pages 4111–4118, Kos, Greece, July 2007a.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Accelerometer based
evaluation of industrial robot kinematics derived in Maple. In Proceedings of
Mekatronikmöte 2007, Lund Institute of Technology, Lund, Sweden, October
2007b.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Comparison of per-
formance and robustness for two classical ILC algorithms applied to a flexible
system. Technical Report LiTH-ISY-R-2868, Department of Electrical Engineer-
ing, Linköping University, Linköping, Sweden, November 2008a.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Arm-side evaluation
of ILC applied to a six-degrees-of-freedom industrial robot. In Proceedings of
IFAC World Congress, pages 13450–13455, Seoul, Korea, July 2008b. Invited
paper.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Performance and ro-
bustness for ILC applied to flexible systems. In Proceedings of Reglermöte
2008, Luleå University of Technology, Luleå, Sweden, June 2008c.

Johanna Wallén, Svante Gunnarsson, Robert Henriksson, Stig Moberg, and
Mikael Norrlöf. ILC applied to a flexible two-link robot model using sensor-
fusion-based estimates. In Proceedings of IEEE Conference on Decision and
Control, pages 458–463, Shanghai, China, December 2009a.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. Performance of ILC
applied to a flexible mechanical system. In Proceedings of European Control
Conference, pages 1511–1516, Budapest, Hungary, August 2009b.

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. A framework for analy-
sis of observer-based ILC. In Proceedings of Symposium on Learning Control at
IEEE Conference on Decision and Control, Shanghai, China, December 2009c.

Johanna Wallén, Isolde Dressler, Anders Robertsson, Mikael Norrlöf, and Svante
Gunnarsson. Observer-based ILC applied to the Gantry-Tau parallel kinematic
robot — modelling, design and experiments. Technical Report LiTH-ISY-R-
2968, Department of Electrical Engineering, Linköping University, Linköping,
Sweden, October 2010a.

Johanna Wallén, Isolde Dressler, Anders Robertsson, Mikael Norrlöf, and Svante
Gunnarsson. Observer-based ILC applied to the Gantry-Tau parallel kinematic
robot. Submitted to IFAC World Congress 2011, Milano, Italy, 2010b.

Johanna Wallén, Svante Gunnarsson, and Mikael Norrlöf. Some implementation
aspects of iterative learning control. Technical Report LiTH-ISY-R-2967, De-
partment of Electrical Engineering, Linköping University, Linköping, Sweden,
September 2010. Submitted to IFAC World Congress 2011, Milano, Italy.

i
i

main: 2011-01-11 10:21 — 198 (“180”) i
i

i
i

i
i

180 Bibliography

Johanna Wallén, Mikael Norrlöf, and Svante Gunnarsson. A framework for anal-
ysis of observer-based ILC. Asian Journal of Control, 2011. Accepted for pub-
lication in special issue of Iterative Learning Control.

Danwei Wang and Yongqiang Ye. Multi-channel learning using anticipatory ILCs.
International Journal of Control, 77(13):1189–1199, 2004.

Danwei Wang and Bin Zhang. Extension of learnable bandwidth in iteative learn-
ing control. In Proceedings of Symposium on Learning Control at IEEE Con-
ference on Decision and Control, Shanghai, China, December 2009.

Danwei Wang, Yongqiang Ye, and Chien Chern Cheah. Analysis and design of
anticipatory learning control. In Proceedings of IEEE Conference on Decision
and Control, pages 4434–4439, Maui, HI, USA, December 2003.

Lars Westerlund. The Extended Arm of Man – A History of the Industrial Robot.
Informationsförlaget, Stockholm, Sweden, 2000.

Jian-Xin Xu. Direct learning of control efforts for trajectories with different mag-
nitude scales. Automatica, 33(12):2191–2195, 1997.

Jian-Xin Xu and Zenn Z. Bien. The frontiers of iterative learning control. In Ze-
ungnam Bien and Jian-Xin Xu, editors, Iterative Learning Control: Analysis,
Design, Integration and Applications, pages 9–35. Kluwer Academic Publish-
ers, Boston, MA, USA, 1998.

Jian-Xin Xu and Yanbin Song. Direct learning control of non-uniform trajectories.
In Zeungnam Bien and Jian-Xin Xu, editors, Iterative Learning Control: Anal-
ysis, Design, Integration and Applications, pages 261–283. Kluwer Academic
Publishers, Boston, MA, USA, 1998.

Jian-Xin Xu, Tong Heng Lee, and Heng-Wei Zhang. Analysis and comparison
of iterative learning control schemes. Engineering Applications of Artificial
Intelligence, 17(6):675–686, September 2004.

