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Abstract

One of the main tasks for an industrial robot is to move the end-effector in a
predefined path with a specified velocity and acceleration. Different applications
have different requirements of the performance. For some applications it is essen-
tial that the tracking error is extremely low, whereas other applications require
a time optimal tracking. Independent of the application, the controller is a cru-
cial part of the robot system. The most common controller configuration uses
only measurements of the motor angular positions and velocities, instead of the
position and velocity of the end-effector.

The development of new cost optimised robots have introduced unwanted flexi-
bilities in the joints and the links. It is no longer possible to get the desired per-
formance and robustness by only measuring the motor angular positions. This
thesis investigates if it is possible to estimate the end-effector position when an
accelerometer is mounted at the end-effector. The main focus is to investigate
Bayesian estimation methods for state estimation, here represented by the ex-
tended Kalman filter (ekf) and the particle filter (pf).

A simulation study is performed on a two degrees of freedom industrial robot
model using an ekf. The study emphasises three important problems to take
care of in order to get a good performance. The first one is related to model er-
rors which in general requires better identification methods. The second problem
is about tuning of the ekf, i.e., the choice of covariance matrices for the measure-
ment and process noise. It is desirable to have an automatic tuning procedure
which minimises the estimation error and is robust to initial conditions of the
tuned parameters. A variant of the expectation maximisation (em) algorithm is
proposed for estimation of the process noise covariance matrix Q. The em algo-
rithm iteratively estimates the unobserved state sequence and the matrixQ based
on the observations of the process, where the extended Kalman smoother (eks)
is the instrument to find the unobserved state sequence.

The third problem considers the orientation and position of the accelerometer
mounted to the end-effector. A novel method to find the orientation and posi-
tion of the triaxial accelerometer is proposed and evaluated on experimental data.
The method consists of two consecutive steps, where the first is to estimate the
orientation of the sensor from static experiments. In the second step the sensor
position relative to the robot base is identified using sensor readings when the
sensor moves in a circular path and where the sensor orientation is kept constant
in a path fixed coordinate system.

Finally, experimental evaluations are performed on an abb irb4600 robot. Dif-
ferent observers using the ekf, eks and pf with different estimation models are
proposed. The estimated paths are compared to the true path measured by a laser
tracking system. There is no significant difference in performance between the
six observers. Instead, execution time, model complexities and implementation
issues have to be considered when choosing the method.
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Populärvetenskaplig sammanfattning

En av de viktigaste uppgifterna för en industrirobot är att förflytta verktyget i
en fördefinierad bana med en specificerad hastighet och acceleration. Olika ap-
plikationer har olika krav på prestanda, för vissa applikationer är det viktigt att
banföljningsfelet är extremt lågt, medan andra program kräver en tidsoptimal
banföljning. Oberoende av applikationen är regulatorn en avgörande del av ro-
botsystemet. Den vanligaste regulatorkonfigurationen använder bara mätningar
av motorernas vinkelpositioner och -hastigheter, istället för positionen och has-
tigheten för verktyget.

Utvecklingen av nya kostnadsoptimerade robotar har infört oönskade flexibili-
teter i leder och länkar. Det är inte längre möjligt att få den önskade prestan-
dan och robustheten genom att bara mäta motorns vinkelpositioner. Denna av-
handling undersöker om det är möjligt att skatta verktygspositionen när en ac-
celerometer är monterad på verktyget. Huvudfokus är att undersöka Bayesians-
ka skattningsmetoder för tillståndsskattning, som här representeras av extended
Kalman-filtret (ekf) och partikelfiltret (pf).

En simuleringsstudie utförs på en modell av en två-axlig industrirobot med ett
ekf. Studien framhåller tre viktiga problem att ta hand om för att få ett bra re-
sultat. Det första är relaterat till modellfel, som i allmänhet kräver bättre identifi-
eringsmetoder. Det andra problemet handlar om trimning av ekf, d.v.s. valet av
kovariansmatriser för mät- och processbruset. Det är önskvärt att ha en automa-
tisk trimningsprocedur som minimerar skattningsfelet och samtidigt är robust
mot startvärdena på de parametrar som ska trimmas. En variant av expectation
maximisation (em) algoritmen föreslås för skattning av processbrusets kovarians-
matris Q. em-algoritmen skattar iterativt den icke-observerade tillståndssekven-
sen och matrisenQ från observationer av processen, där extended Kalman smoot-
her (eks) är verktyget för att hitta den icke-observerade tillståndssekvensen.

Det tredje problemet handlar om orienteringen och positionen för accelerome-
tern som är monterad på verktyget. En ny metod för att hitta orienteringen och
positionen för en tre-axlig accelerometer föreslås och utvärderas på experimen-
tella data. Metoden består av två på varandra följande steg, där det första är att
skatta orienteringen av sensorn från statiska experiment. I det andra steget iden-
tifieras positionen i förhållande till robotens bas med hjälp av sensoravläsningar
när sensorn rör sig i en cirkulär bana och där sensorns orientering hålls konstant
i ett banfixt koordinatsystem.

Slutligen utförs experimentella utvärderingar på en abb irb4600 robot. Olika ob-
servatörer som använder ekf, eks och pf med olika skattningsmodeller föreslås,
och den skattade banan jämförs med den sanna banan som är uppmätt med ett
lasersystem. Det är ingen signifikant skillnad i prestanda mellan de sex obser-
vatörerna, utan istället måste beräkningstiden, modellkomplexiteten och imple-
menteringen beaktas när man väljer metod.
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Notation

Estimation

Notation Meaning

xk State vector at time k
uk Input vector at time k
vk Process noise vector at time k
yk Measurement vector at time k
ek Measurement noise vector at time k

p(x|y) Conditional density function for x given y
y1:k Sequence of measurements from time 1 to time k
x̂k|k′ Estimated state vector at time k given measurements

up to and including time k′

Pk|k′ Covariance of the estimated state vector at time k
given measurements up to and including time k′

x̂sk|N Smoothed state vector at time k given measurements
up to time N

P sk|N Covariance of the smoothed stated vector at time k
given measurements up to time N

xik Particle i at time k
wik Weight for particle i at time k

N ( · ; µ,Σ) Gaussian distribution with mean µ and covariance Σ

U (a, b) Uniform distribution on the interval [a, b]
Q/R Covariance for the process/measurement noise

xv



xvi Notation

Robotics

Notation Meaning

Qj/ i , Rj/ i Rotation matrix for system j with respect to system i
Hj/ i Homogeneous transformation matrix for system j wi-

th respect to system i
X Position and orientation of the end-effector
Ẋ/Ẍ Linear and angular velocity/acceleration of the end-

effector
qa/q̇a/q̈a Arm angular positions/velocities/accelerations
qm/q̇m/q̈m Motor angular positions/velocities/accelerations

τm Motor torque
Υ ( · ) Forward kinematic model
J ( · ) Jacobian matrix of the forward kinematic model
M( · ) Inertia matrix
C( · ) Coriolis- and centrifugal terms
G( · ) Gravitational torque
F( · ) Friction torque
T ( · ) Stiffness torque
D̃( · ) Damping torque
η Gear ratio
li Arm lengths

Miscellaneous

Notation Meaning

I Identity matrix
0 Null matrix
† Pseudo inverse
T Transpose
Ts Sample time
tr Trace operator

E [ · ] Expectation value
Cov ( · ) Covariance

q Unit quaternion
atan2 Four quadrant arc tangent
g Gravity constant

x, z (x̂, ẑ) (Estimated) Cartesian coordinates
ek Path error at time k

Oxiyizi Cartesian coordinate frame named i
ρ̈s Acceleration due to the motion in the accelerometer

frame
b Bias vector
R Set of real numbers

S++ (S+) Set of symmetric positive definite (semidefinite) matri-
ces
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Abbreviations

Abbreviation Meaning

cdf Cumulative density function
dof Degree of freedom
em Expectation maximisation
ekf Extended Kalman filter
eks Extended Kalman smoother
ilc Iterative learning control
ml Maximum likelihood
mc Monte Carlo
pf Particle filter
pdf Probability density function
rmse Root mean square error
snr Signal to noise ratio
tcp Tool centre point
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Background





1
Introduction

In this thesis, the problem of state estimation for industrial robots is covered. The
estimated states, such as arm angular positions and velocities, are supposed to be
used in the control loop to improve the accuracy of the robot.

The background and motivation of why estimates of the arm angular positions
and velocities are needed are presented in Section 1.1. The main contributions
of the thesis are listed in Section 1.2 and the outline of the thesis is given in
Section 1.3.

1.1 Background and Motivation

The first industrial robots were big and heavy with rigid links and joints. The
development of new robot models has been focused on increasing the perfor-
mance along with cost reduction, safety improvement and introduction of new
functionalities as described in Brogårdh (2007). One way to reduce the cost is
to lower the weight of the robot which conduces to lower mechanical stiffness in
the links. Also, the components of the robot are changed such that the cost is re-
duced, which can infer larger individual variations and unwanted nonlinearities.
The most crucial component, when it comes to flexibilities, is the gearbox. The
gearbox has changed more and more to a flexible component described by nonlin-
ear relations, which cannot be neglected in the motion control loop. The friction
in the gearbox is also an increasing problem that is described by nonlinear rela-
tions. The available measurements for control are the motor angular positions,
but since the end-effector, which is the desired control object, is on the other side
of the gearbox it cannot be controlled in a satisfactory way. Instead, extensive
use of mathematical models describing the nonlinear flexibilities are needed in

3



4 1 Introduction

𝐶 
𝐵 

𝐴 

Figure 1.1: abb irb6600 with a spot welding gun (abb Robotics, 2011) and
a desired path. The desired path can be to go direct from point A to point
C through point B without considering the path or follow a predefined path
(solid line).

order to control the weight optimised robot. In practice, the static volumetric
accuracy is approximately 2-15 mm due to the gravity deflection which is caused
by the flexibilities. One solution to reduce the error is to model an extended
kinematic model and an elasto-static model by conducting an offline identifica-
tion procedure. The static accuracy can, in this way, be reduced to 0.5 mm. For
the dynamic accuracy a new model-based motion control is presented in Björk-
man et al. (2008) where the maximum path error is one-fifth of the maximum
path error from a typical controller. However, the more reduction of the material
cost the more complex models are needed. There is therefore a demand of new
approaches for motion control where less accurate models can be sufficient.

One solution can be to estimate the position and orientation of the end-effector
along the path and then use the estimated position and orientation in the feed-
back loop of the motion controller. Figure 1.1 shows a robot with a spot welding
gun. The desired path can be to go direct from point A to point C through point
B without considering the path or follow a predefined path (solid line). This the-
sis deals only with the estimation problem of the end-effector and not the control
problem. The most simple observer is to use the measured motor angular posi-
tions in the forward kinematic model to get the position and orientation of the
end-effector. In Figure 1.2a it is shown that the estimated position of the end-
effector does not track the true measured position very good. The reason for the
poor result is that the oscillations on the arm side do not influence the motor side
of the gearbox that much due to the flexibilities. The flexibilities can also distort
the oscillations of the arm side, which means that the estimated path oscillates in
a different way than the true path. The observer can consequently not track the
true position and another observer is therefore needed. The observer requires a
dynamic model of the robot in order to capture the oscillations on the arm side of
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(a) Estimated position using the forward kinematic model with the
measured motor angular positions.
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(b) Estimated position using a particle filter.

Figure 1.2: True path (solid) and estimated path (dashed) of the end-effector
using (a) the forward kinematic model with the measured motor angular
positions, and (b) a particle filter using the acceleration of the end-effector
as a measurement. The dynamical performance of the estimated path in (a)
is insufficient due to the flexible gearboxes in between the measured motor
angular positions and the end-effector. The estimated path from a particle
filter in (b) is much better.



6 1 Introduction

the gearbox as well as more measurements than only the motor angular positions.
Figure 1.2b shows one of the results in this thesis where a particle filter has been
used. The measured position is given by an external laser tracking system from
Leica Geosystems (2011), which is only used for evaluation of the motion control
system and not for feedback of the tool position. The laser system in Figure 1.3a
tracks a crystal, see Figure 1.3b, attached to the robot. Note that it is only possible
to measure the position of the end-effector and not the orientation.

Different types of observers for flexible joint robots have been proposed in the lit-
erature. In Jankovic (1995) a high gain observer is proposed using only the motor
angular positions and velocities as measurements. In Nicosia et al. (1988); Tomei
(1990), and Nicosia and Tomei (1992) different observers are proposed where it
is assumed that the arm angular positions and/or the arm angular velocities are
measured. The drawback is that this is not the case for a commercial robot. The
solution is obviously to install rotational encoders on the arm side of the gearbox
and use them in the forward kinematic model. However, the encoders on the
arm side do not exactly give the desired angles. Take joint one in Figure 2.2 as
an example. The system from the motor side of the gearbox to the end-effector
can be seen as a three-mass system and not a two-mass system. The motor en-
coder measures the position of the first mass and the arm encoder measures the
position of the second mass. The flexibility between the second and third mass
is due to flexibilities in joints two and three. These flexibilities are in the same
direction as joint one and cannot be measured with encoders in joints two and
three. Hence, there is still a need of estimating the end-effector path. One way
to obtain information about the oscillations on the arm side can be to attach an
accelerometer on the robot, e.g. at the end-effector. The accelerometer used in
this thesis is a triaxial accelerometer from Crossbow Technology (Crossbow Tech-
nology, 2004), see Figure 1.3c. A natural question is, how to estimate the arm
angular positions from the measured acceleration as well as the measured motor
angular positions. A common solution for this kind of problems is to apply sen-
sor fusion methods for state estimation. The acceleration of the end-effector as
well as the measured motor angular positions can be used as measurements in e.g.
an extended Kalman filter (ekf) or particle filter (pf). In Karlsson and Norrlöf
(2004, 2005), and Rigatos (2009) the ekf and pf are evaluated on a flexible joint
model using simulated data only. The estimates from the ekf and pf are also
compared with the theoretical Cramér-Rao lower bound in Karlsson and Norrlöf
(2005) to see how good the filters are. An evaluation of the ekf using experi-
mental data is presented in Henriksson et al. (2009), and in Jassemi-Zargani and
Necsulescu (2002) with different types of estimation models. A method using the
measured acceleration of the end-effector as input instead of using it as measure-
ments is described in De Luca et al. (2007). The observer, in this case, is a linear
dynamic observer using pole placement, which has been evaluated on experimen-
tal data. In Lertpiriyasuwat et al. (2000), and Li and Chen (2001) the case with
flexible link models, where the acceleration or the position of the end-effector are
measured, is presented.

In an online control perspective, it is important that the estimation method per-
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(a) A laser tracking sys-
tem from Leica Geosys-
tems. (Leica Geosys-
tems, 2011)

(b) A crystal for the
laser tracking system.
(Leica Geosystems,
2011)
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Over Temperature
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Applications

▼ Instrumentation

▼ Orientation Measurements

LF Series

The LF Series single and three axis
accelerometers are precision, ± 1 g
and ± 2 g acceleration sensors.
Common applications include
instrumentation, modal analysis,
and orientation measurements.

The LF Series sensing element is a
bulk micro-machined three layer
silicon structure. The three layers form
a differential capacitor with low noise.
The sensor is bonded to a high-quality
ceramic substrate where it is coupled
to signal conditioning electronics. The
entire package design is optimized
for minimal thermal hysteresis, yield-
ing superior DC response.

The LF Series operates on a single
5 VDC or a 6 - 30 VDC unregulated
supply with the -R option.  The LF
Series sensor provides a direct
high-level analog voltage signal
output. The output requires no
external  signal conditioning and is
easy to interface to standard data
acquisition systems.

Each module's offset and scale factor
are factory calibrated and tested.
Standard modules have a bandwidth
of 50 Hz.

The module should be securely
attached using screws or adhesive.
The LF Series accelerometers are
available in two package options -
nylon (both single and tri-axial), and
high temperature aluminum (both
single and tri-axial).

For data logging requirements,
Crossbow offers the AD128 and
AD2000 data logging systems. These
devices allow users a turn-key data
recording system for seismic data
acquisition, structural testing, and
other measurement applications.
Check the Accelerometer accessories
section for more details on the
AD128 and AD2000 data logger.

CXL-LF Series

Standard Package

Document Part Number: 6020-0002-01 Rev E

(c) An accelerometer fr-
om Crossbow Technol-
ogy. (Crossbow Tech-
nology, 2004)

Figure 1.3: The laser tracking system and the accelerometer used in this
thesis.

forms in real-time. However, the estimated position of the end-effector can still
be used if the estimation method performs slower than real-time. One offline ap-
plication is the iterative learning control (ilc) as described in Wallén et al. (2009).
In Wallén et al. (2008) it is shown that motor side learning is insufficient if the
mechanical resonances are exited by the robot trajectory. Other applications that
can improve if the estimated position of the end-effector is available, not neces-
sarily online, are system identification, supervision, diagnostics, and automatic
controller tuning.

1.2 Contributions

The main contribution in this thesis is how to estimate the position of the end-
effector, i.e., the robot link positions, using an accelerometer attached to the end-
effector. Also the robot link velocities and in some cases the accelerations are
estimated as well. The thesis is focused on:

• experimental validation of the ekf and pf using different types of estima-
tion models,

• a method to estimate the process noise covariance matrix to be used in the
ekf, and

• a method to determine the orientation and position of the accelerometer
mounted to the end-effector.
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The results presented in this thesis have been published before in the following
publications, where the author is the main contributor:

Patrik Axelsson, Umut Orguner, Fredrik Gustafsson, and Mikael Norr-
löf. ml estimation of process noise variance in dynamic systems. In
Proceedings of the 18th IFAC World Congress, pages 5609–5614, Mi-
lano, Italy, August 2011e.

Patrik Axelsson, Rickard Karlsson, and Mikael Norrlöf. Bayesian state
estimation of a flexible industrial robot. Submitted to Control Engi-
neering Practice, 2011b.

The submitted version is available as a technical report, Axelsson et al. (2011d).

Patrik Axelsson, Rickard Karlsson, and Mikael Norrlöf. Tool position
estimation of a flexible industrial robot using recursive Bayesian meth-
ods. Submitted to the IEEE Conference on Robotics and Automation
2012, 2011a.

The submitted version is available as a technical report, Axelsson et al. (2011c).

Patrik Axelsson and Mikael Norrlöf. Method to estimate the position
and orientation of a triaxial accelerometer mounted to an industrial
manipulator. Submitted to the IEEE Conference on Robotics and Au-
tomation 2012, 2011a.

The submitted version is available as a technical report, Axelsson and Norrlöf
(2011b).

Patrik Axelsson. Evaluation of six different sensor fusion methods for
an industrial robot using experimental data. Submitted to the IFAC
Symposium on Robot Control 2012, 2011b.

The submitted version is available as a technical report, Axelsson (2011c).

Patrik Axelsson, Mikael Norrlöf, Erik Wernholt, and Fredrik Gustafs-
son. Extended Kalman filter applied to industrial manipulators. In
Proceedings of Reglermötet 2010, Lund, Sweden, June 2010.

Patrik Axelsson. A simulation study on the arm estimation of a joint
flexible 2 dof robot arm. Technical Report LiTH-ISY-R-2926, Depart-
ment of Electrical Enginering, Linköping University, SE-581 83 Lin-
köping, Sweden, December 2009.

Patrik Axelsson. Simulation model of a 2 degrees of freedom indus-
trial manipulator. Technical Report LiTH-ISY-R-3020, Department
of Electrical Enginering, Linköping University, SE-581 83 Linköping,
Sweden, June 2011a.

Relevant material not included in this thesis, where the author has contributed,
is,
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André Carvalho Bittencourt, Patrik Axelsson, Ylva Jung, and Torgny
Brogårdh. Modeling and identification of wear in a robot joint under
temperature uncertainties. In Proceedings of the 18th IFAC World
Congress, pages 10293–10299, Milano, Italy, August 2011.

1.3 Thesis Outline

The thesis is organised as follows; Chapter 2 gives an introduction to the field of
industrial robots as well as the models needed for simulation and control. The
estimation problem is summarised in Chapter 3 and different methods for esti-
mation are presented. All the models needed for simulation and estimation are
presented in Chapter 4 and the simulation study is given in Chapter 5. From the
simulation study, two issues that are important for the estimation performance
show up. The first issue is how to tune the extended Kalman filter and the result
is presented in Chapter 6. The second issue, presented in Chapter 7, is about
determining the orientation and position of the accelerometer mounted to the
end-effector. Finally, the experimental evaluations are presented in Chapter 8,
and Chapter 9 summarises the thesis and discusses possible future work.





2
Industrial Robots

Industrial robots are used in tasks where high precision and high speed are need-
ed, or in tasks where the environment is harmful for humans. The robot needs
therefore to be serviceable, have high precision, operate at high speeds and be
robust to disturbances. Good models and controllers are necessary for all of these
requirements. Common applications for an industrial robot are spot welding, arc
welding, material handling and cutting. There are three types of robot structures
for industrial robots. The most common is the serial arm robot in Figure 2.1a,
whereas the other two robot structures have parallel arms, see Figure 2.1b and
parallel links, see Figure 2.1c. In this thesis, the focus is on serial arm robots.

The chapter starts with an introduction to the concept of industrial robots in
Section 2.1. Sections 2.2 and 2.3 present a short overview of the kinematic and
dynamic models needed for control of an industrial robot, respectively.