Jian-Xin Xu, Rui Yan, and YangQuan Chen. On initial conditions in iterative
learning control. In Proceedings of American Control Conference, pages 220–
225, Minneapolis, MN, USA, June 2006.

i
i

main: 2011-01-11 10:21 — 199 (“181”) i
i

i
i

i
i

PhD Dissertations
Division of Automatic Control

Linköping University

M. Millnert: Identification and control of systems subject to abrupt changes. Thesis
No. 82, 1982. ISBN 91-7372-542-0.
A. J. M. van Overbeek: On-line structure selection for the identification of multivariable
systems. Thesis No. 86, 1982. ISBN 91-7372-586-2.
B. Bengtsson: On some control problems for queues. Thesis No. 87, 1982. ISBN 91-7372-
593-5.
S. Ljung: Fast algorithms for integral equations and least squares identification problems.
Thesis No. 93, 1983. ISBN 91-7372-641-9.
H. Jonson: A Newton method for solving non-linear optimal control problems with gen-
eral constraints. Thesis No. 104, 1983. ISBN 91-7372-718-0.
E. Trulsson: Adaptive control based on explicit criterion minimization. Thesis No. 106,
1983. ISBN 91-7372-728-8.
K. Nordström: Uncertainty, robustness and sensitivity reduction in the design of single
input control systems. Thesis No. 162, 1987. ISBN 91-7870-170-8.
B. Wahlberg: On the identification and approximation of linear systems. Thesis No. 163,
1987. ISBN 91-7870-175-9.
S. Gunnarsson: Frequency domain aspects of modeling and control in adaptive systems.
Thesis No. 194, 1988. ISBN 91-7870-380-8.
A. Isaksson: On system identification in one and two dimensions with signal processing
applications. Thesis No. 196, 1988. ISBN 91-7870-383-2.
M. Viberg: Subspace fitting concepts in sensor array processing. Thesis No. 217, 1989.
ISBN 91-7870-529-0.
K. Forsman: Constructive commutative algebra in nonlinear control theory. Thesis
No. 261, 1991. ISBN 91-7870-827-3.
F. Gustafsson: Estimation of discrete parameters in linear systems. Thesis No. 271, 1992.
ISBN 91-7870-876-1.
P. Nagy: Tools for knowledge-based signal processing with applications to system identi-
fication. Thesis No. 280, 1992. ISBN 91-7870-962-8.
T. Svensson: Mathematical tools and software for analysis and design of nonlinear control
systems. Thesis No. 285, 1992. ISBN 91-7870-989-X.
S. Andersson: On dimension reduction in sensor array signal processing. Thesis No. 290,
1992. ISBN 91-7871-015-4.
H. Hjalmarsson: Aspects on incomplete modeling in system identification. Thesis No. 298,
1993. ISBN 91-7871-070-7.
I. Klein: Automatic synthesis of sequential control schemes. Thesis No. 305, 1993.
ISBN 91-7871-090-1.
J.-E. Strömberg: A mode switching modelling philosophy. Thesis No. 353, 1994. ISBN 91-
7871-430-3.
K. Wang Chen: Transformation and symbolic calculations in filtering and control. Thesis
No. 361, 1994. ISBN 91-7871-467-2.
T. McKelvey: Identification of state-space models from time and frequency data. Thesis
No. 380, 1995. ISBN 91-7871-531-8.
J. Sjöberg: Non-linear system identification with neural networks. Thesis No. 381, 1995.
ISBN 91-7871-534-2.
R. Germundsson: Symbolic systems – theory, computation and applications. Thesis
No. 389, 1995. ISBN 91-7871-578-4.

i
i

main: 2011-01-11 10:21 — 200 (“182”) i
i

i
i

i
i

P. Pucar: Modeling and segmentation using multiple models. Thesis No. 405, 1995.
ISBN 91-7871-627-6.
H. Fortell: Algebraic approaches to normal forms and zero dynamics. Thesis No. 407,
1995. ISBN 91-7871-629-2.
A. Helmersson: Methods for robust gain scheduling. Thesis No. 406, 1995. ISBN 91-7871-
628-4.
P. Lindskog: Methods, algorithms and tools for system identification based on prior
knowledge. Thesis No. 436, 1996. ISBN 91-7871-424-8.
J. Gunnarsson: Symbolic methods and tools for discrete event dynamic systems. Thesis
No. 477, 1997. ISBN 91-7871-917-8.
M. Jirstrand: Constructive methods for inequality constraints in control. Thesis No. 527,
1998. ISBN 91-7219-187-2.
U. Forssell: Closed-loop identification: Methods, theory, and applications. Thesis No. 566,
1999. ISBN 91-7219-432-4.
A. Stenman: Model on demand: Algorithms, analysis and applications. Thesis No. 571,
1999. ISBN 91-7219-450-2.
N. Bergman: Recursive Bayesian estimation: Navigation and tracking applications. Thesis
No. 579, 1999. ISBN 91-7219-473-1.
K. Edström: Switched bond graphs: Simulation and analysis. Thesis No. 586, 1999.
ISBN 91-7219-493-6.
M. Larsson: Behavioral and structural model based approaches to discrete diagnosis. The-
sis No. 608, 1999. ISBN 91-7219-615-5.
F. Gunnarsson: Power control in cellular radio systems: Analysis, design and estimation.
Thesis No. 623, 2000. ISBN 91-7219-689-0.
V. Einarsson: Model checking methods for mode switching systems. Thesis No. 652, 2000.
ISBN 91-7219-836-2.
M. Norrlöf: Iterative learning control: Analysis, design, and experiments. Thesis No. 653,
2000. ISBN 91-7219-837-0.
F. Tjärnström: Variance expressions and model reduction in system identification. Thesis
No. 730, 2002. ISBN 91-7373-253-2.
J. Löfberg: Minimax approaches to robust model predictive control. Thesis No. 812, 2003.
ISBN 91-7373-622-8.
J. Roll: Local and piecewise affine approaches to system identification. Thesis No. 802,
2003. ISBN 91-7373-608-2.
J. Elbornsson: Analysis, estimation and compensation of mismatch effects in A/D convert-
ers. Thesis No. 811, 2003. ISBN 91-7373-621-X.
O. Härkegård: Backstepping and control allocation with applications to flight control.
Thesis No. 820, 2003. ISBN 91-7373-647-3.
R. Wallin: Optimization algorithms for system analysis and identification. Thesis No. 919,
2004. ISBN 91-85297-19-4.
D. Lindgren: Projection methods for classification and identification. Thesis No. 915,
2005. ISBN 91-85297-06-2.
R. Karlsson: Particle Filtering for Positioning and Tracking Applications. Thesis No. 924,
2005. ISBN 91-85297-34-8.
J. Jansson: Collision Avoidance Theory with Applications to Automotive Collision Mitiga-
tion. Thesis No. 950, 2005. ISBN 91-85299-45-6.
E. Geijer Lundin: Uplink Load in CDMA Cellular Radio Systems. Thesis No. 977, 2005.
ISBN 91-85457-49-3.
M. Enqvist: Linear Models of Nonlinear Systems. Thesis No. 985, 2005. ISBN 91-85457-
64-7.
T. B. Schön: Estimation of Nonlinear Dynamic Systems — Theory and Applications. The-
sis No. 998, 2006. ISBN 91-85497-03-7.

i
i

main: 2011-01-11 10:21 — 201 (“183”) i
i

i
i

i
i

I. Lind: Regressor and Structure Selection — Uses of ANOVA in System Identification.
Thesis No. 1012, 2006. ISBN 91-85523-98-4.
J. Gillberg: Frequency Domain Identification of Continuous-Time Systems Reconstruc-
tion and Robustness. Thesis No. 1031, 2006. ISBN 91-85523-34-8.
M. Gerdin: Identification and Estimation for Models Described by Differential-Algebraic
Equations. Thesis No. 1046, 2006. ISBN 91-85643-87-4.
C. Grönwall: Ground Object Recognition using Laser Radar Data – Geometric Fitting,
Performance Analysis, and Applications. Thesis No. 1055, 2006. ISBN 91-85643-53-X.
A. Eidehall: Tracking and threat assessment for automotive collision avoidance. Thesis
No. 1066, 2007. ISBN 91-85643-10-6.
F. Eng: Non-Uniform Sampling in Statistical Signal Processing. Thesis No. 1082, 2007.
ISBN 978-91-85715-49-7.
E. Wernholt: Multivariable Frequency-Domain Identification of Industrial Robots. Thesis
No. 1138, 2007. ISBN 978-91-85895-72-4.
D. Axehill: Integer Quadratic Programming for Control and Communication. Thesis
No. 1158, 2008. ISBN 978-91-85523-03-0.
G. Hendeby: Performance and Implementation Aspects of Nonlinear Filtering. Thesis
No. 1161, 2008. ISBN 978-91-7393-979-9.
J. Sjöberg: Optimal Control and Model Reduction of Nonlinear DAE Models. Thesis
No. 1166, 2008. ISBN 978-91-7393-964-5.
D. Törnqvist: Estimation and Detection with Applications to Navigation. Thesis No. 1216,
2008. ISBN 978-91-7393-785-6.
P-J. Nordlund: Efficient Estimation and Detection Methods for Airborne Applications.
Thesis No. 1231, 2008. ISBN 978-91-7393-720-7.
H. Tidefelt: Differential-algebraic equations and matrix-valued singular perturbation.
Thesis No. 1292, 2009. ISBN 978-91-7393-479-4.
H. Ohlsson: Regularization for Sparseness and Smoothness — Applications in System
Identification and Signal Processing. Thesis No. 1351, 2010. ISBN 978-91-7393-287-5.
S. Moberg: Modeling and Control of Flexible Manipulators. Thesis No. 1349, 2010.
ISBN 978-91-7393-289-9.

Department of Electrical Engineering
Linköping University

SE–581 83 Linköping, Sweden

Linköping 2011