2.1 Introduction

In 1954, the American inventor George C. Devol applied for the first patents
for industrial robots, called the Programmed Article Transfer. Seven years later,
in 1961, the patents were granted. Devol and Joseph Engelberger started the
first robot manufacturing company Unimation Inc. in 1956. The first operat-
ing industrial robot Unimate was launched in 1959 and the first robot instal-
lation was performed in 1961 at General Motors plant in Trenton, New Jersey.
The first robot installation in Europe was performed 1967 in Sweden. The first
micro-processor controlled electrical robot irb6 was launched by asea (current
abb) 1973. (Nof, 1999; Westerlund, 2000) Since then, abb has evolved to one of
the biggest manufactures of industrial robots and robot systems. Abb has over

11
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(a) The serial arm robot
abb irb4600.

(b) The parallel arm
robot abb irb360.

(c) The parallel linkage
robot abb irb660.

Figure 2.1: Three types of robots from abb (abb Robotics, 2011).

190 000 robots installed world wide and the company was the first with over
100 000 sold robots. In 1998 the fastest pick and place robot FlexPicker, irb360
in Figure 2.1b, was launched. (abb Robotics, 2011) Other large manufactures
are kuka, who launched the first industrial robot with six electro mechanically
driven axes in 1973 (kuka, 2011), fanuc Robotics with over 220 000 installed
robots (fanuc Robotics, 2011), and Motoman, with over 220 000 installed robots
world wide (Motoman, 2011). Motoman launched the first robot controller where
it was possible to control two robots in 1994, and a 13 axis dual arm robot in 2006.

The overall robot system includes the manipulator, computers and control elec-
tronics. The desired motion of the robot is given in the user program. The pro-
gram is composed by motion commands, such as a linear or circular trajectory
between two points for the end-effector in the three dimensional space. Also
the three dimensional orientation of the end-effector can be affected. In partic-
ular, the tool centre point (tcp), defined somewhere on the end-effector, is of
interest. For example, in arc welding applications the tcp is defined as the tip
of the welding gun. The position and orientation, also known as the pose, are
thus described in a six dimensional space. The robot needs therefore at least six
degrees of freedom (dof) to be able to manoeuvre the end-effector to a desired
position and orientation. The total volume the robot end-effector can reach is
called the workspace. The workspace is divided in the reachable and the dex-
terous workspace. The reachable workspace includes all points the end-effector
can reach with some orientation. Whereas the dexterous workspace includes all
points the end-effector can reach with an arbitrary orientation. The dexterous
workspace is of course a subset of the reachable workspace. The motion can also
be defined in the joint space, where each joint corresponds to one dof. That
means that the robot moves between two sets of joint angles where the path of
the end-effector is implicit, meanwhile the velocity and acceleration are consid-
ered. The robot is said to have n dof if it has n joints. Figure 2.2 shows how
the six joints for a six dof robot can be defined. A desired velocity and acceler-
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Joint 1
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Joint 4

Joint 5
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Joint 1

Joint 2

Joint 3

Joint 4
Joint 5

Joint 6

Figure 2.2: The six dof serial arm robot abb irb6600 where the arrows in-
dicate the joints (abb Robotics, 2011).

ation of the end-effector or the joints can also be specified in the user program.
It is also possible to manoeuvre the robot using a joystick, either the position or
orientation of the end-effector are controlled or the joint angles.

The commands specified in the user program are sent to the path generator where
a geometrical path for the end-effector pose is calculated. The geometrical path
for the end-effector is then converted to a geometrical path for the n joints. Next
step is to take the geometrical path and make a trajectory over time. Here, the
desired velocity and acceleration given in the user program are used. Also phys-
ical limitations of the velocities, accelerations and motor torques are used. The
problem to get the trajectory over time given the limitations can be formulated
as an optimisation problem, see e.g. Verscheure et al. (2009) and Ardeshiri et al.
(2011). A controller is needed to be able to follow the desired trajectory calcu-
lated in the path planner. The controller generates the control signals for the
actuators, i.e., electrical motors, and consists of both feed-forward and feedback.
The feed-forward part takes the desired joint angles and calculates the desired
actuator torques, but also the corresponding actuator positions. The feedback
loop corrects for model errors and disturbances by comparing the measured and
desired actuator positions. The output from the controller is the desired actu-
ator torque for each actuator. Actually, the control signals to the actuators are
electrical currents. A torque controller is therefore needed which takes the actu-
ator torques from the controller and calculates the corresponding current. The
torque controller is assumed to be significantly faster than the robot dynamic and
therefore omitted in this work.

The path planner and controller make an extensive use of models. The models
can be divided into kinematic and dynamic models, where the kinematic models
describe the relation between the pose of the end-effector and the joint angles,
see Section 2.2 for details. The dynamic models describe the motion of the robot
given the forces and torques acting on the robot, see Section 2.3.
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The main references used in the remaining of this chapter are Spong et al. (2005);
Sciavicco and Siciliano (2000); Siciliano and Khatib (2008); Craig (1989), and
Kozłowski (1998).

2.2 Kinematic Models

The kinematics describe the motion of bodies relative to each other. The position,
velocity, acceleration and higher order time derivatives of the pose are studied
regardless the forces and torques acting upon the bodies. The kinematic rela-
tions contain therefore only the geometrical properties of the motion over time.
The kinematic relations can be derived from simple coordinate transformations
between different coordinate systems.

The kinematics for an industrial robot can be divided in to two different problems.
The first problem consists of the relations between the known joint positions and
the unknown pose of the end-effector. The second problem is the opposite, con-
sisting of the relations between the known pose of the end-effector and unknown
joint positions. These are called forward and inverse kinematics, respectively.

2.2.1 Coordinate Transformation

Let the vector rj be fixed in frame j. The transformation to frame i can be written
as

ri = rj/ i + Qj/ i rj , (2.1)

where rj/ i is the vector from the origin in system i to the origin in system j and
Qj/ i is the rotation matrix representing the orientation of system j with respect to
frame i. A three dimensional rotation can be seen as a rotation of system j about
the z-axis of system i by φ rad followed by a rotation about the current yj-axis by
θ rad, ending with a rotation about the current zj-axis by ψ rad. The angles φ, θ
and ψ are known as the Euler angles. Rotation using Euler angles are intuitive
but can cause singularities. Unit quaternions are more reliable but they are not
as intuitive as Euler angles. Another representation of a rotation is the axis/angle
representation.

A serial industrial robot with n dof consists of n + 1 rigid links (bodies) attached
to each other in series. Let the links be numerated 0 to n, where link n is the end-
effector and link 0 is the world, and let coordinate frame i be fixed in link i − 1.
The pose of frame i relative to frame i − 1 is assumed to be known, i.e., ri/ i−1 and
Qi/ i−1. The transformation between two connected links can therefore be written
as

ri−1 = ri/ i−1 + Qi/ i−1ri , (2.2)

using (2.1). Iterating (2.2) over all links will give a relation of the pose of link n
expressed in frame 0, which can be seen as the pose of the end-effector expressed
in the world frame, for a robot application. Equation (2.2) is described by a sum
and a matrix multiplication which can be rewritten as one matrix multiplication
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if homogeneous coordinates are introduced according to

rhi =
(
ri
1

)
. (2.3)

Equation (2.2) can now be reformulated as

rhi−1 =
(
Qi/ i−1 ri/ i−1

0 1

)
rhi = Hi/ i−1r

h
i . (2.4)

The advantage with this representation is that the relation of the pose of link n
expressed in link 0 can be written as only matrix multiplications according to

rh0 = H1/0 · . . . ·Hn/n−1r
h
n =

 n∏
i=1

Hi/ i−1

 rhn =
(
Qn/0 rn/0

0 1

)
rhn = Hn/0r

h
n , (2.5)

where rn/0 represents the position and Qn/0 the orientation of the end-effector
frame with respect to frame 0, rhn is an arbitrary vector expressed in the end-
effector frame, and Hi/ i−1 is given by (2.4).

2.2.2 Forward Kinematics

The forward kinematics for a n dof industrial robot is the problem of determin-
ing the position and orientation of the end-effector frame relative the world frame

given the joint angles qa =
(
qa1 . . . qan

)T
. The world frame is a user defined

frame where the robot is located, e.g. the industrial floor. The position p ∈ R3 is
given in Cartesian coordinates and the orientation φ ∈ R3 is given in Euler an-
gles, or quaternions if desirable. The pose is said to be defined in the task space
whereas the joint angles are said to be in the joint space. The forward kinematics
has a unique solution for a serial robot whereas there exist several solutions for a
parallel arm robot such as abb irb360 in Figure 2.1b.

The kinematic relations can be written as a nonlinear function according to

X =
(
p
φ

)
= Υ (qa), (2.6)

where Υ (qa) : Rn → R6 is a nonlinear function given by the homogeneous trans-
formation matrix

Hn/0 =
(
Qn/0 rn/0

0 1

)
(2.7)

in (2.5). The position of the end-effector frame, i.e., the first three rows in Υ (qa),
is given by rn/0 and the orientation of the end-effector frame, i.e., the last three
rows in Υ (qa), is given by Qn/0. The construction of Hn/0, i.e., determination
of all the Hi/ i−1 matrices in (2.4), can be difficult for complex robot structures.
A systematic way to assign coordinate frames to simplify the derivation of Hn/0
is the so-called Denavit-Hartenberg (dh) convention (Denavit and Hartenberg,
1955).
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Taking the derivative of (2.6) with respect to time gives a relation between the
joint velocities q̇a, the linear velocity v, and angular velocity ω of the end-effector
according to

Ẋ =
(
ṗ
φ̇

)
=

(
v
ω

)
=
∂Υ (qa)
∂qa

q̇a = J (qa)q̇a, (2.8)

where J (qa) is the Jacobian matrix of Υ (qa). The linear acceleration a and angular
acceleration ψ of the end-effector are given by the second time derivative of (2.6)
according to

Ẍ =
(
v̇
ω̇

)
=

(
a
ψ

)
= J (qa)q̈a +

(
d
dt
J (qa)

)
q̇a, (2.9)

where q̇a and q̈a are the joint velocities and accelerations, respectively. The time
derivative of the Jacobian can be written as

d
dt
J (qa) =

n∑
i=1

∂J (qai)
∂qai

q̇ai . (2.10)

Except from calculating velocities, the Jacobian J (qa) can also be used for

• identification of singular configurations,

• trajectory planning, and

• transformation of forces and torques acting on the end-effector to the corre-
sponding joint torques.

Another possible use of the Jacobian, which is of interest in this thesis, is when
calculating an approximation of the distribution of the pose given the distribu-
tion of the joint positions, as described in Section 3.4.

The Jacobian in (2.8) is known as the analytical Jacobian. Another Jacobian is the
geometrical Jacobian. The difference between the analytical and geometrical Jaco-
bian affects only the angular velocity and acceleration. The geometrical Jacobian
is not considered in this work.

2.2.3 Inverse Kinematics

In practice, often the position p and orientation φ of the end-effector are given
by the operating program and the corresponding joint angles qa are required for
the control loop. An inverse kinematic model is needed in order to get the cor-
responding joint angles. The inverse kinematics is a substantial harder problem
which can have several solutions or no solutions at all for a serial robot, as op-
posed to the forward kinematics. For a parallel arm robot the inverse kinematics
is much easier and gives a unique solution. In principle, the nonlinear system of
equations in (2.6) must be inverted, i.e.,

qa = Υ −1(X). (2.11)
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If an analytical solution does not exist, a numerical solver must be used in every
time step.

Given the joint angles qa, the linear velocity v and angular velocity ω, i.e., Ẋ, then
the angular velocities q̇a can be calculated from (2.8) according to

q̇a = J −1(qa)Ẋ, (2.12)

if the Jacobian is square and nonsingular. The Jacobian is a square matrix when
n = 6 since Υ (qa) has six rows, three for the position and three for the orientation.
The singularity depends on the joint angles qa. The Jacobian is singular if the
robot is at the boundary of the work space, i.e., outstretched or retracted, or if one
or more axes are aligned. The intuitive explanation is that the robot has lost one
or more degrees of freedom when the Jacobian is singular. It is then not possible
to move the end-effector in all directions regardless of how large velocities the
controller applies.

If the robot has less than six joints, i.e., the Jacobian has less than six columns,
then the inverse velocity kinematics has a solution if and only if

rankJ (qa) = rank
(
J (qa) Ẋ

)
, (2.13)

that is, Ẋ lies in the range space of the Jacobian. If instead the robot has more
than six joints, then the inverse velocity kinematics is given by

q̇a = J †(qa)Ẋ +
(
I − J †(qa)J (qa)

)
b, (2.14)

where J †(qa) is the pseudo inverse (Mitra and Rao, 1971) of J (qa) and b ∈ Rn is
an arbitrary vector. See Spong et al. (2005) for more details.

The angular acceleration q̈a can be calculated in a similar way from (2.9), when
Ẍ, qa, and q̇a are known and if the Jacobian is invertible, according to

q̈a = J −1(qa)
(
Ẍ − d

dt
(J (qa)) q̇a

)
. (2.15)

2.3 Dynamic Models

The dynamics describes the motion of a body considering the forces and torques
causing the motion. The dynamic equations can be derived from the Newton-
Euler formulation or Lagrange’s equation, see e.g. Goldstein et al. (2002). Here,
only Lagrange’s equation will be covered.

2.3.1 Rigid Link Model

For Lagrange’s equation the Lagrangian L(q, q̇) is defined as the difference be-
tween the kinetic and potential energies. Let the kinetic and potential energies
be denoted by K(q, q̇) and P (q), respectively. The argument q to the Lagrangian is
a set of generalised coordinates. A system with n dof can be described by n gen-

eralised coordinates q =
(
q1 . . . qn

)T
, e.g. position, velocity, angle or angular



18 2 Industrial Robots

velocity that describe the system. The dynamic equations are given by Lagrange’s
equation

d
dt

∂L(q, q̇)
∂q̇i

−
∂L(q, q̇)
∂qi

= τi , (2.16)

where L(q, q̇) = K(q, q̇) − P (q) and τi is the generalised force associated with qi .
For an industrial robot, the generalised coordinates are the joint angles qa, and
the generalised forces are the corresponding motor torques. The equations given
by Lagrange’s equation can be summarised by

M(q)q̈ + C(q, q̇) + G(q) = τam, (2.17)

where M(q) is the inertia matrix, C(q, q̇) is the Coriolis- and centrifugal terms,

G(q) is the gravitational torque and τam =
(
τam1 . . . τamn

)T
. Note that the equa-

tion is expressed on the arm side of the gearbox, that is, the applied motor torque
τmi must be converted from the motor side to the arm side of the gearbox. This
is done by multiplication by the gear ratio ηi > 1, according to

τami = τmiηi . (2.18)

Each link in the rigid body dynamics in (2.17) is described by a mass, three
lengths describing the geometry, three lengths describing the centre of mass and
six inertia parameters. The centre of gravity and the inertia are described in the
local coordinate system. Each link is thus described by 13 parameters that have
to be determined, see e.g. Kozłowski (1998).

The model can also be extended with a linear or nonlinear friction torque F(q̇). A
classical model is

F(q̇) = fv q̇ + fc sign(q̇), (2.19)

where fv is the viscous friction and fc is the Coulomb friction. More advanced
models are the LuGre model (Åström and Canudas de Wit, 2008) and the Dahl
model, see Dupont et al. (2002) for an overview. In this work, a smooth static
friction model, suggested in Feeny and Moon (1994), given by

F(q̇) = fv q̇ + fc
(
µk + (1 − µk) cosh−1(βq̇)

)
tanh(αq̇), (2.20)

is used. Here, the friction is only dependent on the velocity of the generalised
coordinates. In practice, the measured friction curve on a real robot shows a
dependency on the temperature and the dynamical load of the end-effector, as
described in Carvalho Bittencourt et al. (2010).

2.3.2 Flexible Joint Model

In practice, the joints, specially the gearboxes, are flexible. Each joint can there-
fore be modelled as a torsional spring and damper pair between the motor and
arm side of the gearbox, see Figure 2.3. The system now has 2n dof and can be
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Figure 2.3: Flexible joint model where the arm angular position qa is re-
lated to the motor angle qm and motor torque τm via the gear ratio η and
the spring-damper pair modelled by T ( · ) and D( · ). The motor friction is
modelled by F( · ).

described by the simplified flexible joint model

Ma(qa)q̈a + C(qa, q̇a) + G(qa) = T (qam − qa) + D(q̇am − q̇a), (2.21a)

Mmq̈
a
m + F(q̇am) = τam − T (qam − qa) − D(q̇am − q̇a), (2.21b)

where qa ∈ Rn are the arm angles, qam ∈ Rn are the motor angles. The superscript
a indicates that the motor angles are expressed on the arm side of the gearbox,
i.e., qami = qmi /ηi where qmi is the motor angle on the motor side of the gear box
for joint i. The same applies for the motor torque τam according to (2.18). Fur-
ther, Ma(qa) is the inertia matrix for the arms, Mm is the inertia for the motors,
C(qa, q̇a) is the Coriolis- and centrifugal terms, G(qa) is the gravitational torque
and F(q̇am) is the friction torque. Moreover, T (qam − qa) is the stiffness torque and
D(q̇am − q̇a) is the damping torque. Both the stiffness and damping torque can
be modelled as linear or nonlinear. The simplified flexible joint model assumes
that the couplings between the arms and motors are neglected, which is valid
if the gear ratio is high (Spong, 1987). In the complete flexible link model the
term S(qa)q̈am is added to (2.21a) and the term ST(qa)q̈a as well as a Coriolis- and
centrifugal term are added to (2.21b), where S(qa) is a strictly upper triangu-
lar matrix. A complete description of the simplified and complete flexible link
model can be found in De Luca and Book (2008).

The flexible joint model described above assumes that the spring and damper
pairs are in the rotational direction. Another extension is to introduce multidi-
mensional spring and damper pairs in the joints to deal with flexibilities in other
directions than the rotational direction, where each dimension of the spring and
damper pairs corresponds to two dof. If the links are flexible, then it can be mod-
elled by dividing each flexible link into several parts connected by multidimen-
sional spring and damper pairs. This leads to extra non-actuated joints, hence
more dofs. This is known as the extended flexible joint model and a thorough
description can be found in Moberg and Hanssen (2007).





3
Estimation Theory

Different techniques for nonlinear estimation are presented in this chapter. The
estimation problem for the discrete time nonlinear state space model

xk+1 = f (xk , uk , vk ; θ), (3.1a)

yk = h(xk , uk , ek ; θ), (3.1b)

is to find the state vector xk ∈ Rnx at time k and the unknown model parameters
θ given the measurements yk ∈ Rny k = 1, . . . , N . In this work the focus is on
nonlinear models with additive process noise vk and measurement noise ek given
by

xk+1 = f (xk , uk) + g(xk)vk , (3.2a)

yk = h(xk , uk) + ek , (3.2b)

where the probability density functions (pdfs) for the process noise, pv(v), and
measurement noise, pe(e), are known.

The estimation problem can be divided into the filtering problem where only
previous measurements up to the present time are available, see Section 3.1 and
the smoothing problem where both previous and future measurements are avail-
able, see Section 3.2. For the case with estimation of unknown parameters, the
expectation maximisation algorithm can be used as described in Section 3.3. Sec-
tion 3.4 presents how to obtain the distribution of a parameter after a nonlinear
transformation if the distribution is known before the transformation.

21
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3.1 The Filtering Problem

The filtering problem can be seen as calculation/approximation of the posterior
density p(xk |y1:k) using all measurements up to time k, where

y1:k =
{
y1, . . . , yk

}
, (3.3)

and the known conditional densities for the state transition and measurements,
i.e.,

xk+1 ∼ p(xk+1|xk), (3.4a)

yk ∼ p(yk |xk), (3.4b)

which are given by the model (3.2). Using Bayes’ law,

p(x|y) =
p(y|x)p(x)
p(y)

, (3.5)

and the Markov property for the state space model,

p(xn|x1, . . . xn−1) = p(xn|xn−1), (3.6)

repeatedly, the optimal solution for the Bayesian inference (Jazwinski, 1970) can
be obtained according to

p(xk |y1:k) =
p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)
, (3.7a)

p(xk+1|y1:k) =
∫
Rnx

p(xk+1|xk)p(xk |y1:k) dxk , (3.7b)

where k = 1, 2, . . . , N and

p(yk |y1:k−1) =
∫
Rnx

p(yk |xk)p(xk |y1:k−1) dxk . (3.7c)

The solution to (3.7) can in most cases not be given by an analytical expression.
For the special case of linear dynamics, linear measurements and additive Gaus-
sian noise the Bayesian recursions in (3.7) have an analytical solution, which is
known as the Kalman filter (kf) (Kalman, 1960). For nonlinear and non-Gauss-
ian systems, the posterior density can not in general be expressed with a finite
number of parameters. Instead approximative methods must be used. Here, two
approximative solutions are considered; the extended Kalman filter (ekf) and
the particle filter (pf). Another approximative solution not considered here is
the unscented Kalman filter (ukf) (Julier et al., 1995).

3.1.1 The Extended Kalman Filter (EKF)

The extended Kalman filter (ekf) (Anderson and Moore, 1979; Kailath et al.,
2000) solves the Bayesian recursions in (3.7) using a first order Taylor expansion
of the nonlinear system equations around the previous estimate. The approxima-
tion is acceptable if the nonlinearity is almost linear or if the signal to noise ratio
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(snr) is high. The Taylor expansion requires derivatives of the nonlinear system
equations, which can be obtained by symbolic or numeric differentiation.

The process noise vk and measurement noise ek are assumed to be Gaussian with
zero means and covariance matrices Qk and Rk , respectively. The time update,
x̂k|k−1 and Pk|k−1, and the measurement update, x̂k|k and Pk|k , for the ekf with the
nonlinear model (3.2) can be derived relatively easy using the first order Taylor
approximation and the kf equations. The time and measurement updates are
presented in Algorithm 1, where the notation x̂k|k , Pk|k , x̂k|k−1 and Pk|k−1 denotes
estimates of the state vector x and covariance matrix P at time k using measure-
ments up to time k and k −1, respectively. It is also possible to use a second order
Taylor approximation when the ekf equations are derived, see e.g. (Gustafsson,
2010).

Algorithm 1 The Extended Kalman Filter (ekf)

Initialisation
x̂0|0 = x0 (3.8a)

P0|0 = P0 (3.8b)

Time update
x̂k|k−1 = f

(
x̂k−1|k−1, uk

)
(3.9a)

Pk|k−1 = FkPk−1|k−1F
T
k + GkQkG

T
k (3.9b)

Fk =
∂f (x, uk)

∂x

∣∣∣∣∣
x=x̂k−1|k−1

(3.9c)

Gk = g
(
x̂k−1|k−1

)
(3.9d)

Measurement update

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Rk

)−1
(3.10a)

x̂k|k = x̂k|k−1 + Kk
(
yk − h

(
x̂k|k−1, uk

))
(3.10b)

Pk|k = (I − KkHk) Pk|k−1 (3.10c)

Hk =
∂h(x, uk)
∂x

∣∣∣∣∣
x=x̂k|k−1

(3.10d)

3.1.2 The Particle Filter (PF)

The particle filter (pf) (Doucet et al., 2001; Gordon et al., 1993; Arulampalam
et al., 2002) solves the Bayesian recursions using stochastic integration. The
pf approximates the posterior density p(xk |y1:k) by a large set of N particles{
xik

}N
i=1

, where each particle has an assigned relative weight wik , chosen such that∑N
i=1 w

i
k = 1. The position and weight of each particle approximate the poste-

rior density in such a way that a high weight corresponds to a high probability
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at the point given by the particle. The pf updates the particle location and the
corresponding weights recursively with each new observed measurement. The
particle method for solving the Bayesian recursion in (3.7) has been known for
long but the pf filter has in practice been inapplicable due to degeneracy of the
particles. The problem was solved in Gordon et al. (1993) by introducing a re-
sampling step.

Compared to the ekf, the pf does not suffer from linearisation errors and can
handle non-Gaussian noise models. Hard constraints on the state variables can
also be incorporated into the estimation problem. Theoretical results show that
the approximated posterior density converges to the true density when the num-
ber of particles tends to infinity, see e.g. Doucet et al. (2001). The pf is sum-
marised in Algorithm 2, where the proposal density pprop

(
xik+1|x

i
k , yk+1

)
can be

chosen arbitrary as long as it is possible to draw samples from it. For small snr
the conditional prior of the state vector, i.e., p

(
xik+1|x

i
k

)
, is a good choice (Gor-

don et al., 1993). Using the conditional prior, the weight update can be written
as wik = wik−1p

(
yk |xik

)
. The optimal proposal should be to use the conditional

density p
(
xk |xik−1, yk

)
(Doucet et al., 2000). The problem is that it is difficult to

sample from it and also to calculate the weights. In this work the optimal pro-
posal density, approximated by an ekf (Doucet et al., 2000; Gustafsson, 2010), is
used. The approximated proposal density can be written as

pprop
(
xk |xik−1, yk

)
≈ N

(
xk ; f

(
xik−1

)
+ K ik

(
yk − ŷ ik

)
,
(
H i,T
k R†kH

i
k + Q†k−1

)†)
, (3.11)

where † denotes the pseudo-inverse, and where

K ik = Qk−1H
i,T
k

(
H i
kQk−1H

i,T
k + Rk

)−1
, (3.12a)

H i
k =

∂h(xk)
∂xk

∣∣∣∣∣
xk=f (xik−1)

, (3.12b)

ŷ ik = h
(
f
(
xik−1

))
, (3.12c)

The matrices in (3.12) are assumed to be evaluated for each particle state. The
approximated optimal proposal density gives a weight update according to

wik = wik−1p
(
yk |xik−1

)
, (3.13a)

where

p
(
yk |xik−1

)
= N

(
yk ; ŷ

i
k , H

i
kQk−1H

i,T
k + Rk

)
. (3.13b)

The state estimate for each sample k is often chosen as the minimum mean square
estimate

x̂k|k = arg min
xk

E
[
(x̂k − xk)2 |y1:k

]
(3.14)
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which has the solution

x̂k|k = E [xk |y1:k] =
∫
Rnx

xkp (xk |y1:k) dxk ≈
N∑
i=1

wikx
i
k . (3.15)

Algorithm 2 The Particle Filter (pf)

1: Generate N samples
{
xi0

}N
i=1

from p(x0).
2: Compute

wik = wik−1 ·
p
(
yk |xik

)
p
(
xik |x

i
k−1

)
pprop

(
xik |x

i
k−1, yk

)
and normalise, i.e., w̄ik = wik/

∑N
j=1 w

j
k , i = 1, . . . , N .

3: [Optional]. Generate a new set
{
xi?k

}N
i=1

by resampling with replacement N

times from
{
xik

}N
i=1

, with probability w̄ik = Pr
{
xi?k = xik

}
and reset the weights

to 1/N .
4: Generate predictions from the proposal density

xik+1 ∼ p
prop

(
xk+1|xi?k , yk+1

)
, i = 1, . . . , N .

5: Increase k and continue to step 2.

3.2 The Smoothing Problem

The smoothing problem is essentially the same as the filtering problem except
that future measurements are used instead of only measurements up to present
time k. In other words the smoothing problem can be seen as computation/ap-
proximation of the density p(xk |y1:l), where l > k. The smoothing problem solves
the same equations as the filter problem except that future measurements are
available. Approximative solutions must be used here as well when the problem
is nonlinear and non-Gaussian. Different types of smoothing problems are pos-
sible, e.g. fixed-lag, fixed-point and fixed-interval smoothing (Gustafsson, 2010).
Here the fixed-interval smoothing problem is considered and the extended Kal-
man smoother (eks) (Yu et al., 2004) is used. The fixed-interval smoothing prob-
lem is an offline method that use all available measurements y1:N . The eks, using
the Rauch-Tung-Striebel formulas, is presented in Algorithm 3.

3.3 The Expectation Maximisation Algorithm

The maximum likelihood (ml) method (Fisher, 1912, 1922) is a well known tool
for estimating unknown model parameters. The idea with the ml method is to
find the unknown parameters θ such that the measurements y1:Nbecome as likely
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Algorithm 3 The Extended Kalman Smoother (eks)

1: Run the ekf and store the time and measurements updates, x̂k|k−1, x̂k|k ,
Pk|k−1and Pk|k .

2: Initiate the backward time recursion,
x̂sN |N = x̂N |N , (3.16a)

P sN |N = PN |N . (3.16b)

3: Apply the backward time recursion for k = N − 1, . . . , 1,
x̂sk|N = x̂k|k + Pk|kF

T
k P
−1
k+1|k

(
x̂sk+1|N − x̂k+1|k

)
, (3.17a)

P sk|N = Pk|k + Pk|kF
T
k P
−1
k+1|k

(
P sk+1|N − Pk+1|k

)
P −1
k+1|kFkPk|k , (3.17b)

Fk =
∂f (x, uk)

∂x

∣∣∣∣∣
x=x̂k|k

. (3.17c)

as possible. In other words,

θ̂ml = arg max
θ∈Θ

pθ(y1:N ), (3.18)

where pθ(y1:N ) is the pdf of the observations, i.e., the likelihood, parametrised
with the parameter θ. It is common to take the logarithm of the pdf,

Lθ(y1:N ) = log pθ(y1:N ), (3.19)

and find the parameter θ that maximises (3.19), i.e.,

θ̂ml = arg max
θ∈Θ

Lθ(y1:N ). (3.20)

These two problems are equivalent since the logarithm is a monotonic function.
The ml problem can be solved using a standard optimisation method, see e.g.
Nocedal and Wright (2006). The solution can however be hard to find which has
lead to the development of the expectation maximisation (em) algorithm.

The em algorithm was originally invented by Dempster et al. (1977). See McLach-
lan and Krishnan (2008) for theoretical results and examples. The principal idea
with the em algorithm is to introduce variables x1:N which are not observed di-
rectly. The variables x1:N can instead be observed indirectly from y1:N . Take now
the joint log-likelihood function

Lθ(y1:N , x1:N ) = log pθ(y1:N , x1:N ) (3.21)

of the observed variables y1:N and the variables x1:N . Equation (3.21) cannot be
used directly since x1:N are unknown. Instead, calculate

Γ (θ; θl) = Eθl [log pθ(y1:N , x1:N )|y1:N ] , (3.22)

where Eθl [ · | · ] is the conditional mean with respect to a pdf defined by the pa-
rameter θl and pθ( · ) means that the pdf is parametrised by θ. It can now be
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shown (Dempster et al., 1977) that any θ, such that

Γ (θ; θl) > Γ (θl ; θl), (3.23)

implies that

Lθ(y1:N ) > Lθl (y1:N ). (3.24)

Hence, maximising Γ (θ; θl) provides a sequence θl , l = 1, 2, . . ., which approxi-
mates θ̂ml better and better for every iteration. A possible stop criterion for the
em algorithm could be when the change in θ, between two iterations, is small
enough. The em algorithm is summarised in Algorithm 4.

Algorithm 4 The Expectation Maximisation (em) Algorithm

1: Select an initial value θ0 and set l = 0.
2: Expectation Step (E-step): Calculate

Γ (θ; θl) = Eθl [log pθ(y1:N , x1:N )|y1:N ] .

3: Maximisation Step (M-step): Compute
θl+1 = arg max

θ∈Θ
Γ (θ; θl) .

4: If converged, stop. If not, set l = l + 1 and go to step 2.

3.4 Estimation of Transformed PDFs

Let the nonlinear transformation z = f (x) be given and assume x to be Gaussian
distributed according to

x ∼ N (µx, Px) . (3.25)

The distribution of z can then by approximated by

z ∼ N (µz , Pz) , (3.26)

where µz and Pz can be calculated using different methods. A first order Taylor
approximation of z = f (x) gives the mean and covariance matrix of z according
to

µz = f (µx), (3.27a)

Pz = f ′(µx)Px (f ′(µx))T . (3.27b)

This method is known as Gauss’ approximation formula. A more accurate meth-
od is the Monte Carlo (mc) transformation where N samples xi , i = 1, . . . , N , are
generated from the distribution of x. The xi values give the corresponding values
of z using the nonlinear transformation, i.e., zi = f (xi). When the N samples of
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z are given, the mean and covariance matrix of z can be calculated according to

µz =
1
N

N∑
i=1

zi , (3.28a)

Pz =
1

N − 1

N∑
i=1

(
zi − µz

) (
zi − µz

)T
. (3.28b)

Themc approach can also be used when x has another distribution than the Gaus-
sian distribution, see Section 7.4.1. Another method, not included here, is the
unscented transformation, see e.g. Julier and Uhlmann (2004).

In this thesis, the approximation formulas are used to obtain the distribution of
the pose of the end-effector when the distribution of the arm angular positions is
given. In other words, Gauss’ approximation formula gives the mean and covari-
ance matrix of X in (2.6) according to

X̂ = Υ (q̂a) , (3.29a)

PX̂ = J (q̂a)Pq̂aJ
T(q̂a), (3.29b)

where J ( · ) is the Jacobian matrix in (2.8). The mean and covariance matrix for
the arm angular positions, i.e., q̂a and Pq̂a , are given from e.g. the ekf or pf.



4
Models

The models used for simulation and estimation will be presented in this chapter.
The robot model is presented in Section 4.1 and the accelerometer model in Sec-
tion 4.2. Section 4.3 presents how the bias component in e.g. an accelerometer
can be modelled and Section 4.4 presents four different state space models for
estimation.

4.1 Two DOF Rigid Link Flexible Joint Robot Model

This section describes the kinematic and dynamic models for a two-link nonlin-
ear flexible robot, corresponding to joint two and three for a serial six dof indus-
trial robot. Figure 2.2 shows how the joints are numbered. The robot model is
used for simulation and estimation of the tcp.

Here, the forward kinematic equations and dynamic equations are given without
any derivations, see Section 2.2.2 and 2.3 for methods to derive them. The inverse
kinematic model is explained in more details.

4.1.1 Forward Kinematic Model

Only the position x and z of the forward kinematic model for the robot in Fig-
ure 4.1 is considered since the robot only contains two dof. The kinematic model
can be expressed as

P =
(
x
z

)
= Υ (qa), (4.1)

where P is the Cartesian coordinates for the tcp, expressed in the base coordi-

nate frame
(
xb zb

)T
, denoted by Oxbzb. Note that the robot motion only takes

29
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Figure 4.1: Two dof robot model showing the kinematic properties of the
structure.

place in the xbzb-plane, i.e., yb = 0. The function Υ is the nonlinear forward kine-

matic function and qa =
(
qa1 qa2

)T
are the joint angles. The forward kinematics

can be derived using the methods described in Section 2.2.1. However, the kine-
matic equation for this simple robot structure can be derived by considering the
geometry in Figure 4.1 directly according to

P = Υ (qa) =

 l1 sin qa1 + l2 sin
(
π
2 + qa1 + qa2

)
l1 cos qa1 + l2 cos

(
π
2 + qa1 + qa2

)
=

(
l1 sin qa1 + l2 cos (qa1 + qa2)
l1 cos qa1 − l2 sin (qa1 + qa2)

)
. (4.2)

The Jacobian matrix used for calculation of the velocity in (2.8) is given by

J (qa) =
(
l1 cos qa1 − l2 sin(qa1 + qa2) −l2 sin(qa1 + qa2)
−l2 cos(qa1 + qa2) − l1 sin qa1 −l2 cos(qa1 + qa2)

)
. (4.3)

4.1.2 Inverse Kinematic Model

An analytical solution to the inverse problem for the robot in Figure 4.1 can be de-
rived using trigonometric identities. The solution is however not unique. Two dif-
ferent sets of joint angles will give the same position. These solutions are known
as elbow-up and elbow-down.

The law of cosine gives

cos γ =
l21 + l2P − l

2
2

2l1lP
, (4.4a)

cos β =
l21 + l22 − l

2
P

2l1l2
= sin qa2, (4.4b)

where l2P = x2 + z2. The joint angle qa2 can now be obtained directly from (4.4b).
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However, the function atan21 will be used to be able to get the solution in the
correct quadrant. The angle for joint two can therefore be calculated according
to

qa2 = atan2
(
sin qa2,±

√
1 − sin2 qa2

)
. (4.5)

The angle γ can be obtained in the same way,

γ = atan2
(
±
√

1 − cos2 γ, cos γ
)
. (4.6)

The angle for joint one can now be calculated according to

qa1 =
π
2
− γ − α, (4.7)

where α = atan2(z, x). The elbow-up solution is obtained if the plus sign in (4.5)
and (4.6) is chosen, otherwise the solution will correspond to the elbow-down
solution.

4.1.3 Dynamic Model

The dynamic robot model is a joint flexible two-axes model from Moberg et al.
(2008), see Figure 4.2. Each link is modelled as a rigid-body and described by
mass mi , length li , centre of mass ξi and inertia Ji with respect to the centre of
mass. The joints are modelled as a spring damping pair with nonlinear spring
torque τsi and linear damping di . The deflection in each joint is given by the arm
angle qai and the motor angle qmi . The motor characteristics are given by the
inertia Jmi and a nonlinear friction torque fi . Let

qa =
(
qa1 qa2

)T
, (4.8a)

qam =
(
qm1/η1 qm2/η2

)T
, (4.8b)

τam =
(
τm1η1 τm2η2

)T
, (4.8c)

where τmi is the motor torque and ηi = qmi /qai > 1 is the gear ratio. The gear ratio
is used to transform the motor angles and motor torques from the motor side of
the gear box to the arm side. A dynamic model can be derived as

Ma(qa)q̈a + C(qa, q̇a) + G(qa) + T (qa − qam) + D̃(q̇a − q̇am) = 0, (4.9a)

Mmq̈
a
m + F(q̇am) − T (qa − qam) − D̃(q̇a − q̇am) = τam, (4.9b)

using Lagrange’s equation, as presented in Section 2.3.

The inertia matrix Ma(q) is partitioned as

Ma(qa) =
(
M11(qa) M12(qa)
M21(qa) M22(qa)

)
, (4.10)

1atan2(x, y) = arctan(y/x) where the signs of x and y are used to determine the correct quadrant.
Sometimes the name four quadrant arc tangent is used.
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Figure 4.2: Serial robot with two dof. The joints are modelled by nonlinear
springs and linear dampers. Nonlinear friction torques are also included.

where

M11(qa) = J1 + m1ξ
2
1 + J2 + m2

(
l21 + ξ2

2 − 2l1ξ2 sin qa2
)
, (4.11a)

M12(qa) = M21(qa) = J2 + m2

(
ξ2

2 − l1ξ2 sin qa2
)
, (4.11b)

M22(qa) = J2 + m2ξ
2
2 . (4.11c)

The motor inertia matrix is

Mm =
(
Jm1η

2
1 0

0 Jm2η
2
2

)
. (4.12)

The Coriolis and centripetal terms are described by

C(qa, q̇a) =
(
−m2l1ξ2

(
2q̇a1q̇a2 + q̇2

a2

)
cos qa2

m2l1ξ2q̇
2
a1 cos qa2

)
, (4.13)

the gravity component is

G(qa) =
(
−g (m1ξ1 sin qa1 + m2 (l1 sin qa1 + ξ2 cos(qa1 + qa2)))

−m2ξ2g cos(qa1 + qa2)

)
, (4.14)

and the linear damping term is given by

D̃(q̇a − q̇am) =
(
D −D

) ( q̇a
q̇am

)
, (4.15)

where

D =
(
d1 0
0 d2

)
. (4.16)
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The nonlinear spring torque is described by

T (qa − qam) =
(
τs1(∆q1

)
τs2(∆q2

)

)
, (4.17)

where

∆qi = qai − qami , (4.18a)

τsi =

 klowi ∆qi + ki3∆3
qi , |∆qi | ≤ ψi ,

sign(∆qi )
(
mi0 + khighi

(
|∆qi | − ψi

))
, |∆qi | > ψi ,

(4.18b)

ki3 =
k
high
i − klowi

3ψ2
i

, (4.18c)

mi0 = klowi ψi + ki3ψ
3
i , (4.18d)

where ψi is the breakpoint deflection. Finally, the nonlinear friction torque is
given by

F(q̇am) =
(
fm1(q̇am1)
fm2(q̇am2)

)
, (4.19)

where

fmi(q̇
a
mi)

= ηi
(
fdi q̇

a
miηi + fci

(
µki + (1 − µki) cosh−1(βi q̇

a
miηi)

)
tanh(αi q̇

a
miηi)

)
. (4.20)

Numerical values for the parameters can be found in Moberg et al. (2008).

4.2 Accelerometer Model

The accelerometer attached to the robot measures the acceleration due to the mo-
tion the robot performs, the gravity component and in addition some measure-
ment noise is introduced. When modelling the accelerometer it is also important
to include a bias term. The acceleration is measured in a frame Oxszs fixed to
the accelerometer relative an inertial frame. The inertial frame is here chosen
to be the world fixed base frame Oxbzb. The acceleration in Oxszs can thus be
expressed as

ρ̈s(qa) = Rb/s (qa) (ρ̈b(qa) + Gb) + bacc, (4.21)

where ρ̈b(qa) is the acceleration due to the motion and Gb =
(
0 g

)T
models the

gravitation, both expressed in the base frame Oxbzb. The bias term is denoted by
bacc and is expressed in Oxszs. Rb/s(qa) is a rotation matrix that represents the
rotation from frame Oxbzb to frame Oxszs. The rotation matrix Rb/s(qa) can be
obtained from Figure 4.3 according to

Rb/s(qa) =
(
cos (qa1 + qa2) − sin (qa1 + qa2)
sin (qa1 + qa2) cos (qa1 + qa2)

)
. (4.22)



34 4 Models

bx

bz

1aq

2aq

Sx
Sz

bρ

Figure 4.3: The vector ρb from the origin of frame Oxbzb to the origin of
frame Oxszs is used to calculate the acceleration of the point P , i.e., the ac-
celeration measured by the accelerometer which originates from the motion.

The vector ρ̈b(qa) can be calculated as the second derivative of ρb(qa) which is
shown in Figure 4.3. Using the forward kinematic relation (2.6) for the position
only, the vector ρb can be written as

ρb(qa) = Υacc(qa), (4.23)

where the index acc distinguish this model from the model describing the tcp.
Taking the derivative of (4.23) with respect to time twice gives

ρ̇b(qa) =
d
dt

Υacc(qa) = Jacc(qa)q̇a, (4.24a)

ρ̈b(qa) =
d2

dt2
Υacc(qa) = Jacc(qa)q̈a +

(
d
dt
Jacc(qa)

)
q̇a, (4.24b)

where Jacc(qa) = ∂Υacc
∂qa

is the Jacobian matrix and the time derivative of the Jaco-
bian matrix is given by

d
dt
Jacc(qa) =

2∑
i=1

∂Jacc(qa)
∂qai

q̇ai . (4.25)

The final expression for the acceleration given by the accelerometer can now be
written as

ρ̈Ms (qa) = Rb/s(qa)

Jacc(qa)q̈a +

 2∑
i=1

∂Jacc(qa)
∂qai

q̇ai

 q̇a + Gb

 + bacc. (4.26)

4.3 Modelling of Bias

The measurements from an accelerometer include more than the actual accel-
eration. A common problem is bias in the measurements which can be taken
care of in the models. In (4.21) a bias component is included in the accelerom-
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eter model, which is unknown and may vary over time. The bias component

bk =
(
b1
k . . . b

nb
k

)T
can be modelled as a random walk, i.e.,

bk+1 = bk + vbk , (4.27)

where vbk =
(
vb,1k . . . vb,nbk

)T
is process noise and nb is the number of bias terms.

The random walk model is then included in the estimation problem and the bias
terms are estimated simultaneously as the other states. Let a state space model
without any bias states be given according to

xk+1 = f (xk , uk) + g(xk)vk , (4.28)

yk = h(xk , uk) + ek . (4.29)

The augmented model with the bias states can then be written as(
xk+1
bk+1

)
=

(
f (xk , uk)

bk

)
+

(
g(xk) 0
0 I

) (
vk
vbk

)
, (4.30)

yk = h(xk , uk) + Cbk + ek , (4.31)

where I and 0 are the identity and null matrices, respectively, and C ∈ Rny×nb is a
constant matrix.

This type of model can also handle model errors in the measurement equation as
will be described in Section 4.4.2.

4.4 Estimation Models

Four different estimation models are presented using the robot and acceleration
models described previously in this chapter.

4.4.1 Nonlinear Estimation Model

In this section a nonlinear discrete state space model is derived based on the
dynamic model in Section 4.1.3. Let the state vector be

x =
(
xT1 xT2 xT3 xT4

)T
=

(
qTa qa,Tm q̇Ta q̇a,Tm

)T
, (4.32)

where qa =
(
qa1 qa2

)T
are the arm angular positions and qam =

(
qam1 qam2

)T
are

the motor angular positions on the arm side of the gearbox. Let also the input
vector u = τam. Taking the derivative of x with respect to time and using (4.9)
gives

ẋ =


x3
x4

M−1
a (x1) (−C(x1, x3) − G(x1) − T (x1 − x2) − D(x3 − x4))

M−1
m (u − F(x4) + T (x1 − x2) + D(x3 − x4))

 , (4.33)

where the model equations are given from (4.10) to (4.20). The time dependence
on the state vector and input vector is here omitted for notational convenience.
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In order to use the estimation methods described in Chapter 3, the continuous
state space model (4.33) has to be discretised. The time derivative of the state
vector can be approximated using Euler forward according to

ẋ =
xk+1 − xk

Ts
, (4.34)

where Ts is the sample time. In Section 5.3, an investigation of the influence of
the sample time is made, since the sample time is crucial when Euler forward is
used. Taking the right-hand side in (4.33) and (4.34) equal to each other give the
nonlinear discrete state space model

xk+1 =


x1,k + Tsx3,k
x2,k + Tsx4,k

x3,k + TsM−1
a (x1,k)

(
−C(x1,k , x3,k) − G(x1,k) − T (x1,k − x2,k) − D(x3,k − x4,k)

)
x4,k + TsM−1

m

(
uk − F(x4,k) + T (x1,k − x2,k) + D(x3,k − x4,k)

)
 .

(4.35)
The process noise is modelled as a torque disturbance on the arms and motors,
giving a model according to (3.2a) where f (xk , uk) is given by the right-hand side
in (4.35) and

g(xk) =


0 0
0 0

TsM
−1
a (x1,k) 0
0 TsM

−1
m

 , (4.36)

where 0 is a two by two null matrix and the process noise vk ∈ R4 is Gaussian
with zero mean and covariance matrix Qk .

The measurements are the motor positions qm and the end-effector acceleration
ρ̈Ms (qa). The measured motor positions are transformed to the arm side of the
gearboxes before they are used, i.e., the measurements can be seen as qam. The
measurement model (3.2b) can therefore be written as

yk =
(

x2,k

Rb/s(x1,k)
(
Jacc(x1,k)q̈a,k +

(
d
dt Jacc(x1,k)

)
x3,k + Gb

)) + ek , (4.37)

using (4.26). Here, q̈a,k is given by the third row in (4.33) and ek ∈ R4 is the
measurement noise. The measurement model for the end-effector acceleration
is a big and complex expression due to the fact that the arm acceleration q̈a is
not a state. Instead it has to be calculated from the dynamic equations. The
measurement noise ek is Gaussian with zero mean and covariance matrix Rk .

The accelerometer bias bacck =
(
bacc,xk bacc,zk

)T
is modelled as it is described in

Section 4.3 with

C =
(
0
I

)
, (4.38)

where I and 0 are two by two identity and null matrices, respectively.
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4.4.2 Estimation Model with Linear Dynamic

A linear dynamic model with arm angular positions, velocities and accelerations
as state variables is suggested. Let the state vector be

x =
(
xT1 xT2 xT3

)T
=

(
qTa q̇Ta q̈Ta

)T
, (4.39)

This yields the following state space model in discrete time

xk+1 = Fxk + Guuk + Gvvk , (4.40)

where uk is the input vector and vk is the process noise vector. The constant
matrices are given by

F =

I TsI
T 2
s
2 I

0 I TsI
0 0 I

 , Gu =


T 3
s
6 I
T 2
s
2 I
TsI

 , Gv =


T 3
s
6 I
T 2
s
2 I
TsI

 , (4.41)

where I and 0 are two by two identity and null matrices, respectively. The in-
put uk is the arm jerk reference, i.e., the differentiated arm angular acceleration
reference. The control performance is essential with this approach since the esti-
mation model is driven by the arm jerk reference. If the controller is badly tuned,
then the arm jerk reference does not follow the true arm jerk, hence the arm jerk
reference will give an incorrect update of the states.

The measurement model for the motor positions is linear in the state vector
in (4.37). Here, on the other hand, the motor positions are calculated from (4.9a)
where the spring is linear, i.e.,

T (qam − qa) =
(
k1 0
0 k2

)
(qam − qa) = K(qam − qa). (4.42)

The damping term is small compared to the other terms (Karlsson and Norrlöf,
2005) and is therefore neglected for simplicity. The damping term can be in-
cluded by considering q̇am as an input to the measurement model. The measure-
ment model for the accelerometer is the same as in (4.37) where q̈a,k is a state in
this case. The measurement model can now be written as

yk =
(
x1,k + K−1 (

Ma(x1,k)x3,k + C(x1,k , x2,k) + G(x1,k)
)

Rb/s(x1,k)
(
Jacc(x1,k)x3,k +

(
d
dt Jacc(x1,k)

)
x2,k + Gb

)) + ek . (4.43)

The process noise, vk and measurement noise ek are considered Gaussian with
zero mean and covariance matrices Qk and Rk , respectively.

Once again, the accelerometer bias bacck is modelled according to Section 4.3.
However, the estimation result is improved if bias components for the motor mea-
surements are also included. The explanation is that there are model errors in the

measurement equation. The total bias component is bk =
(
b
qm,T
k bacc,Tk

)T
, where

b
qm
k =

(
b
qm1
k b

qm2
k

)T
and bacck =

(
bacc,xk bacc,zk

)T
. The matrix C in (4.31) is for

this model a four by four identity matrix.
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4.4.3 Linear Estimation Model with Acceleration as Input

In De Luca et al. (2007) a model using the arm angular acceleration as input is
presented. Identifying the third row in (4.33) as the arm angular acceleration and
using that as an input signal with (4.32) as state vector gives the following model,

ẋ =


x3
x4
q̈ina

M−1
m (u − F(x4) + T (x1 − x2) + D(x3 − x4))

 , (4.44)

where q̈ina is the new input signal and u = τam is the input torque. If the friction,
spring stiffness and damping are modelled with linear relations, then

ẋ =


0 0 I 0
0 0 0 I
0 0 0 0

M−1
m K −M−1

m K M−1
m D −M−1

m (D + Fd)

 x +


0 0
0 0
I 0
0 M−1

m


(
q̈ina
u

)
, (4.45)

where

K =
(
k1 0
0 k2

)
, D =

(
d1 0
0 d2

)
, Fd =

(
η2

1 fd1 0
0 η2

1 fd2

)
,

and where I and 0 are two by two identity and null matrices, respectively. The
parameters are the same as in Section 4.1.3, where ki = k

high
i . The linear state

space model is discretised using zero order hold (zoh) (Rugh, 1996). The only
remaining measurements are the motor positions, which give a linear measure-
ment model according to

yk =
(
0 I 0 0

)
xk + ek , (4.46)

where ek ∈ R2 is Gaussian with zero mean and covariance matrix Rk .

The observer used for this system is a linear dynamic observer using pole place-
ment. In De Luca et al. (2007) it is proven that the observer can be made globally
exponential stable with arbitrary decay rate if the true arm angular acceleration
is used. However, the arm angular acceleration q̈ina is not measured directly, in-
stead, it has to be calculated from the accelerometer signal using (4.26), which
is possible as long as the Jacobian Jacc(x1,k) has full rank. The error dynamic
contains in that case a residual vector and the convergence of the observer is ex-
plained in De Luca et al. (2007).

4.4.4 Nonlinear Estimation Model with Acceleration as Input

The linear model presented in Section 4.4.3 is reformulated as a nonlinear model.
Instead of having linear models for the friction and spring, the nonlinear models
in Section 4.1.3 are used. Assuming the arm angular acceleration as input gives
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the following nonlinear continuous state space model

ẋ =


x3
x4
q̈ina

M−1
m (u − F(x4) + T (x1 − x2) + D(x3 − x4))

 . (4.47)

The state space model is discretised in the same way as in Section 4.4.1 giving

xk+1 =


x1,k + Tsx3,k
x2,k + Tsx4,k
x3,k + Ts q̈

in
a,k

x4,k + TsM−1
m

(
uk − F(x4,k) + T (x1,k − x2,k) + D(x3,k − x4,k)

)
 , (4.48)

and the noise model is assumed to be the same as in Section 4.4.1, i.e., g(xk) is
given by (4.36). The measurement is of course the same as in Section 4.4.3, hence

yk =
(
0 I 0 0

)
xk + ek . (4.49)

The process noise, vk and measurement noise ek are considered Gaussian with
zero mean and covariance matrices Qk and Rk , respectively.

4.4.5 Summary of the Estimation Models

The estimation models can be summarised according to:

1. Nonlinear state space model with

States: arm and motor angular positions and velocities

Input: motor torque

Output: motor angular positions and acceleration of the end-effector

2. Linear dynamic and nonlinear measurement model with

States: arm angular positions, velocities, and accelerations

Input: arm jerk reference

Output: motor angular positions and acceleration of the end-effector

3. Linear state space model with

States: arm and motor angular positions and velocities

Input: motor torque and acceleration of the end-effector

Output: motor angular positions

4. Nonlinear state space model with

States: arm and motor angular positions and velocities

Input: motor torque and acceleration of the end-effector

Output: motor angular positions





Part II

Results





5
Simulation Study

The simulation results for the estimation of the position of the end-effector, here
denoted as tcp, are presented in this chapter. First, the simulation model is de-
scribed in Section 5.1. The simulation model is composed of the robot models
described in Section 4.1 and the accelerometer model in Section 4.2. The simu-
lation setup is then presented in Section 5.2 and an investigation of the impact
of the sample time is given in Section 5.3. The results presented in Section 5.4
are based on the nonlinear state space model in Section 4.4.1 using the ekf in
Algorithm 1 with or without bias compensation. Finally, the conclusions of the
simulation results are given in Section 5.5.

5.1 Overview of the Simulation Model

The simulation model is implemented in Matlab Simulink and a block diagram
of the model can be seen in Figure 5.1. The block Path Generator generates the
desired arm angles qref

a from a set of points in the joint space or in the Cartesian
space. It is also possible to use a predefined path for tcp. The desired arm angles
are then used for calculating the reference trajectory for tcp, i.e., P ref, using the
Forward Kinematics in (4.2). The desired arm angles are also used to calculate
references for the motor angles qref

m and a feed forward torque τffw
m . This is done in

the block Motor Reference and Feed Forward using an inverse of the dynamical
model in (4.9). The feedback controller is a diagonal pid controller which uses
the measured motor position qMmi and the reference qref

mi to calculate a torque for
motor i. The feed forward torque τffw

m is added to the calculated torque from
the pid controllers before it enters the robot. The block Robot only simulates
the robot models, described in Section 4.1.3, with or without disturbances W .
The outputs from the Robot block are the true position P of the tcp, true motor

43
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qMm

−

eqm

eρ̈s

Figure 5.1: Overview of the simulation model.

angles qm and true arm angular positions, velocities and accelerations, i.e., Qa =(
qTa q̇Ta q̈Ta

)T
. The block Accelerometer uses Qa to calculate the acceleration of

tcp according to (4.26).

Different options, listed below, are available for adjusting the realism and com-
plexity of the simulation model.

Mounting Errors The position and orientation of the accelerometer can be set to
deviate from the nominal values.

Accelerometer Bias The value of the parameter bacc in (4.21).

Model complexity The complexity of the dynamic equation (4.9) can be changed.
It is possible to turn on or off the gravity component G(qa) and the friction
component F(q̇am). It is also possible to choose between linear and nonlinear

spring torque T (qa − qam). For the linear case klowi = k
high
i in (4.18).

Disturbances Two types of disturbances can be used. The first one is distur-
bances on the motor torques, which are modelled as chirp signals. The dis-
turbance τmd is simply added to the applied torque τm, i.e., um = τm + τmd .
If no motor disturbance is present, then um = τm. The second type is a
force acting on tcp. The force is described by an amplitude and an angle
relative the base frame Oxbzb. An angle of zero degrees corresponds to a
force in the same direction as the x-axis of Oxbzb and an angle of 90 degrees
corresponds to a force in the same direction as the z-axis.

Ripple Torque ripple τri , for joint i, can be added to the applied motor torque
τmi , i.e., umi = τmi + τri . The torque ripple is dependent of the motor angle
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qmi and the applied torque τmi . The model is given by

τri = Ac1 sin (C1qmi + φc1) τmi +
3∑
j=1

Atj sin
(
Tjqmi + φtj

)
,

where the first term depends on the applied torque and the second term is
the cogging torque. If no torque ripple is present, then um = τm. Ripple
can also be added to the resolvers measuring the motor angles, i.e., qMmi =
qmi + Rri , where the resolver ripple Rri is modelled as

Rri = Ar1 sin qmi + Ar2 sin (2qmi + φr2) .

If no resolver ripple is present, then qMmi = qmi .

Model Errors The model parameters in (4.15), (4.18) and (4.20) and the masses
m1 and m2 can be given uncertainty values. In this case, the feed forward
block in Figure 5.1 does not use the same values as the robot model uses.

Path The path can be set either as interpolation in joint space between two sets
of arm angles, or linear interpolation in the Cartesian space. For more com-
plicated paths for the tcp it is possible to create them offline before the
simulation starts.

Measurement Noise Normal distributed white measurement noise with zero me-
an and variance σ2

qm and σ2
ρ̈s

can be added to the motor angles and/or the
acceleration of tcp, respectively.

5.2 Simulation Setup

The simulations are performed using two different paths as can be seen in Fig-
ure 5.2. The paths start at the star and go clockwise and the circle indicates the

tcp when qa =
(
0 0

)T
. The thick line indicates the segment of the paths that

is used in Section 5.4 to show the result of the ekf. These two paths are gen-
erated using a standard abb controller. Three different combinations from the
list in Section 5.1 are suggested for each one of the two paths. The combinations
are presented in Table 5.1 and are chosen such that model errors in the dynami-
cal model parameters, as well as bias and mounting errors for the accelerometer
are covered. All three configurations use the full model complexity, i.e., gravity,
friction and nonlinear spring torque are present. Motor torque ripple, resolver
ripple and measurement noise on the motor angles and the acceleration of the
tcp are also present, but no external forces or motor disturbances. The model er-
rors can be seen as the worst case and they are chosen based on suggestions from
the authors of Moberg et al. (2008). Note that the true trajectory for the tcp will
be the same for sim1 and sim3 and different for sim2. The difference can be seen
by comparing the grey line in Figure 5.6a and Figure 5.7a. The reason is that the
feed forward controller changes, i.e., the control performance is changed, when
model errors are present.
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Figure 5.2: Paths used for simulation. Each path starts at the star and goes
clockwise. The circle indicates the tool position when qa = (0 0)T, and
the thick line indicates the segment of the paths that is used later on in the
chapter to show the result of the ekf.

Table 5.1: Four different simulation scenarios.
Name Description
sim1 Without mounting errors, bias and model errors.
sim2 With mounting errors (4 mm in x-direction, -5 mm in z-direction

and 2◦ in orientation), bias (bacc,x = bacc,z = 0.1 m/s2) and model
errors (20% in stiffness parameters and 50% in friction parame-
ters).

sim3 With mounting errors (4 mm in x-direction, -5 mm in z-direction
and 2◦ in orientation), bias (bacc,x = bacc,z = 0.1 m/s2) and with-
out model errors.
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5.2.1 Tuning of Covariance Matrices

In order to use the ekf one must choose good estimates of the covariance matrices
Q and R, see Algorithm 1, which are assumed to be constants. An automatic ap-
proach for estimating the covariance matrices is here presented where the norm
of the path error is minimised. The path error is calculated as

ek =
√

(xk − x̂k)
2 + (zk − ẑk)

2, (5.1)

where xk , x̂k , zk and ẑk are the true and estimated position for the tool in the x-
and z-direction at time k. In practice, it is not possible to simultaneously estimate
both the covariance matrix Q for the process noise and the covariance matrix
R for the measurement noise. The main reason is problem with observability.
Another thing is that it is the scaling between them that affects the estimate when
an ekf is used. Therefore, estimate first R with dedicated experiments according
to Algorithm 5.

Algorithm 5 Estimation of the covariance matrix for the measurement noise.

1: Perform experiments and select a constant segment ỹ of the measured signal
y.

2: Calculate ek = ỹk − ȳ, where ȳ is the mean of ỹ.
3: Finally,

R =
1
N

N∑
k=1

eke
T
k . (5.2)

The matrix R can now be used in the minimisation problem to obtain an estimate
of Q. To simplify the problem, the covariance matrix Q is parametrised as a di-
agonal matrix. The method is summarised in Algorithm 6, where (x̂, ẑ) = ekf(Q)
denotes that the estimated position is a function of Q. A standard optimisation
method can be used to solve the second step in Algorithm 6, see e.g. Nocedal
and Wright (2006). Here, fmincon in Matlab is used, which is an Active Set
method. The method is straightforward and a similar method has been used be-
fore, see Henriksson et al. (2009). One disadvantage with the method is that the
true tool position is required.

The choice of the initial matrix Q0 is arbitrary as long as it has positive diagonal
elements. A straightforward choice is to let the diagonal of Q0 be the diagonal
of the covariance matrix calculated from an estimate of the noise sequence. The
noise sequence vk can be estimated as

v̂k = g(xk)
† (xk+1 − f (xk , uk)) , (5.4)

using the nonlinear state space model (3.2), where † is the pseudo inverse. It is
possible to estimate the noise like this since this work is performed on simulated
data where the true states are available. The process noise includes e.g. discreti-
sation errors, model errors, and torque ripple.

Some of the simulations are used to optimise the covariance matrices for the ekf
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Algorithm 6 Estimation of the covariance matrix for the process noise.

1: Select an initial diagonal matrix Q0 ∈ R4×4.
2: Solve the optimisation problem

Minimiseλ
√∑N

k=1 |ek |
2

subject to λj > 0 j = 1, . . . , 4

Qλ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

Q0

(x̂, ẑ) = ekf(Qλ)

3: The optimal covariance matrix is given by

Q =


λ∗1 0 0 0
0 λ∗2 0 0
0 0 λ∗3 0
0 0 0 λ∗4

Q0, (5.3)

where λ∗j is the solution from step 2.

Table 5.2: Five different covariance matrices used to evaluate the ekf with
or without bias compensation.
Name Description
cov1 Covariance matrix for the ekf, without bias compensation, tuned

on path a for sim1
cov2 Covariance matrix for the ekf, without bias compensation, tuned

on path a for sim2
cov3 Covariance matrix for the ekf, without bias compensation, tuned

on path a for sim3
cov4 Covariance matrix for the ekf, with bias compensation, tuned on

path a for sim2
cov5 Covariance matrix for the ekf, with bias compensation, tuned on

path a for sim3
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with or without bias compensation, which can be seen in Table 5.2. Different
combinations of the simulations and the matrices are then used to estimate the
tool position for the two paths, see Section 5.4. The different combinations of
covariance matrices and simulation setups are chosen such that it can be possible
to evaluate the ekf with respect to model errors, mounting errors and impact
of the bias. More over, the ekf is evaluated on both path a and path b but the
covariance matrices are optimised for path a only. This can give an insight in
how the result is affected when the path changes.

5.3 Investigation of the Sample Time

In this section the magnitude of the sample time is investigated for the time up-
date in (3.9). The simulation model is simulated in 2 kHz and it is interesting to
see if it is possible to run the ekf with a longer sample time, leading to a filter
for real-time applications. Only the time update in the ekf is used here, since it
is only that part that is affected by the sample time. A longer sample time with
a factor Λ is investigated, where Λ =

{
2 3 4 5

}
. It means that the sample

time is Ts = Λ · 0.5 ms, hence the control signal is decimated with a factor 1/Λ.
Figure 5.3 shows the first state after the time update. It can be seen that a longer
sample time makes the system unstable. The cases Λ = 4 and Λ = 5 are not
shown in the figure due to numerical instability in the time update equations.
The measurement update is able to correct for the errors caused by the sample
time but that will give an oscillatory behaviour.

A shorter sample time is also investigated to see if the ekf can perform better.
The shorter sample times that are investigated are 0.5/∆ms, where

∆ =
{
5 10 50 100 500 1000 5000

}
. (5.5)

Each sample of the control signal is here repeated ∆ times to get the correct sam-
ple time. A measure of the filter performance is to calculate

Tx =
N∑
k=1

∣∣∣∣∣∣xtruek − x̂tuk
∣∣∣∣∣∣2

2
, (5.6)

where xtruek is the true states and x̂tuk is the estimated states from the time update
only. A decrease in Tx between two values of ∆ implies a better filter performance.
Figure 5.4 shows Tx in (5.6) for the different values of ∆ in (5.5), where it can be
seen that the performance is increased. A better performance is obtained to the
cost of a slower filter. It is a trade off between computational capacity and filter
performance that has to be considered in order to choose a sample time. In the
remainder of this thesis, the sample time is kept to 0.5 ms.
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Figure 5.3: The first state after the time update for the original sample time
(solid), Λ = 2 (dashed) and Λ = 3 (dash-dot).
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Figure 5.4: Tx in (5.6) for different values of ∆, i.e., a shorter sample time.
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Figure 5.5: Estimation of path a (top) and path b (bottom) on sim1 using
the ekf without bias compensation with cov1 (solid), cov2 (dashed), and
cov3 (dash-dot). The grey line is the true path

5.4 Results

The result is evaluated using the three simulation scenarios in Table 5.1 and the
five covariance matrices in Table 5.2 using the ekf with or without bias compen-
sation for path a and path b. Only the ekf without bias compensation (cov1,
cov2, and cov3) is used for sim1 since no bias in the measured acceleration
is present. For sim2 and sim3, both ekf with and without bias compensation
(cov1 to cov5) are used. The evaluation is focused on comparing the true path
of the end-effector with the estimated path. Since the ekf does not give the path
directly, the estimated arm angular positions have to be used in the forward kine-
matic model (4.2), i.e., (

x̂k
ẑk

)
= Υ (q̂a,k) = Υ (x̂1:2,k), (5.7)

to obtain the estimated path, where x̂1:2,k denotes the first two states at time k.
To be able to see how the estimated path behaves, the bottom horizontal part
for path a and the top horizontal part of path b are magnified as can be seen in
Figure 5.5 for sim1. The figure shows that the estimated paths follow the true
path very well independent of the covariance matrices. Moreover, it does not
matter if the path has changed, i.e., the covariance matrices optimised for path a
also give a good result for path b. It is not surprising that the three estimated
paths follow the true paths well since sim1 is without any errors.

The result for sim2 in Figure 5.6 is more relevant. The ekf without bias com-
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(a) ekf without bias compensation with cov1 (solid), cov2 (dashed),
and cov3 (dash-dot). Path a (top) and path b (bottom).

0.598

0.599

0.6

0.601

0.602

0.603

z
[m

]

1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46
1.098

1.099

1.1

1.101

1.102

1.103

x [m]

z
[m

]

(b) ekf with bias compensation with cov4 (dashed) and cov5 (dash-
dot). Path a (top) and path b (bottom).

Figure 5.6: Estimation of path a and path b on sim2 using the ekf without
bias compensation (a) and with bias compensation (b). The grey line is the
true path
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Table 5.3: rmse values of the path error e for the end-effector position given
in mm for path a.

cov1 cov2 cov3 cov4 cov5

sim1 0.0221 0.0143 0.0143 — —
sim2 1.0967 1.0816 1.0913 1.1636 1.2755
sim3 0.3053 0.2904 0.2767 0.1681 0.1267

pensation in Figure 5.6a cannot follow the true path as good as for sim1. The
difference between the three covariance matrices is however not that evident and
it seems that the path does not matter either. Using the ekf with bias compen-
sation improves the result a bit as can be seen in Figure 5.6b. According to this
it is possible to conclude that the model errors are the underlying problem. An
accurate model is therefore needed in order to get a good estimate of the path.

In Figure 5.7, where only mounting errors of the accelerometer are present, it can
be seen that the estimated path is better than when model errors are present but
the path is still not as good as for sim1. Using an ekf with bias compensation
improves the estimated path.

To get a better understanding of how the estimated paths behave, the path errors
ek of path a for sim1, sim2, and sim3 are shown in Figure 5.8, where the first
0.05 s are removed to eliminate the effects of the transients. It can be seen that
the path error more or less has the same behaviour and an accuracy of around
0.05 mm when no errors are present. An accuracy of less than 3 mm is achieved
when model errors and mounting errors are present and less than 1 mm when
only mounting errors are present. The figure only shows the result for path a
using the ekf without bias compensation but the results for path b and the ekf
with bias compensation are similar. To get a measure of how large the path error
is, the root mean square error (rmse) ε of each path error signal is calculated
according to

ε =

√√√
1
N

N∑
k=1

e2
k , (5.8)

where N is the number of samples. The result is presented in Table 5.3.

The table shows that the covariance matrix cov1 estimated for sim1 does not
give the lowest error, here both cov2 and cov3 give a lower error. This means
that cov1 is not a global solution to the optimisation problem. Also, if a new
optimisation of the covariance matrix is performed with a different initial value,
then the covariance matrix will give another error. Figure 5.9 shows the path
errors for ten different solutions to the optimisation problem, with and without
model errors, where the initial value Q0 has changed. The conclusion here is that
the optimisation problem ends up in different solutions.

The evaluation has so far been focused on the position of the end-effector. It
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(a) ekf without bias compensation with cov1 (solid), cov2 (dashed),
and cov3 (dash-dot). Path a (top) and path b (bottom).

0.598

0.599

0.6

0.601

0.602

0.603

z
[m

]

1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46
1.098

1.099

1.1

1.101

1.102

1.103

x [m]

z
[m

]

(b) ekf with bias compensation with cov4 (dashed) and cov5 (dash-
dot). Path a (top) and path b (bottom).

Figure 5.7: Estimation of path a and path b on sim3 using the ekf without
bias compensation (a) and with bias compensation (b). The grey line is the
true path
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Figure 5.8: The path error e for the end-effector position using the ekfwith-
out bias compensation on path a for sim1 (top), sim2 (middle), and sim3
(bottom) with cov1 (solid), cov2 (dashed), and cov3 (dash-dot).

is however possible to compare the estimated arm angular positions and arm
angular velocities with the true counterparts. The error is calculated as

eqa(k) =
∣∣∣∣∣∣q0

a(k) − q̂a(k)
∣∣∣∣∣∣

2
, (5.9a)

eq̇a(k) =
∣∣∣∣∣∣q̇0

a(k) − ˆ̇qa(k)
∣∣∣∣∣∣

2
, (5.9b)

where q0
a(k) and q̇0

a(k) are the true arm angular positions and velocities for the
two joints at time k given from the simulation model, and q̂a(k) and ˆ̇qa(k) are the
estimated counterparts from the ekf. Figure 5.10 shows the error eqa(k) for the
arm angular positions, Figure 5.11 shows the error eq̇a(k) for the arm angular ve-
locities, and Tables 5.4 and 5.5 show the rmse values calculated according to (5.8)
with the path errors in (5.9). The arm angular positions show similar behaviour
as the end-effector position since there is a static relation between them, i.e., the
forward kinematic model in (4.2). Note that the difference in the magnitude of
the velocity errors are in the same order for all three simulations, whereas the
errors for sim1 are much lower than for the other two simulations when the tcp
errors or the arm angular position errors are considered.

The uncertainty of the estimated path can be calculated using Gauss’ approxima-
tion formula as described in Section 3.4. The topmost plot in Figure 5.12 shows
the true path, the estimated path and the covariance ellipses for each time index
k. It can be seen that the true path is not covered by the covariance ellipses. One
drawback with Gauss’ approximation formula is that the estimated covariance
matrix after the nonlinear transformation can be smaller than the true one. To
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(b) sim2.

Figure 5.9: The path error e for 10 mc simulations of Algorithm 6 with dif-
ferent starting matrices Q0 for sim1 and sim2. The different solutions give
different path errors, which indicates that the problem is non convex.
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Figure 5.10: The error eqa for the arm angular positions using the ekf with-
out bias compensation on path a for sim1 (top), sim2 (middle), and sim3
(bottom) with cov1 (solid), cov2 (dashed), and cov3 (dash-dot).
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Figure 5.11: The error eq̇a for the arm angular velocities using the ekf with-
out bias compensation on path a for sim1 (top), sim2 (middle), and sim3
(bottom) with cov1 (solid), cov2 (dashed), and cov3 (dash-dot).
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Table 5.4: rmse values of the error eqa for the arm angular positions given
in mrad for path a.

cov1 cov2 cov3 cov4 cov5

sim1 0.0148 0.0078 0.0081 — —
sim2 0.6529 0.6466 0.6532 0.6985 0.7195
sim3 0.1675 0.1583 0.1532 0.1349 0.0752

Table 5.5: rmse values of the error eq̇a for the arm arm angular velocities
given in mrad/s for path a.

cov1 cov2 cov3 cov4 cov5

sim1 8.1598 6.2601 5.9184 — —
sim2 31.6386 14.4535 14.4860 28.9059 34.4696
sim3 8.0256 8.7230 8.9496 21.2968 10.1817
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Figure 5.12: True path (grey) and estimated path (black) with the covariance
ellipses (vertical black lines). The topmost plot shows the estimated path
with Ts = 0.5 ms and the bottom plot is for Ts = 50 ns.
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exclude this as the reason for too small covariance matrices is to do the mc trans-
formation instead. However, the mc transformation gives similar results and is
not showed here. The problem is instead that the ekf underestimates the covari-
ance matrices for the arm angles. If the sample time is decreased by a factor
10 000 to eliminate discretisation errors, then the estimated path follows the true
path better as can be seen in the bottom plot in Figure 5.12, which is in accor-
dance with Section 5.3. However, the covariance ellipses are decreased and the
true path is still not covered by the ellipses.

The reason for underestimating the covariance matrices is probably model errors
in combination with high snr, i.e., small values in the covariance matrix R. If
data are generated with the same models as are used in the ekf, then the co-
variance matrices will cover the true path, however, the ellipses are still very
small. The magnitude of the elements in the covariance matrices have been ver-
ified using the stationary solution for the parametric Cramér-Rao lower bound,
evaluated around the true state trajectory. See Bergman (1999, Theorem 4.4) for
details.

5.5 Conclusions

The main conclusion is that model errors in the dynamic models are troublesome.
One solution is better identification methods which is not a part of this work and
is therefore left out. Another possibility can be to introduce a bias term for each
model parameter which is estimated at the same time as the states. This is the
same approach as for the accelerometer bias described in Section 4.3.

The choice of the covariance matrices is a hard work and the accuracy of the
estimated path can be better with good choices. The optimisation problem in Sec-
tion 5.2.1 works but it is not robust for different initial values. A better method
is therefore preferable.

The bias compensation in the ekf improves the results as expected, but it is still
necessary to have good knowledge of the mounting position as well as the orien-
tation of the accelerometer.

In this small study, the path does not seem to affect the result of different covari-
ance matrices that much. A more detailed study, with more paths in a wider part
of the workspace, is however necessary. The indication that the result may not be
affected of the path is that the time update of the covariance matrix P depends on
the term GkQkG

T
k which is dependent of the state x̂k−1|k−1 as can be seen in Algo-

rithm 1. The estimated covariance matrix can therefore be seen as independent
of the path.

The uncertainties of the tcp estimates, calculated using Gauss’ approximation
formula and the uncertainties of the estimated arm angles, are very low. The ekf
underestimates the covariance matrices Pk due to model errors and high snr.





6
The EM Algorithm for Covariance

Estimation

The performance of the ekf depends in the end of the covariance matrices for
the process noise and the measurement noise. The simulation study in Chapter 5
has shown that it is hard to get good estimates of, in particular, the covariance
matrix for the process noise. This chapter presents a new method, using the
expectation maximisation (em) algorithm and the extended Kalman smoother
(eks), for estimation of the covariance matrix for the process noise. The material
on which this chapter is based has previously been published in Axelsson et al.
(2011e).

The em algorithm has been explored for linear Gaussian models in Cappé et al.
(2005), where the system matrices (A, C, Q, R) are estimated using the Kalman
smoother as the state estimator. For nonlinear models, the particle smoother is
used to estimate the parameters in a nonlinear dynamic model, see Schön et al.
(2011). However, the particle smoother is not applicable for models with high
state dimension which is the case for industrial robots.

First, the derivation of the em solution is presented in Section 6.1. After that,
two alternative methods are presented in Section 6.2. Finally, the results and
conclusions are given in Sections 6.3 and 6.4, respectively.

6.1 Derivation of the EM Solution

This section describes how the covariance matrices for the process and measure-
ment noise in

xk+1 = F1(xk , uk) + F2(xk)vk , (6.1a)

yk = h(xk , uk) + ek , (6.1b)

61
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can be estimated using the em algorithm described in Section 3.3. The process
noise vk and measurement noise ek are Gaussian with zero mean and covariance
matrices Q and R, respectively. All model parameters are assumed to be known
except for Q ∈ Snv+ and R ∈ S

ny
++

1. First, the solution is derived using a general
matrix F2(xk), then the solution is given when it is assumed that F2(xk) has the
following structure

F2(xk) =
(

0
F̃2(xk)

)
. (6.2)

The structure in (6.2) is common for mechanical systems derived by Newton’s
law or Lagrange’s equation when Euler forward is used for discretisation, cf. Sec-
tion 4.4.1 and in particular (4.36).

It is not possible to simultaneously estimate both the covariance matrix Q for
the process noise and the covariance matrix R for the measurement noise, as de-
scribed in Section 5.2.1. The covariance matrix R is therefore estimated using
Algorithm 5, and then used in the em algorithm to estimate Q.

Equation (6.1) can also be expressed in the more general conditional densities as

xk+1 ∼ p(xk+1|xk) = N
(
xk+1; F1(xk), F2(xk)QF

T
2 (xk)

)
(6.3a)

yk ∼ p(yk |xk) = N (yk ; h(xk), R) (6.3b)

where N ( · ) is the multivariate Gaussian distribution function. The multivariate
Gaussian distribution for the n-dimensional variable µ with mean µ̄ and covari-
ance Σ is defined according to

N (µ; µ̄,Σ) M=
1

(2π)n/2|Σ|1/2
e−

1
2 (µ−µ̄)TΣ−1(µ−µ̄). (6.4)

The control signal uk is omitted in (6.3) and in the sequel of this chapter to sim-
plify the notation.

Proceed now with the derivation of the expectation and maximisation steps in
Algorithm 4 where θ = Q is the sought parameter.

6.1.1 Expectation Step

The joint likelihood can easily be written as

pQ(y1:N , x1:N ) = p(x1, y1)
N∏
i=2

p(yi |xi)pQ(xi |xi−1), (6.5)

where

p(xk , yk |x1:k−1, y1,k−1) = p(xk , yk |xk−1) = p(yk |xk)p(xk |xk−1) (6.6)

1Sp++
(
Sp+

)
is the set of all symmetric positive definite (semidefinite) p × p matrices
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has been used repeatedly. The notation pQ( · ) means that the pdf is parametrised
by Q. Taking the logarithm2 of (6.5) and using (6.3) together with (6.4) give

LQ(y1:N ,x1:N ) = log pQ(y1:N , x1:N ) = L̃ +
1
2

N∑
i=2

log
(∣∣∣F2(xi−1)QFT2 (xi−1)

∣∣∣−1
)

−1
2

N∑
i=2

(xi − F1(xi−1))T
(
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1)) , (6.7)

where the terms from the likelihood p(yi |xi), which are independent of Q, are
collected in L̃.

Next step is to calculate the expectation of LQ(y1:N , x1:N ) to obtain Γ (Q;Ql).

Γ (Q;Ql) = EQl
[
LQ(y1:N , x1:N )|y1:N

]
= L̄

+
1
2

N∑
i=2

EQl

[
log

(∣∣∣F2(xi−1)QFT2 (xi−1)
∣∣∣−1

)∣∣∣∣∣ y1:N

]
− 1

2
tr

N∑
i=2

EQl

[ (
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1)) (xi − F1(xi−1))T

∣∣∣∣ y1:N

]
,

(6.8)

where L̄ is independent of Q. The trace operator comes from the fact that the
trace of a scalar is the same as the scalar itself, i.e.,

(xi − F1(xi−1))T
(
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1))

= tr (xi − F1(xi−1))T
(
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1))

= tr
(
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1)) (xi − F1(xi−1))T . (6.9)

Start with the calculations of the first expectation in (6.8),

EQl

[
log

(∣∣∣F2(xi−1)QFT2 (xi−1)
∣∣∣−1

)∣∣∣∣∣ y1:N

]
=

∫
log

(∣∣∣F2(xi−1)QFT2 (xi−1)
∣∣∣−1

)
pQl (xi−1|y1:N ) dxi−1. (6.10)

The integral cannot be solved analytically. Instead, an approximation has to be
made. The smoothed density of xi−1 has a high peak around the smoothed es-
timate if the sampling frequency and the snr are high. Here, the eks in Algo-
rithm 3 is used. The state xi−1 can therefore be approximated with the smoothed
state x̂si−1|N , in other words,

EQl

[
log

(∣∣∣F2(xi−1)QFT2 (xi−1)
∣∣∣−1

)∣∣∣∣∣ y1:N

]
≈ log

(∣∣∣F2(x̂si−1|N )QFT2 (x̂si−1|N )
∣∣∣−1

)
. (6.11)

2The natural logarithm is used.
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The second expectation in (6.8) can be written as

EQl

[ (
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1)) (xi − F1(xi−1))T

∣∣∣∣ y1:N

]
=
∫ (

F2(xi−1)QFT2 (xi−1)
)−1

(xi − F1(xi−1)) (xi − F1(xi−1))T

× pQl (xi , xi−1|y1:N ) dxi dxi−1. (6.12)

Now use the smoothed density again and let

F2 (xi−1) ≈ F2

(
x̂si−1|N

)
. (6.13)

The term
(
F2(x̂si−1|N )QFT2 (x̂si−1|N )

)−1
is now a constant and the expectation value

can be written as

EQl

[ (
F2(xi−1)QFT2 (xi−1)

)−1
(xi − F1(xi−1)) (xi − F1(xi−1))T

∣∣∣∣ y1:N

]
≈
(
F2(x̂si−1|N )QFT2 (x̂si−1|N )

)−1
∫

(xi − F1(xi−1)) (xi − F1(xi−1))T

× pQl (xi , xi−1|y1:N ) dxi dxi−1. (6.14)

The pdf pQl (xi , xi−1|y1:N ) can be seen as the smoothed density of the augmented

state vector ξi =
(
xTi−1 xTi

)T
, i.e.,

pQl (xi , xi−1|y1:N ) = pQl (ξi |y1:N ) = N
(
ξi ; ξ̂

s
i|N , P

ξ,s
i|N

)
. (6.15)

The first and second order moments of the smoothed ξi can be expressed as

ξ̂si|N =
(
x̂si−1|N
x̂si|N

)
, P ξ,si|N =

 P si−1|N P si−1,i|N(
P si−1,i|N

)T
P si|N

 , (6.16)

where x̂si−1|N , x̂si|N , P si−1|N and P si|N are the first and second order moments of the
smoothed x̂i−1 and x̂i , respectively. These are obtained if the augmented model

ξk+1 =
(

xk
F1(xk , uk)

)
(6.17)

is used in the eks. The integral in (6.14) cannot be solved analytically. Instead, a
first order Taylor expansion of F1(xi−1) around x̂si−1|N is used. The quadratic term
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in (6.14) can now be written as

(xi − F1(xi−1)) (xi − F1(xi−1))T ≈
(
xi − F1(x̂si−1|N ) − J1,i−1(xi−1 − x̂si−1|N )

)
×
(
xi − F1(x̂si−1|N ) − J1,i−1(xi−1 − x̂si−1|N )

)T
=
(
−J1,i−1 I

) (
ξi − ξ̂si|N

) (
ξi − ξ̂si|N

)T (
−J1,i−1 I

)T
+

(
−J1,i−1 I

) (
ξi − ξ̂si|N

) (
x̂si|N − F1(x̂si−1|N )

)T
+

(
x̂si|N − F1(x̂si−1|N )

) (
ξi − ξ̂si|N

)T (
−J1,i−1 I

)T
+

(
x̂si|N − F1(x̂si−1|N )

) (
x̂si|N − F1(x̂si−1|N )

)T
, (6.18)

where the Taylor expansion

F1(xi−1) ≈ F1(x̂si−1|N ) + J1,i−1(xi−1 − x̂si−1|N ), (6.19a)

J1,i−1 =
∂F1(x)
∂x

∣∣∣∣∣
x=x̂si−1|N

, (6.19b)

has been used.

The integral in (6.14) now becomes

Mi
M=

∫
(xi − F1(xi−1)) (xi − F1(xi−1))T pQl (xi , xi−1|y1:N ) dxi dxi−1

=
(
−J1,i I

)
P ξ,si|N

(
−J1,i I

)T
+

(
x̂si|N − F1(x̂si−1|N )

) (
x̂si|N − F1(x̂si−1|N )

)T
. (6.20)

It is thus possible to calculate Γ (Q;Ql) according to

Γ (Q;Ql) =L̄ +
1
2

N∑
i=2

log
(∣∣∣F2(x̂si−1|N )QFT2 (x̂si−1|N )

∣∣∣−1
)

− 1
2

tr
N∑
i=2

(
F2(x̂si−1|N )QFT2 (x̂si−1|N )

)−1
Mi . (6.21)

If it is assumed that FT2 (xi−1) andQ have full row rank, and F2(xi−1) and F2(xi−1)Q
have full column rank, then (Mitra and Rao, 1971)(

F2(x̂si−1|N )QFT2 (x̂si−1|N )
)−1

=
(
F†2(x̂si−1|N )

)T
Q−1F†2(x̂si−1|N ). (6.22)

Using this together with the trace rule trABC = trBCA give

Γ (Q;Ql) =L̄ +
1
2

N∑
i=2

log
(∣∣∣∣(F†2(x̂si−1|N )

)T
Q−1F†2(x̂si−1|N )

∣∣∣∣)
− 1

2
trQ−1

N∑
i=2

F†2(x̂si−1|N )Mi

(
F†2(x̂si−1|N )

)T
. (6.23)



66 6 The em Algorithm for Covariance Estimation

Special Structure of the Noise Model

Using the noise model in Section 4.4.1, i.e., the matrix (4.36), gives a singular co-
variance matrix in the conditional density for the state transition, i.e., the matrix
F2(xi)QFT2 (xi) in (6.3a) is singular, hence the pseudo inverse of the covariance
matrix has to be used instead of the regular inverse. This trick solves not all the
problems since ∣∣∣F2(xi−1)QFT2 (xi−1)

∣∣∣ = 0 (6.24)

and when taking the logarithm in (6.7) it becomes

log
(∣∣∣F2(xi−1)QFT2 (xi−1)

∣∣∣†) = ∞. (6.25)

A common trick is to approximate
∣∣∣F2(xi−1)QFT2 (xi−1)

∣∣∣ by the product of all non-
singular values. Given the structure of F2(xk) in (6.2) the covariance matrix can
be written as

F2(xi−1)QFT2 (xi−1) =
(
0 0
0 F̃2(xi−1)QF̃T2 (xi−1)

)
, (6.26)

where 0 is a null matrix. The product of all nonsingular values is therefore the
same as

∣∣∣F̃2(xi−1)QF̃T2 (xi−1)
∣∣∣, where it is assumed that F̃2(xi−1)QF̃T2 (xi−1) is nonsin-

gular. The joint log likelihood function in (6.7) is now given by

LQ(y1:N , x1:N ) = L̃ +
1
2

N∑
i=2

log
(∣∣∣F̃2(xi−1)QF̃T2 (xi−1)

∣∣∣−1
)

− 1
2

N∑
i=2

(xi − F1(xi−1))T
(
F2(xi−1)QFT2 (xi−1)

)†
(xi − F1(xi−1)) . (6.27)

Using this expression during the calculation of the expectation of LQ(y1:N , x1:N )
gives

Γ (Q;Ql) = L̄ +
1
2

N∑
i=2

[
log

(∣∣∣∣(F̃†2(x̂si−1|N )
)T ∣∣∣∣) + log

∣∣∣Q−1
∣∣∣ + log

(∣∣∣F̃†2(x̂si−1|N )
∣∣∣)]

− 1
2

trQ−1
N∑
i=2

F†2(x̂si−1|N )Mi

(
F†2(x̂si−1|N )

)T
. (6.28)

Here it has been used that

log
(∣∣∣F̃2(x̂si−1|N )QF̃T2 (x̂si−1|N )

∣∣∣−1
)

= log
(∣∣∣∣(F̃†2(x̂si−1|N )

)T
Q−1F̃†2(x̂si−1|N )

∣∣∣∣)
= log

(∣∣∣∣(F̃†2(x̂si−1|N )
)T ∣∣∣∣ ∣∣∣Q−1

∣∣∣ ∣∣∣F̃†2(x̂si−1|N )
∣∣∣)

= log
(∣∣∣∣(F̃†2(x̂si−1|N )

)T ∣∣∣∣) + log
∣∣∣Q−1

∣∣∣ + log
(∣∣∣F̃†2(x̂si−1|N )

∣∣∣) , (6.29)

which is possible since F̃T2 (xi−1) and Q have full row rank, and F̃2(xi−1) and
F̃2(xi−1)Q have full column rank, and F̃2(xi−1) is a square matrix.



6.1 Derivation of the em Solution 67

6.1.2 Maximisation Step

Here, the function Γ (Q;Ql) in (6.23) will be maximised with respect to Q. Note
that maximisation with respect to Q is the same as maximisation with respect to
Q−1, which can be seen as the argument in (6.23). The maximisation of Γ (Q;Ql)
is obtained if the derivative of Γ (Q;Ql) with respect to Q−1 is equal to zero. The
derivative of Γ (Q;Ql) can be derived analytical, which results in large complex
expressions. However, for the case with F2(xk) given by (6.2) there is a much
simpler expression. The following matrix derivatives are useful for the derivation
(Lütkepohl, 1996),

∂ log |X |
∂X

=
(
XT

)−1
, (6.30a)

∂ trXB
∂X

= BT. (6.30b)

The derivative of (6.28) can now be written as

∂Γ (Q;Ql)
∂Q−1 =

N − 1
2

Q − 1
2

N∑
i=2

F†2(x̂si−1|N )Mi

(
F†2(x̂si−1|N )

)T
= 0, (6.31)

since Mi is a symmetric matrix. The solution of the maximisation step is finally
obtained as

Ql+1 =
1

N − 1

N∑
i=2

F†2(x̂si−1|N )Mi

(
F†2(x̂si−1|N )

)T
. (6.32)

6.1.3 Stop Criterion

The stop criterion can be chosen in different ways. Section 3.3 suggests that the
em algorithm stops when the difference in the new and previous estimate is less
than a threshold. Another way is to use LQ(y1:N ) in (3.19). The main problem is
to maximise LQ(y1:N ), therefore stop the algorithm when no increase in LQ(y1:N )
can be observed. Equation (3.19) can be written as

LQ(y1:N ) = log pQ(y1:N ) = log

p(y1)
N−1∏
i=1

pQ(yi+1|y1:i)


= log p(y1) +

N−1∑
i=1

log pQ(yi+1|y1:i), (6.33)

where Bayes’ rule has been used repeatedly. Here, log p(y1) is a constant and can
be omitted in the sequel for simplicity. The pdf pQ(yi+1|y1:i) is identified as the
pdf for the innovations which can be calculated as

pQ(yi+1|y1:i) = N
(
yi+1; h(x̂i+1|i), Hi+1Pi+1|iH

T
i+1 + R

)
, (6.34)

Hi+1 =
∂h(x)
∂x

∣∣∣∣∣
x=x̂i+1|i

, (6.35)
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where x̂i+1|i and Pi+1|i are calculated in the ekf during the measurement update.
The algorithm can now be stopped when∣∣∣LQl (y1:N ) − LQl−m(y1:N )

∣∣∣ ≤ γ, (6.36)

where m and γ are positive parameters to choose. The steps for calculating the
matrix Q are summarised in Algorithm 7.

Algorithm 7 Calculation of Q using the em algorithm.

1: Select an initial value Q0 ∈ S
nv
+ and set l = 0.

2: Calculate Mi according to (6.20) using Ql .
3: Compute the update of Q according to

Ql+1 =
1

N − 1

N∑
i=2

F†2(x̂si−1|N )Mi

(
F†2(x̂si−1|N )

)T
.

4: If
∣∣∣LQl (y1:N ) − LQl−m(y1:N )

∣∣∣ ≤ γ , stop. If not, set l = l + 1 and go to step 2.

6.2 Alternative Ways to Find the Covariance Matrix of
the Process Noise

Two alternative ways to estimate the covariance matrix for the process noise are
presented here. These two alternatives, which are less complicated than the em
algorithm, will be compared to the result of the em algorithm in Section 6.3. The
first alternative is the same as in Section 5.2.1, i.e., minimisation of the path error,
see algorithm 6.

The second method starts with an initial guess Q0. The smoothed states are then
calculated using Q0. After that, equation (6.1a) and the smoothed states are used
in order to derive the noise vk , k = 1, . . . , N . The covariance matrix is finally
obtained from the sequence v1:N =

{
v1 . . . vN

}
. The method is repeated with

the new Q-matrix until convergence is obtained. The method is summarised in
Algorithm 8.

Algorithm 8 Iterative covariance estimation with the eks

1: Select an initial value Q0 and set l = 0.
2: Use the eks with Ql .
3: Calculate the noise according to

vk = F†2
(
x̂sk|N

) (
x̂sk+1|N − F1

(
x̂sk|N , uk

))
.

4: Let Ql+1 be the covariance matrix for vk according to

Ql+1 =
1
N

N∑
k=1

vkv
T
k .

5: If converged, stop. If not, set l = l + 1 and go to step 2.
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6.3 Simulation Results

The method in Section 6.1 is evaluated and compared to the two alternative meth-
ods described in Section 6.2. The model given in Section 4.4.1, where f (xk , uk) =
F1(xk , uk) and g(xk) = F2(xk), is used, and the simulation model described in Sec-
tion 5.1 with sim1 and sim2, see Table 5.1, is simulated to get all the required
quantities, i.e., uk , yk , xk and zk . The rank conditions in order to use (6.22) are
satisfied for the model. In system identification, it is common to estimate a cer-
tain parameter or parameters starting at different initial values and see if the true
one is obtained. Here, on the other hand, there is no information about the true
covariance matrix, even for simulated data. The process noise is here implicit in
the simulation model and originates from e.g. discretisation errors, model errors,
and torque ripple. Instead, the estimated covariance matrices, for different initial
values, are used to calculate the path error according to (5.1). When the path er-
ror differs a lot with different initial values it means that the method converges to
different solutions, which is the case for Algorithm 6 as described in Section 5.4.
There is however no guarantee that a solution is in a global optimum although
the path errors do not differ. Here, the maximum and minimum of the rmse val-
ues in (5.8) for all mc simulation are used to see how much the solutions differ
with different initial values. It is preferred to have a method that results in small
and similar path errors for different initial values.

It has already been concluded in Section 5.4 that Algorithm 6 gives different solu-
tions for different initial values. Table 6.1 shows that the maximal and minimal
path errors for the em algorithm are more or less the same for sim1. The same
concerns Algorithm 8. The em algorithm gives however a lower path error. A
comparison between the path errors for the em algorithm and Algorithm 8 is
shown in Figure 6.1a, where the grey area covers all the path errors from Algo-
rithm 6, i.e., the edges of the grey area are the maximum and minimum path
error for each sample for all mc simulations in Figure 5.9a. The em algorithm is
clearly much better than the two alternatives. Compare also with Figure 5.8.

It is also interesting to see how (6.33) looks like for Ql , l = 0, . . ., both for the em
algorithm and Algorithm 8. The em algorithm and Algorithm 8 were therefore
forced to take more iterations than necessary. The log-likelihood function (6.33)
can be seen in Figure 6.1b for 100 iterations. It can be seen that the curve for
the em algorithm flattens out somewhere around 50 iterations and stays constant
after that. It means that it is unnecessary to continue to more than about 60 it-
erations. One thing to comment is the peak around ten iterations in the curve.
This contradicts the property of the em algorithm that the sequence Ql , l = 0, . . .,
approximates Q̂ml better and better. This can be explained by the approxima-
tions that have been made during the expectation step and that the calculation
of (6.33) in the ekf is approximative. The curve for Algorithm 8 flattens out after
ten iterations and stays constant after that. Algorithm 8 is also without any peak
and the stationary value is lower than for the EM algorithm. That means that the
estimated covariance matrix from the em algorithm reflects the true noise covari-
ance better. For Algorithm 6, the solution gives a value of (6.33) that is lower
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(a) The resulting path error for the em algorithm (solid) and Algo-
rithm 8 (dash-dot). The grey area covers all the resulting path errors
from Algorithm 6.
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(b) The log-likelihood function for the first 100 iterations in the em algo-
rithm (solid) and Algorithm 8 (dash-dot).

Figure 6.1: Path errors and the log-likelihood function for sim1.
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Table 6.1: Max and min of the rmse values of the path error in mm for the
em algorithm and Algorithm 8 for sim1.

Max Min

em 0.0069 0.0069
Alg. 8 0.0615 0.0615

Table 6.2: Max and min of the rmse values of the path error in mm for the
em algorithm and Algorithm 8 for sim2.

Max Min

em 0.0054 0.0054
Alg. 8 0.0377 0.0377

than for the other two methods.

For sim2 both the em algorithm and Algorithm 8 give consistent values for dif-
ferent initial values, see Table 6.2, whereas different path errors are obtained for
Algorithm 6, as has been described in Section 5.4. Figure 6.2a shows the path
errors for the em algorithm and Algorithm 8, where the grey area is the same as
described above but for the path errors in Figure 5.9b. What is interesting is that
Algorithm 6 sometimes gives lower path error than the em algorithm for some
simulation, whereas the path error is much worse for other simulations. The em
algorithm can be seen to handle model errors better than Algorithm 6. Compare
also to the result in Figure 5.8. In Figure 6.2b it can be seen that the em algorithm
and Algorithm 8 converges in the same number of iterations and that the em al-
gorithm gives a higher likelihood. Once again, Algorithm 6 gives a lower value
on (6.33) for the optimal solution, than the other two methods.

6.4 Conclusions

Three different methods to estimate the covariance matrix for the process noise
have been compared. The em algorithm derived in Section 6.1 gives a lower path
error, considering the true path and the estimated path from an ekf. The em
algorithm is also robust to changes in the initial value. One advantage with the
em algorithm is that no true tool position is needed, which is the case for Algo-
rithm 6.
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(a) The resulting path error for the em algorithm (solid) and Algo-
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from Algorithm 6.
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Figure 6.2: Path errors and the log-likelihood function for sim2.



7
Pose Estimation of an Accelerometer

In this chapter a novel method to estimate the position and orientation of a tri-
axial accelerometer mounted on an industrial robot is presented. Previous work,
e.g. Renk et al. (2005) and Won and Golnaraghi (2010), are only focused on the
accelerometer calibration, i.e., the internal parameters of the accelerometer, such
as sensitivity and bias are identified, but also alignment of each one of the three
accelerometer measurement channels is considered. The estimation method pre-
sented here uses a two step procedure where the first step is to identify the orien-
tation of the sensor using a number of static experiments. It is assumed that the
sensor is mounted in such a way that it can be arbitrarily oriented using the six
dof robot arm. The desired orientation of the sensor is hence known while the
actual orientation is unknown. In the second step the position of the accelerom-
eter is estimated using dynamic experiments. The orientation is obtained from
an optimisation problem with a closed form solution and the position is obtained
from an overdetermined system of equations, hence a least square solution is re-
quired. Most parts of this chapter have previously been published in Axelsson
and Norrlöf (2011b).

The chapter starts with the problem formulation in Section 7.1. The solution
to the orientation estimation is presented in Section 7.2 and the estimation of
the mounting position is presented in Section 7.3. Finally, the results from ex-
perimental evaluations are given in Section 7.4 and Section 7.5 concludes the
chapter.

73
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(a) The accelerometer and its actual co-
ordinate system Oxayaza.

(b) The accelerometer and the desired
coordinate system Oxsyszs.

Figure 7.1: The accelerometer mounted on the robot. The yellow rectangle
represents the tool or a weight and the black square on the yellow rectangle
is the accelerometer. The base coordinate system Oxbybzb of the robot is also
shown.

7.1 Problem Formulation

Assume that the accelerometer is mounted on the robot according to Figure 7.1a
where the sensor is assumed to be rigidly attached to the robot tool. Given a
definition of the tool coordinate system the estimation method presented in this
chapter finds the relative orientation and position of the triaxial sensor. The
orientation of the desired coordinate system can be seen in Figure 7.1b. Let ρa be
an accelerometer measurement vector in the sensor coordinate systemOxayaza of
the accelerometer and ρs an acceleration vector in the desired coordinate system
Oxsyszs, describing the acceleration in m/s2. The relation between ρa and ρs is
given by,

ρs = κRa/sρa + ρ0, (7.1)

where Ra/s is the rotation matrix from Oxayaza to Oxsyszs, κ is the accelerometer
sensitivity and ρ0 is the bias. It is assumed that the same sensitivity value κ can
be used for all three sensors in the triaxial accelerometer. The sensitivity and bias
are chosen such that the unit in Oxsyszs is m/s2. When the unknown parameters
in (7.1) have been found the position of the accelerometer is identified, where
the position is expressed relative to the wrist coordinate system. To solve for the
unknown parameters, the vector ρa is measured by the accelerometer while the
vector ρs is computed from a model. In the static case ρs is simply the gravity
vector, while in the dynamic case when the sensor is moved the acceleration will
depend on the speed and orientation of the sensor. To be able to divide the esti-
mation problem in two distinct problems the orientation is estimated using static
measurements only while the position of the sensor is found by moving the ac-
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celerometer along a known path with known speed. Using the known orientation
of the accelerometer it is possible to numerically cancel the effect of gravity and
only measure the dynamic acceleration, with constant speed in a circular path,
perpendicular to the gravity field. The orientation of the accelerometer is kept
fixed with respect to the path coordinates during the motion. This means that
the acceleration originating from the movement can be isolated from the gravity
component. A special case is when Oxsyszs is rotated such that the coordinate
system of the accelerometer is directed to give gravity measurements along one
coordinate axis only. The two other axes of the accelerometer directly gives the
dynamic acceleration component which can be used to estimate the position.

7.2 Identification of Orientation, Sensitivity and Bias

The relation in (7.1) cannot be satisfied exactly for all times due to noisy measure-
ments and other disturbances acting on the system. To solve for the parameters
Ra/s, κ and ρ0 in (7.1), the residual has to be defined according to

ek = ρs,k − κRa/sρa,k − ρ0, (7.2)

where k indicates the sample number. The problem is now to minimise a cost
function which depends on the residual. Here the cost function is chosen as the
sum of the squared norm of the residuals. Moreover, to ensure Ra/s ∈ SO(3), i.e.,
a rotation matrix, the two constrains det(Ra/s) = 1 and Ra/sT = Ra/s−1 have to
be included in the optimisation problem. The optimisation problem can now be
written as

minimise
∑N
k=1 ||ek ||

2

subject to det(Ra/s) = 1
Ra/sT = Ra/s−1

(7.3)

By introducing the centroids for the measurements in Oxayaza and Oxsyszs,

ρ̄s =
1
N

N∑
k=1

ρs,k , ρ̄a =
1
N

N∑
k=1

ρa,k , (7.4)

and defining new coordinates,

ρ′s,k = ρs,k − ρ̄s, ρ′a,k = ρa,k − ρ̄a, (7.5)

the optimisation problem has the closed form solution (Horn et al., 1988),

κ =

√√√
N∑
k=1

∣∣∣∣∣∣ρ′s,k ∣∣∣∣∣∣2/ N∑
k=1

∣∣∣∣∣∣ρ′a,k ∣∣∣∣∣∣2, (7.6a)

Ra/s = M
(
MTM

)−1/2
, (7.6b)

ρ0 = ρ̄s − κRρ̄a, (7.6c)
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where

M =
N∑
k=1

ρ′s,k(ρ
′
a,k)

T. (7.7)

N is the total number of measurements and it has to be assumed that N ≥ 3. In
addition a condition of sufficient excitement has to be fulfilled, such that MTM
has full rank. As an alternative to the formulation above where the rotation is
parameterised by the orthonormal matrix Ra/s it is also possible to find a closed-
form solution to (7.1) using unit quaternions, see e.g. Horn (1987). With respect
to the number of operations, the matrix formulation is, however, computationally
more efficient than the quaternion formulation.

As indicated in Section 7.1 the orientation and the sensor parameters are found
using static measurements, i.e., moving the tool into a number, NC , of different
configurations. The gravity vector is measured by the accelerometer in each of
the NC configurations, which gives NM,j , j = 1, . . . , NC measurements for each
configuration. Let

{ρa} =
{{
ρ1
a,i

}NM,1
i=1

, . . . ,
{
ρ
NC
a,i

}NM,NC
i=1

}
(7.8)

denote the set of all the N =
∑NC
j=1 NM,j measurements in all NC configurations,

and let

{ρs} =
{{
ρ1
s

}NM,1
i=1

, . . . ,
{
ρ
NC
s

}NM,NC
i=1

}
(7.9)

be the gravity vector from the model in the desired coordinate system Oxsyszs
for each configuration, where ρjs , j = 1, . . . , NC is a constant. Using the measured
accelerations and the model values to solve the optimisation problem in (7.3)
according to (7.4) to (7.7) the transformation parameters can be computed.

The NC different configurations can be chosen arbitrary as long as the matrix
MTM has full rank1. Here six different configurations, as shown in Figure 7.2,
are suggested. From Figure 7.2 it can be seen that

ρ1
s =

(
0 0 g

)T
, ρ2
s =

(
0 g 0

)T
, ρ3
s =

(
0 0 −g

)T
,

ρ4
s =

(
0 −g 0

)T
, ρ5
s =

(
−g 0 0

)T
, ρ6
s =

(
g 0 0

)T
,

(7.10)

where g = 9.81 m/s2. Note that the vectors in (7.10) are directed towards the
gravity vector in Figure 7.2. The explanation for this is that an accelerometer
measures the normal force which is directed towards the gravity vector.

The six configurations in Figure 7.2 are straightforward to obtain for a six degree
of freedom industrial manipulator, see Chapter 2. The procedure to estimate the
triaxial accelerometer sensor parameters is summarised in Algorithm 9.

1The matrix MTM has always full rank if none of the two sets {ρa} and {ρs} are coplanar.
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Algorithm 9 Estimation of the sensor parameters

1: Measure the acceleration for the different configurations in Figure 7.2 to ob-
tain {ρa} according to (7.8).

2: Construct {ρs} in (7.9) from (7.10).
3: Calculate Ra/s, κ and ρ0 from (7.4) to (7.7).
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Figure 7.2: Six different configurations of the robot tool used in Algorithm 9.
The orientation of the desired coordinate system Oxsyszs is shown for each
configuration. The base coordinate system Oxbybzb and the gravity vector
are also shown.

7.3 Estimation of the Position of the Accelerometer

In the second step of the proposed orientation and position estimation process
a method for the position estimation is explained for the accelerometer’s coordi-
nate system Oxsyszs, expressed in a coordinate system Oxbf ybf zbf fixed to the
robot. From Section 7.2 the orientation and sensor parameters are known, hence
the acceleration measured by the accelerometer has a known orientation.

Using a mathematical model of the robot motion it is possible to compute the
acceleration, parameterised in some unknown parameters. To simplify the math-
ematical model for the acceleration and to make it possible to parameterise the
unknown parameters, consider the case when the robot is in the configuration
shown in Figure 7.3. The figure shows the vector rs, the two coordinate systems
Oxbf ybf zbf and Oxsyszs, the world fixed coordinate system Oxbybzb attached to
the base of the robot, the coordinate systemOxwywzw fixed to the end of the robot
arm, and the vector

as
M=
d2

dt2
rs, (7.11)

which describes the acceleration of Oxsyszs. The mathematical expression for
as together with the measured acceleration are used in order to estimate the un-
known parameters. The figure also shows a parameter θ describing the rotation
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Figure 7.3: The first robot configuration for estimation of the mounting po-
sition. The black cube on the yellow box indicates the sensor, i.e., the origin

of Oxsyszs. The yellow box is attached to the robot in the point
(
L1 0 L2

)T
expressed in Oxbf ybf zbf .

between Oxbf ybf zbf and Oxbybzb, two known parameters L1 and L2 describing
the lengths of the arms and the three unknown parameters li , i = 1, 2, 3 describ-
ing the vector rs/w in Oxwywzw.

All the calculations are done in the world fixed coordinate system in order to
obtain an expression for d2

dt2
rs. In a body fixed coordinate system Oxbf ybf zbf

d2

dt2
rs = 0. In the sequel, the notation [rs]i is used to emphasise that rs is expressed

in coordinate system i.

Figure 7.3 shows that rs can be written as a sum of two vectors,

[rs]bf = [rw]bf + [rs/w]bf , (7.12)
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where

[rs/w]bf =
(
l3 −l2 −l1

)T
, (7.13)

[rw]bf =
(
L1 0 L2

)T
. (7.14)

The transformation of rs from Oxbf ybf zbf to Oxbybzb can be expressed as

[rs]b =
[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
, (7.15)

where [
Qbf /b

]
b

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (7.16)

is the rotation matrix that relates the coordinate system Oxbf ybf zbf to Oxbybzb,
and θ = θ(t) is the angle relating Oxbybzb and Oxbf ybf zbf according to Fig-
ure 7.3. Taking the derivative of [rs]b with respect to time gives

d
dt

[rs]b =
(
d
dt

[
Qbf /b

]
b

) (
[rw]bf + [rs/w]bf

)
. (7.17)

The time derivative of the rotation matrix is given by (Spong et al., 2005)

d
dt

[
Qbf /b

]
b

= S(ω)
[
Qbf /b

]
b
, (7.18)

where ω =
(
0 0 θ̇

)T
and

S(ω) =

0 −θ̇ 0
θ̇ 0 0
0 0 0

 (7.19)

is a skew symmetric matrix. Hence, the time derivative of [rs]b can be written

d
dt

[rs]b = S(ω)
[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
. (7.20)

The second time derivative of [rs]b becomes

[as]b =
d2

dt2
[rs]b =

(
d
dt
S(ω)

) [
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
+ S(ω)

(
d
dt

[
Qbf /b

]
b

) (
[rw]bf + [rs/w]bf

)
= S(ω̇)

[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
+ S(ω)S(ω)

[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
= S(ω)S(ω)

[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
,

(7.21)

where ω̇ =
(
0 0 0

)T
follows from the assumption of constant angular velocity.

It now remains to transform the measured acceleration aMs from the sensor frame
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Oxsyszs to the base frame Oxbybzb. From Figure 7.3 it can be seen directly that[
aMs

]
bf

=
(
aMs,x aMs,y 0

)T
, (7.22)

hence [
aMs

]
b

=
[
Qbf /b

]
b

[
aMs

]
bf
. (7.23)

Equations (7.21) and (7.23) give[
Qbf /b

]
b

[
aMs

]
bf

= S(ω)S(ω)
[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
⇔[

aMs
]
bf

=
[
Qbf /b

]T
b
S(ω)S(ω)

[
Qbf /b

]
b

(
[rw]bf + [rs/w]bf

)
(7.24)

since
[
Qbf /b

]T
b

=
[
Qbf /b

]−1

b
. Carrying out the matrix multiplication for the right-

hand side of (7.24) gives

[
aMs

]
bf

=

−θ̇
2(L1 + l3)
θ̇2l2

0

 , (7.25)

where (7.13), (7.14), (7.16) and (7.19) have been used. Equations (7.22) and (7.25)
can now be written as a system of equations where l2 and l3 are unknown,(

0 −θ̇2

θ̇2 0

) (
l2
l3

)
=

(
aMs,x + θ̇2L1

aMs,y

)
. (7.26)

It is thus possible to find l2 and l3 from (7.26) but unfortunately not l1. Rotat-
ing the sensor according to Figure 7.4 will give information about l1. The same
calculations as before with

[rs/w]bf =
(
−l1 −l2 −l3

)T
, (7.27)

[rw]bf =
(
L3 0 L4

)T
, (7.28)[

aMs
]
bf

=
(
aMs,z aMs,y 0

)T
, (7.29)

see Figure 7.4, give (
θ̇2 0
0 θ̇2

) (
l1
l2

)
=

(
aMs,z + θ̇2L3

aMs,y

)
. (7.30)

Equations (7.26) and (7.30) can now be used to estimate the unknown param-
eters. Using (7.26) and (7.30) the estimation of l2 uses approximately twice as
much data than the estimation of l1 and l3. To get equal amount of data for each
parameter, which gives a more accurate estimation, the robot configuration in
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Figure 7.4: The second robot configuration for estimation of the mount-
ing position. The black cube on the yellow box indicates the sensor, i.e.,
the origin of Oxsyszs. The yellow box is attached to the robot in the point(
L3 0 L4

)T
expressed in Oxbf ybf zbf .
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Figure 7.5: The third robot configuration for estimation of the mounting po-
sition. The black cube on the yellow box indicates the sensor, i.e., the origin

of Oxsyszs. The yellow box is attached to the robot in the point
(
L1 0 L2

)T
expressed in Oxbf ybf zbf .
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Figure 7.5 is used, which gives

[rs/w]bf =
(
l3 −l1 l2

)T
, (7.31)

[rw]bf =
(
L1 0 L2

)T
, (7.32)[

aMs
]
bf

=
(
aMs,x aMs,z 0

)T
. (7.33)

From (7.24) the following equation is obtained,(
0 −θ̇2

θ̇2 0

) (
l1
l3

)
=

(
aMs,x + θ̇2L1

aMs,z

)
. (7.34)

Equations (7.26), (7.30) and (7.34) can now be written as one system of equations
according to 

0 0 −θ̇2
c1

0 θ̇2
c1 0

θ̇2
c2 0 0
0 θ̇2

c2 0
0 0 −θ̇2

c3
θ̇2
c3 0 0

︸                 ︷︷                 ︸
A

l1l2
l3

︸︷︷︸
l

=



aMs,x,c1 + θ̇2
c1L1

aMs,y,c1
aMs,z,c2 + θ̇2

c2L3
aMs,y,c2

aMs,x,c3 + θ̇2
c3L1

aMs,z,c3

︸              ︷︷              ︸
b

, (7.35)

where index ci, i = 1, 2, 3 indicates from which robot configuration the measure-
ments come from. Equation (7.35) has more rows than unknowns, hence the
solution to (7.35) is the solution to the optimisation problem

arg min
l

||b − Al||22 , (7.36)

which has the analytical solution

l̂ =
(
ATA

)−1
ATb. (7.37)

Note that there exist better numerical solutions to (7.35) than (7.37), e.g. l=A\b
in Matlab. The procedure to estimate the position of the accelerometer is sum-
marised in Algorithm 10.

Algorithm 10 Estimation of the mounting position

1: Measure the acceleration of the tool
[
aMs

]
s

and the angular velocity θ̇ for the
three different configurations in Figures 7.3, 7.4 and 7.5 when θ varies from
θmin to θmax with constant angular velocity.

2: Construct A and b in (7.35).
3: Solve (7.35) with respect to l, for example according to (7.37).
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Figure 7.6: Orientation for the five mounting positions that were used to
evaluate the two algorithms. The orientation of the desired coordinate sys-
tem is also shown.

7.4 Experimental Results

In this section the proposed orientation and position estimation method describ-
ed in the two algorithms in Sections 7.2 and 7.3 is evaluated using experimental
data. For Algorithm 9, the data, i.e., the acceleration values, are collected dur-
ing 4 s for each one of the six configurations in Figure 7.2 using a sample rate
of 2 kHz. For Algorithm 10, the arm angular velocity θ̇ for joint one and the
acceleration measurements are collected when the robot is in the three different
configurations according to Figures 7.3, 7.4 and 7.5. In the position estimation
experiments data are collected during 4 s in each one of the three configurations,
but it is only the constant angular velocity part of the data that is used. The arm
angular velocity of joint one is computed from the motor angular velocity θ̇m
using,

θ̇ =
θ̇m
η
, (7.38)

where η is the gear ratio. The same sample rate as before is used, i.e., 2 kHz. The
accelerometer used in the experiments is a triaxial accelerometer from Crossbow
Technology, with a range of ±2 g, and a sensitivity of approximately 1 V/g (Cross-
bow Technology, 2004). The accelerometer is connected to the measurement sys-
tem of the robot controller, and hence the acceleration and motor angular velocity
can be synchronised and measured with the same sampling rate.

Five different mounting positions and different orientations of the accelerometer
have been used for evaluation of Algorithms 9 and 10. The actual physical orien-
tation of the sensor was measured using a protractor, see Figure 7.6, where the
orientation of the desired sensor coordinate system also is shown.
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Table 7.1: Estimated parameters in (7.1) using Algorithm 9 for five different
test cases.

Test κ̂ ρ̂0 R̂a/s

1 9.91

 25.05
−23.75
24.26


−0.0138 −0.9998 −0.0170
−0.0094 −0.0169 0.9998
−0.9999 0.0140 −0.0092


2 9.91

−23.89
−24.03
25.11


 0.9999 −0.0070 −0.0131

0.0129 −0.0276 0.9995
−0.0073 −0.9996 −0.0275


3 9.91

 34.80
−23.73

3.07


−0.6348 −0.7724 −0.0208
−0.0027 −0.0247 0.9997
−0.7727 0.6347 0.0135


4 9.91

−24.46
24.86
23.74


 0.0169 −0.0139 0.9998
−0.9992 −0.0355 0.0164
0.0353 −0.9993 −0.0145


5 9.92

−3.91
24.95
33.81


−0.6314 0.7751 0.0209
−0.0269 0.0050 −0.9996
−0.7750 −0.6318 0.0177



7.4.1 Evaluation of the Estimated Orientation, Sensitivity and
Bias

Algorithm 9 was applied to the five test cases presented above and the result R̂a/s,
κ̂ and ρ̂0 can be seen in Table 7.1. From Figure 7.6 it can be seen that the rotation
matrix R in (7.1) should resemble

Ra/s1 =

 0 −1 0
0 0 1
−1 0 0

 ,Ra/s2 =

1 0 0
0 0 1
0 −1 0

 ,Ra/s3 =

−a
3 −b3 0

0 0 1
−c3 d3 0


Ra/s4 =

 0 0 1
−1 0 0
0 −1 0

 ,Ra/s5 =

−a
5 b5 0

0 0 −1
−c5 −d5 0

 ,

where a, b, c and d are positive numbers that should be close to cos(45◦) ≈ 0.7071.
The superscript indicates the test number. A rotational difference between the
measured rotation matrix Ra/s i and the estimated matrix R̂ia/s can be computed
using the corresponding unit quaternions qi and q̂i . The rotation angle ϑi of qi

∆
,

where qi
∆

=
(
qi
)−1
∗ q̂i , which should be small, is a good measure of the difference

between Ra/s i and R̂ia/s.

Given a rotation matrix R the corresponding unit quaternion q =
{
η, ε

}
can be



86 7 Pose Estimation of an Accelerometer

Table 7.2: The rotation angle ϑ indicates how close the estimated and mea-
sured rotation matrices are to each other. The matrices are identical if ϑ = 0◦

Test 1 2 3 4 5
ϑ 1.4◦ 1.8◦ 5.8◦ 2.4◦ 6.0◦

calculated according to (Sciavicco and Siciliano, 2000)

η =
1
2

√
r11 + r22 + r33 + 1, (7.39a)

ε =
1
2

sign(r32 − r23)
√
r11 − r22 − r33 + 1

sign(r13 − r31)
√
r22 − r33 − r11 + 1

sign(r21 − r12)
√
r33 − r11 − r22 + 1

 , (7.39b)

where rij is the element in row i and column j in R. The inverse of a quaternion
is given by q−1 =

{
η,−ε

}
and the product of two quaternions is given by

q1 ∗ q2 =
{
η1η2 − εT1ε2, η1ε2 + η2ε1 + ε1 × ε2

}
. (7.40)

Finally, the rotation angle ϑ is given by

ϑ = 2 arccos(η). (7.41)

The Robotics toolbox (Corke, 1996) in Matlab can be used for computations
involving quaternions.

The resulting rotation angle ϑi for the five test cases can be seen in Table 7.2. The
difference is small in all cases, but for tests 3 and 5 a larger deviation can be seen.
One explanation for this is that it is more difficult to mount the accelerometer in
a configuration not aligned with the robot tool, as seen in Figure 7.1.

It is more difficult to obtain true values for the parameters κ and ρ0. To verify
them, the measured acceleration vector for all five test cases in configuration 1,
in Figure 7.2, is transformed from Oxayaza to Oxsyszs, which results in three con-
stant signals aMs,x, aMs,y and aMs,z for the three axes of the accelerometer. Figure 7.2
shows that the measured acceleration in frame Oxsyszs should resemble as,x = 0,
as,y = 0 and as,z = g. Subtracting as,j from the mean of aMs,j , j = x, y, z, gives an
error for the transformed acceleration. A diagram of the errors for each coordi-
nate axis in Oxsyszs is shown in Figure 7.7. The diagram shows the median as
the central mark, the edges of the box are the 25th and 75th percentiles and the
dashed lines extend to the most extreme error. The errors are small and, as ex-
pected, the errors are larger in x and y due to the higher sensitivity to orientation
errors in these axis when measuring gravity along the z-axis. The bias in x can
be explained by a systematic error in orientation due to the robot elasticity and
gravitational force acting on the robot in the evaluation position, see Figure 7.1.

The results presented in Tables 7.1 and 7.2 are based on one experiment for each
test case. In order to get an estimation of the distribution of the estimated pa-
rameters, more precisely the mean and variance of the distribution for each pa-
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Figure 7.7: Diagram of the transformation errors in the x-, y- and z-direction
for (7.1) in configuration 1 (Figure 7.2) for all five test cases. The central
mark is the median, the edges of the box are the 25th and 75th percentiles
and the dashed lines extend to the most extreme error.

rameter, several experiments have to be performed. Repeating the experiments
will give measurements with the same mean, that is, only the noise has changed
in the new measurements. Instead of performing expensive experiments, the mc
transformation described in Section 3.4 can be used to obtain an estimate of the
variance of the estimated parameters. Firstly, new signals are generated from
the distribution of the measurements in each robot configuration in Figure 7.2.
Secondly, the transformation parameters Ra/s, κ, and ρ0, as well as the rotation
angle ϑ are estimated with the new signals. This is repeated Nmc times for each
test case. The mean and variance of the distribution for each parameter can now
be calculated according to (3.28). Figure 7.8a shows a typical pdf for one coordi-
nate axis in one of the six robot configurations. New samples are drawn from the
empirical pdf p(x) in Figure 7.8a using the inverse transform sampling method
described in Algorithm 11. The cumulative distribution function (cdf) can here
be calculated as a cumulative sum resulting in the stair in Figure 7.8b.

Algorithm 11 Inverse Transform Sampling

1: Calculate the cdf P (x) from the pdf p(x),

P (x) =

x∫
−∞

p(x′) dx′ . (7.42)

2: Generate a number u from the uniform distribution U (0, 1).
3: Compute x from

P (x) = u. (7.43)

Table 7.3 shows the mean and variance for each parameter, where Ra/s is repre-
sented by each individual element, over Nmc = 1 000 mc simulations. The mean
of the parameters coincide with the estimated parameters in Table 7.1. Table 7.4b
also shows that the elements in Ra/s that are close to ±1 are more accurate than
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Figure 7.8: Empirical pdf and cdf for the measured data for the ya axis for
test 1 in configuration 1.

the ones that are close to zero, compare e.g. r11 and r12 for test 1. Since the ma-
trix Ra/s has low variances for each element, the variance of the rotation angle ϑ
should be small, which is confirmed in Table 7.3b.

7.4.2 Evaluation of the Estimated Position

Algorithm 10 was also applied for the five test cases. Figure 7.9 shows how the
measured data, i.e., the acceleration in Oxsyszs and the arm angular velocity, can
look like when the robot is in the configuration according to Figure 7.3. Note that
it is only the sequence where the angular velocity is constant, in this case around
3 rad/s, that is used. Figure 7.3 shows that the acceleration in the z-direction
only originate from the gravity which is verified by Figure 7.9a. It can also be
seen that the acceleration due to the circular motion should be in the negative x-
direction and in the positive y-direction which is the case in Figure 7.9a. Hence,
the transformation from Oxayaza to Oxsyszs, given by the identified parameters
in (7.1), is correct.

The estimated position l̂ for the five test cases can be seen in Table 7.4. Note that
l̂2 for test 5 is negative which comes from the fact that the sensor is placed on the
other side of the weight than was used in the derivation in Section 7.3. The table
also shows the error ∆ between l̂ and the measured position lM . The position
was always measured using a tape measure to the centre of the accelerometer,
since the position of the origin of the accelerometer’s coordinate system inside
the sensor is unspecified.

If the measured θ̇ is assumed to be without noise, which is a reasonable assump-
tion for the robot system used during the evaluation, then l̂ is linear dependent
of the noise, originating from the measured acceleration, according to (7.37). The
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Table 7.3: Mean and variance of the estimated transformation parameters
Ra/s, κ and ρ0 as well as the mean for the rotational difference ϑ between
the measured and estimated rotation matrix Ra/s, for Nmc = 1 000 mc sim-
ulations.

Test 1 2 3 4 5
r11 -0.0138 0.9999 -0.6348 0.0169 -0.6314
r12 -0.9998 -0.0070 -0.7724 -0.0139 0.7751
r13 -0.0170 -0.0131 -0.0208 0.9998 0.0209
r21 -0.0094 0.0129 -0.0028 -0.9992 -0.0269
r22 -0.0169 -0.0276 -0.0247 -0.0355 0.0050
r23 0.9998 0.9995 0.9997 0.0164 -0.9996
r31 -0.9999 -0.0073 -0.7727 0.0353 -0.7750
r32 0.0140 -0.9996 0.6347 -0.9993 -0.6318
r33 -0.0092 -0.0275 0.0135 -0.0145 0.0177
κ 9.9116 9.9121 9.9146 9.9124 9.9153
ρ0,1 25.0472 -23.8879 34.7958 -24.4614 -3.9071
ρ0,2 -23.7469 -24.0299 -23.7326 24.8569 24.9526
ρ0,3 24.2601 25.1132 3.0750 23.7401 33.8097
ϑ 1.3641 1.7924 5.7692 2.3844 6.0309

(a) Mean.

Test 1 2 3 4 5
r11 4.55 e-11 6.45 e-15 2.49 e-11 7.61 e-11 2.22 e-11
r12 2.13 e-14 2.05 e-11 1.69 e-11 3.51 e-11 1.48 e-11
r13 4.34 e-11 3.16 e-11 1.00 e-10 2.86 e-14 3.44 e-11
r21 2.45 e-11 3.16 e-11 4.20 e-11 5.13 e-14 2.43 e-11
r22 4.33 e-11 1.73 e-11 1.05 e-10 2.42 e-11 3.54 e-11
r23 1.49 e-14 1.77 e-14 6.70 e-14 7.60 e-11 1.95 e-14
r31 1.11 e-14 2.05 e-11 1.68 e-11 2.42 e-11 1.48 e-11
r32 4.55 e-11 1.41 e-14 2.50 e-11 3.79 e-14 2.23 e-11
r33 2.45 e-11 1.73 e-11 4.68 e-11 3.52 e-11 2.55 e-11
κ 3.28 e-9 2.77 e-9 2.92 e-9 2.22 e-9 2.57 e-9
ρ0,1 8.15 e-8 4.60 e-8 8.65 e-8 7.82 e-8 6.24 e-8
ρ0,2 6.33 e-8 4.42 e-8 1.43 e-7 7.24 e-8 4.91 e-8
ρ0,3 6.77 e-8 3.86 e-8 7.99 e-8 4.98 e-8 5.09 e-8
ϑ 1.39 e-7 6.27 e-8 1.49 e-7 1.12 e-7 1.19 e-7

(b) Variance.
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(b) Measured arm angular velocity.

Figure 7.9: Measured data, to be used to estimate the position l, for test 1
when the robot is in the configuration according to Figure 7.3.

covariance matrix of l̂ can therefore be calculated as

Cov
(
l̂
)

=
(
ATA

)−1
AT Cov (b)

((
ATA

)−1
AT

)T
=

(
ATA

)−1
ATA

(
ATA

)−T
Cov (b) =

(
ATA

)−T
Cov (b) , (7.44)

where −T means both transpose and inverse. In (7.44) it has been used that Cov (b)

is a scalar. The structure of A in (7.35) results in a diagonal matrix
(
ATA

)−T
, hence

Cov
(
l̂
)

is a diagonal matrix. The standard deviation of the estimated position is

now given by the square root of the diagonal elements in Cov
(
l̂
)
, which can be

found in Table 7.4. Considering the accuracy of the measurements and the uncer-
tainty of the origin of the accelerometer coordinate system the result in Table 7.4
is considered as acceptable. The actual requirement of the result, in terms of
position and orientation accuracy, will depend on the application where the ac-
celerometer is used. The accuracy is sufficient in experiments with dynamic posi-
tion and orientation estimation of the tool position using sensor fusion methods,
such as ekf and pf, see Chapter 8.

7.5 Conclusions

A method to find the position and orientation of a triaxial accelerometer mounted
on a sixdof robot is presented. The method is divided into two main steps, where
in the first step, the orientation is estimated by finding the transformation from
the actual coordinate system of the accelerometer, with unknown orientation, to
a new coordinate system with known orientation. It is also possible to find the
sensitivity and the bias parameters. The estimation of the orientation is based on
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Table 7.4: Estimated positions l̂ of the accelerometer in the coordinate sys-
tem Oxwywzw for five different mounting positions, the error ∆ relative the
measured position lM , and the standard deviation for l̂.

Test Est. pos. (l̂) [cm] ∆ = l̂ − lM [cm] Std. for l̂ [cm]

1
(
35.2 6.3 15.5

)T (
0.2 2.3 −1.0

)T (
0.4 0.5 0.5

)T
2

(
14.2 5.8 16.9

)T (
−0.3 −1.2 1.8

)T (
0.3 0.3 0.3

)T
3

(
36.3 6.3 21.4

)T (
−1.7 2.3 −1.6

)T (
0.5 0.6 0.6

)T
4

(
29.2 1.6 5.9

)T (
2.2 1.6 0.4

)T (
0.4 0.4 0.4

)T
5

(
34.8 −3.9 16.5

)T (
−0.7 0.1 1.0

)T (
0.5 0.6 0.6

)T
static measurements of the gravity vector when the accelerometer is placed in dif-
ferent orientations using the six dof robot arm. In the second step of the method,
the mounting position of the accelerometer in a robot fixed coordinate system
is computed using several experiments where the robot is moving with constant
speed. Finally, the method is evaluated on experimental data. The resulting posi-
tion and orientation accuracy are evaluated using measurements on the physical
system. The orientation error is in the range one to six degrees and the position
error up to two centimeters. The accuracy is sufficient in experiments with dy-
namic position and orientation estimation of the tool position using sensor fusion
methods, see Chapter 8.





8
Experimental Evaluations

The experimental evaluation presented in this chapter is performed on the abb
irb4600 industrial robot in Figure 2.1a, and has previously been published in
Axelsson et al. (2011d,c) and Axelsson (2011c).

Six different observers are proposed in Section 8.1 with different estimation mod-
els and different filters. The system setup and data acquisition are described in
Section 8.2. The performance of the six observers are compared in Section 8.3
and Section 8.4 concludes the experimental results.

8.1 Observers

Six observers using the four different estimation models described in Section 4.4
are evaluated. The observers are based on the ekf, eks, or pf from Chapter 3 or
a linear dynamic observer using pole placement (Franklin et al., 2002).

obs1: ekf with the nonlinear model in Section 4.4.1.

obs2: eks with the nonlinear model in Section 4.4.1.

obs3: ekf with the linear state model and nonlinear measurement model in Sec-
tion 4.4.2.

obs4: pf with the linear state model and nonlinear measurement model in Sec-
tion 4.4.2.

obs5: ekfwith the nonlinear model where the acceleration of the end-effector is
input, see Section 4.4.4 .
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obs6: Linear dynamic observer using pole placement with the linear model whe-
re the acceleration of the end-effector is input, see Section 4.4.3. (De Luca
et al., 2007)

8.2 Experimental Setup

The accelerometer used in the experiments is a triaxial accelerometer from Cross-
bow Technology, with a range of ±2 g, and a sensitivity of 1 V/g (Crossbow Tech-
nology, 2004). The orientation and position of the accelerometer were estimated
using the method described in Chapter 7. All measured signals, i.e., acceleration,
motor angles and arm angular acceleration references, are synchronous and sam-
pled with a rate of 2 kHz. The accelerometer measurements are filtered with
an lp-filter before any estimation method is applied to better reflect the tool
movement. The path used in the evaluation is illustrated in Figure 8.1 and it
is programmed such that only joint two and three of the six dof robot are moved.
Moreover, the wrist is configured such that the couplings to joint two and three
are minimised. The dynamic model parameters are obtained using a grey-box
identification method described in Wernholt and Moberg (2011). Note that the
robot stands on a flexible foundation, which has been taken care of in the model
parameters describing the spring and damper pair for joint two.

It is not possible to get measurements of the true state variables, as is the case
for the simulation, instead, only the true trajectory of the end-effector, more pre-
cise the tcp, x and z, is used for evaluation. The true trajectory is measured
using a laser tracking system from Leica Geosystems. The tracking system has
an accuracy of 0.01 mm per meter and a sample rate of 1 kHz (Leica Geosystems,
2008). However, the measured tool position is not synchronised with the other
measured signals. Resampling of the measured signal and a manual synchroni-
sation is therefore needed, which can introduce small errors. Another source of
error is the accuracy of the programmed tcp in the control system of the robot. It
means that if the programmed tcp differ from the one assumed in (4.1), then the
measured position will differ from the estimated position even if the estimated
arm angular positions are correct. The estimated data are therefore aligned with
the measured position to avoid any static errors. The alignment is performed us-
ing a least square fit between the estimated position and the measured position.

8.3 Results

The only measured quantity, to compare the estimates with, is the measured tool
position, as was mentioned in Section 8.2. Therefore, the estimated arm angles
are used to compute an estimate of the tcp using the kinematic relation, i.e.,(

x̂k
ẑk

)
= Υ (q̂a,k), (8.1)
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Figure 8.1: Measured path for the end-effector used for experimental evalu-
ations.

where q̂a,k is the result from one of the six observers in Section 8.1 at time k. The
result is presented with diagrams where the estimated paths and the true path
in Figure 8.1 are compared. To better see the result, each side of the square is
shown separately, where the size of the magnified axes are the same, it is therefore
possible to compare the result between different sides without having trouble
with the size of the axes. The path error in (5.1) is also used as well as the rmse
values calculated according to (5.8) in the evaluation. Moreover, the first 250
samples are always removed because of transients. The execution time for the
observers is also examined. Note that the execution times are with respect to the
current Matlab implementation. The execution time may be faster after some
optimisation of the Matlab code or by using another programming language,
e.g. C++. The observers are first paired such that the same estimation model is
used, hence obs1–obs2, obs3–obs4, and obs5–obs6 are compared. After that,
the best observers from each pair are compared to each other.

obs1 and obs2. It is expected that obs2 (eks with nonlinear model) will give a
better result than obs1 (ekf with nonlinear model) since the eks uses both previ-
ous and future measurements. This is not the case as can be seen in Figures 8.2,
and 8.3. The reason for this can be the nonlinearities.

One interesting observation is the higher orders of oscillations in the estimated
paths which can be seen in Figure 8.2a. The oscillations can be reduced if the
covariance matrix Q for the process noise is decreased. However, this leads to a
larger path error. The rmse values can be found in Table 8.1. The table shows
that obs2 is slightly better than obs1.

If the bias components are removed the filter performance is unchanged. In Chap-
ter 5 it was showed that the bias components improved the estimated position, at
least when no model errors are present. The model errors are therefore a bigger
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Figure 8.2: The four sides of the true path (solid), and the estimated path
using obs1 (dashed), and obs2 (dash-dot).
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Figure 8.3: The path error for the estimated path using obs1 (dashed), and
obs2 (dash-dot).

problem than the bias in the acceleration measurements. One reason that there is
no difference between the ekf with or without bias compensation can be that the
trajectory is performed under a short time, hence a small bias error has no time
to affect the result that much.

With the current Matlab implementation the execution times are around five
and seven seconds, respectively, and the total length of the measured path is four
seconds, hence none of the observers are real-time. Most of the time is spent in
evaluating the Jacobian Hk in Algorithm 1 and it is probably possible to decrease
that time with a more efficient implementation. Another possibility can be to run
the filter with a lower sample rate. However, in Section 5.3 it is showed that a too
low sample rate can cause instability in the time update. There is a possibility
to save time if the time update is used with the original sample rate and the
measurement update with a lower sample rate, since most of the time is spent in
evaluating the Jacobian Hk . obs2 is slower since an ekf is used first and then the
backward time recursion, see Algorithm 3. However, most of the time in the eks
is spent in the ekf. As a matter of fact, the execution time is irrelevant for obs2
since the eks uses future measurements and has to be implemented offline.

None of the two observers can be said to be better than the other in terms of
estimation performance and execution time. The decision is whether future mea-
surement can be used or not. obs1 is chosen as the one that will be compared
with the other observers in Section 8.4.
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Table 8.1: rmse values of the path error e for the end-effector position given
in mm for the six observers.

obs1 obs2 obs3 obs4 obs5 obs6
ε 1.5704 1.5664 2.3752 1.5606 1.6973 1.7624

obs3 and obs4. Figure 8.4 shows that the estimated paths follow the true path
for both observers. It can be noticed that the estimate for obs3 (ekf with linear
dynamic model) goes somewhat past the corners before it changes direction and
that obs4 (pf with linear dynamic model) performs better in the corners. The
estimate for obs4 is also closer to the true path, at least at the vertical sides. The
path error is presented in Figure 8.5, where the error for obs4 is below the error
for obs3 most of the time. The rmse values of the path error for obs3 and obs4
are presented in Table 8.1. The rmse for obs4 is approximately two-thirds of the
rmse for obs3.

obs4 has also been executed without the bias states included in the measurement
equation for the motor positions, see Section 4.4.2. The result is that the path
error for obs4 will be increased without the bias states. The explanation for this
is the model errors in the dynamic model. The Matlab implementation of obs3
is almost real-time, just above four seconds, and the execution time for obs4 is
in the order of hours. The execution time for obs3 can be reduced to real-time
without losing performance if the measurements are decimated to approximately
200 Hz. Note that the problem with instability during the time update is of no im-
portance since obs3 uses the linear dynamic model and not the nonlinear model.

The best observer in terms of the path error is obviously obs4 but if the execution
time is of importance, obs3 is preferable. obs4 will be used in Section 8.4 to
compare with the other observers since the path error is of more interest in this
thesis.

obs5 and obs6. obs6 (linear model with acceleration as input using pole place-
ment) performs surprisingly good although a linear time invariant model is used,
see Figure 8.6. It can also be seen that obs5 (linear model with acceleration as
input using ekf) performs a bit better, at least in the vertical sides. obs5 also has
a higher order oscillation as was the case with obs1 and obs2. This is a matter
of tuning where less oscillations induce higher path error. Figure 8.7 shows the
path error, where it can be seen that obs5 has oscillations with higher frequencies
than obs6 but obs6 has oscillations with lower frequencies where the amplitude
is much higher than for obs5. The rmse values of the path error are showed in
Table 8.1.

No bias compensation has been performed in these two observers. Since the bias
compensation does not improve the results for obs1, it can be assumed that it will
not improve the result for obs5 and obs6 either. Both observers execute in real-
time. The execution times are just below one second and around one-fifth of a
second, respectively. obs6 is clearly the fastest one of the six proposed observers.
obs5 is the one that will be compared to the other observers in Section 8.4
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Figure 8.4: The four sides of the true path (solid), and the estimated path
using obs3 (dashed), and obs4 (dash-dot).



100 8 Experimental Evaluations

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample

e
[m

m
]

Figure 8.5: The path error for the estimated path using obs3 (dashed), and
obs4 (dash-dot).

8.4 Conclusions

The three observers obs1, obs4, and obs5 are the best ones from each pair, ac-
cording to Section 8.3. From Table 8.1 it can be seen that obs1 and obs4 have
the same performance and that obs5 is a bit worse. The differences are small
so it is difficult to say which one that is the best. Instead of filter performance,
other things have to be considered, such as complexity, computation time, and
robustness.

Complexity. The complexity of the filters can be divided into model complexity
and implementation complexity. The implementation of obs1 is straightforward
and no particular tuning has to be performed in order to get an estimate. The
tuning is of course important to get a good estimate. Instead, most of the time
has to be spent on a rigorous modelling work and identification of the parameters
to minimise model errors.

For obs4 the opposite is true. The model is simple and requires not that much
work. Most of the time has to be spent on implementing the pf. The stan-
dard choices of a proposal distribution did not work due to high snr and non-
invertible measurement model. Instead, an approximation of the optimal pro-
posal, using an ekf, was required. The consequence is more equations to imple-
ment and more tuning knobs to adjust.

The model complexity for obs5 is in between obs1 and obs2. No model for the
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Figure 8.6: The four sides of the true path (solid), and the estimated path
using obs5 (dashed), and obs6 (dash-dot).
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Figure 8.7: The path error for the estimated path using obs5 (dashed), and
obs6 (dash-dot).

rigid body motion on the arm side is needed which is a difference from the other
two. However, a nonlinear model for the flexibilities and friction is still required,
which is not the case for obs4.

Computation time. The computation time differs a lot for the three observers.
obs5 is in real-time with the current Matlab implementation and obs1 can prob-
ably be executed in real-time after some optimisation of the Matlab code or with
another programming language. The computation time for obs4 is in the order
of hours and is therefore far from real-time.

Robustness. For this path, the effects of the acceleration bias seem to be minor.
If instead the bias is bigger or the path is longer, then the bias effects can be more
severe. obs5 can then have some problems since no compensation for the bias is
included in the observer. An advantage with obs5, compared to the other two,
is that the equations describing the arm dynamics are removed, hence no robust-
ness issues concerning the model parameters describing the arm, such as inertia,
masses, centre of gravity, etcetera. However, the model parameters describing
the flexibilities remain.

Other advantages. An advantage with obs4 is that the pf provides the entire
distribution of the states, which is approximated as a Gaussian distribution in
the ekf. The information about the distribution can be used in e.g. control and
diagnosis.



9
Conclusions and Future Work

This chapter concludes the work in this thesis and discusses possible directions
for future work.

9.1 Conclusions

A sensor fusion approach to estimate the end-effector position and velocity by
combining a triaxial accelerometer at the end-effector and the motor angular
positions of an industrial robot is presented. The estimation is formulated as
a Bayesian problem where the extended Kalman filter (ekf) has been used fre-
quently. The estimation problem has been evaluated on simulated data from a
realistic robot model, and it is also evaluated with experimental data from a state
of the art industrial robot.

The simulation study was performed with the ekf and it showed that the estima-
tion accuracy degrades with parameter errors in the dynamical model. The only
solution is to develop a better dynamical model, which could be considered as
future work. The simulation study also showed that uncertainties in the param-
eters describing the accelerometer model affected the performance. A two-step
method to find the position and orientation of a triaxial accelerometer mounted
on a six degrees of freedom (dof) robot was therefore presented. In the first step,
the orientation was estimated using static measurements of the gravity vector. In
the second step, the mounting position was computed as the solution to a linear
system of equations, from measurements where the robot moves with constant
angular speed. The method was evaluated on experimental data, where the re-
sulting orientation error was in the range of one to six degrees and the position
error less than two centimeters.
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The simulation study also showed that the performance of the ekf changed very
much with different settings of the filter, i.e., with different covariance matrices
for the process and measurement noise. The proposed method for tuning the
ekf worked but different results were obtained for different initial values. A
drawback is that the true position of the end-effector is needed. Another method
was therefore proposed where the em algorithm was used to estimate the process
noise covariance matrix. The em method gave a lower path error than the first
method and there were no indications of different solutions when the initial val-
ues of Q changed. A great advantage with the emmethod is that the true position
of the end-effector is not needed.

Moreover, experimental data have been used to evaluate the estimation perfor-
mance. The ekf from the simulation study was compared to other types of ob-
servers where both the estimation model and the filter were changed. The three
observers with the best performance were

a) an ekf using a nonlinear dynamic model,

b) a particle filter using a linear dynamic model, and

c) an ekf with a nonlinear model, where the acceleration of the end-effector
is used as an input instead of a measurement.

The performance of these three observers was very similar when considering the
path error. The execution time for a) was just above the real-time limit, for c) just
below the limit, and for b) in the order of hours. The time required for modelling
and implementation is also different for the three different observers. For b), most
of the time was spent to implement the filter and get it to work, whereas most of
the time for a) was spent on modelling the dynamics.

Although most of the observers in this thesis are not running in real-time it is
possible to use the estimates in offline methods such as iterative learning control
(ilc), system identification, and diagnosis. However, the computation time can
be decreased by optimising the Matlab code or by using another programming
language, e.g. C++. The estimation methods in this thesis are general and can be
extended to higher degrees of freedom robots and additional sensors, such as gy-
ros and camera systems. The main effect is more complex state space descriptions
and longer computation time.

9.2 Future Work

In this thesis several problems have come up that need to be investigated more
thoroughly. One such problem is discretisation, using Euler forward, of the con-
tinuous state space model derived from Lagrange’s equation. The estimation er-
rors decrease when the sample rate is increased. However, higher sample rate
gives longer computation time. Other discretisation methods than Euler forward
can be unpractical when analytical integration is not possible. A possibility can
be to perform the time update in the ekf in continuous time using an ode-solver,
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instead of discretisation of the model.

Another problem that has been encountered is model errors in the dynamical
parameters. A sensitivity analysis is needed to be able to find out to which pa-
rameters the observers are sensitive. It is interesting to see if the parameters that
are crucial for the performance can be adapted at the same time as the states
are estimated. One way can be to use the same approach as for bias in the mea-
sured signals. That is, introduce bias states for the parameters and estimate them
simultaneously as the states.

For the linear dynamic model, the estimated path goes somewhat past the corners.
It is interesting to see what happens if the noise covariance matrices are time
dependent, e.g. the covariance matrix for the process noise increases when the
path changes drastically. This can be done in several ways, e.g. find out when the
path changes from the measured data or from the programmed path.

A natural continuation is to extend the estimation problem to cover the complete
six dof robot. The sensor system could be extended and a first step would be
to include a gyro to get measurements of the rotation of the end-effector and
not only the translation. Another measurement to consider is the arm angular
position, i.e., a measurement on the arm side of the gearbox. Including moredofs
and measurements will increase the computational complexity of the observers
even more.

Finally, the control performance has to be investigated when the estimated states
are available. However, a closed loop real-time system can be difficult to achieve
due to the computational complexity for most of the presented methods. Instead,
an offline method like ilc has to be considered.
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