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Abstract

Since its discovery, in the 1940’s, radar (Radio Detection and Ranging) has be-
come an important ranging sensor in many areas of technology and science. Most
of the military and many civilian applications are unimaginable today without
radar. With technology development, radar application areas have become larger
and more available. One of these applications is Synthetic Aperture Radar (SAR),
where an airborne radar is used to create high resolution images of the imaged
scene. Although known since the 1950’s, the SAR methods have been contin-
uously developed and improved and new algorithms enabling real-time appli-
cations have emerged lately. Together with making the hardware components
smaller and lighter, SAR has become an interesting sensor to be mounted on
smaller unmanned aerial vehicles (UAV’s).

One important thing needed in the SAR algorithms is the estimate of the plat-
form’s motion, like position and velocity. Since this estimate is always corrupted
with errors, particularly if lower grade navigation system, common in UAV ap-
plications, is used, the SAR images will be distorted. One of the most frequently
appearing distortions caused by the unknown platform’s motion is the image de-
focus. The process of correcting the image focus is called auto-focusing in SAR
terminology. Traditionally, this problem was solved by methods that discard the
platform’s motion information, mostly due to the off-line processing approach,
i.e. the images were created after the flight. Since the image (de)focus and the
motion of the platform are related to each other, it is possible to utilise the in-
formation from the SAR images as a sensor and improve the estimate of the plat-
form’s motion.

The auto-focusing problem can be cast as a sensor fusion problem. Sensor fusion
is the process of fusing information from different sensors, in order to obtain
best possible estimate of the states. Here, the information from sensors measur-
ing platform’s motion, mainly accelerometers, will be fused together with the
information from the SAR images to estimate the motion of the flying platform.
Two different methods based on this approach are tested on the simulated SAR
data and the results are evaluated. One method is based on an optimisation based
formulation of the sensor fusion problem, leading to batch processing, while the
other method is based on the sequential processing of the radar data, leading to a
filtering approach. The obtained results are promising for both methods and the
obtained performance is comparable with the performance of a high precision
navigation aid, such as Global Positioning System (GPS).
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Populärvetenskaplig sammanfattning

Sedan dess uppfinning, på 1940-talet, har radar blivit en viktig sensor för mät-
ning av avstånd i många tekniska och vetenskapliga områden. De flesta militära
och många civila tillämpningar är svåra att tänka sig utan radar idag. Med tek-
nikens utveckling har radarns användningsområde blivit större och mer tillgäng-
liga. En av dessa områden är Syntetisk Apertur Radar (SAR), där en luftburen
radar används för att skapa högupplösta bilder av den avbildade scenen. Trots
att SAR-metoder är kända sedan 1950-talet, har dessa metoder ständigt utveck-
lats och förbättrats och nya algoritmer, lämpliga för realtidstillämpningar, har
trätt fram på senare tid. I och med att hårdvara har blivit mindre och lättare,
har möjligheter för SAR att monteras på mindre obemannade flygande farkoster
(UAV) blivit större.

En viktig sak som är nödvändig i SAR algoritmer är skattning av flygande platt-
forms rörelse, såsom position och hastighet. Eftersom denna skattning alltid är
bestyckat med fel, speciellt om sämre navigeringssystem vanliga i UAV används,
kommer SAR bilder att vara förvrängda. En av de vanligaste bildförvrängningar
orsakad av plattformens okända rörelse är defokusering av SAR bilden. Proces-
sen som korrigerar för detta kallas för auto-fokusering i SAR terminologi. Tradi-
tionellt har detta problem lösts med metoder som kastar bort informationen om
plattformens rörelse, mestadels på grund av icke realtidsmetodiken. Eftersom bil-
dens (de)fokus och plattformens rörelse är relaterade till varandra, är det möjligt
att använda information från SAR bilder som en sensor och förbättra skattningen
av plattformens rörelse.

Denna formulering av auto-fokuseringsproblemet är lämpad för sensorfusions-
ramverk. Sensorfusion är tillståndsskattningsmetod där information från olika
sensorer sammanfogas för att på så sätt åstadkomma bästa möjliga skattningen av
tillstånden. I detta fall, informationen från sensorer som mäter plattformens rö-
relse, huvudsakligen accelerometrar, skall fusioneras tillsammans med informa-
tionen från SAR bilder för att skatta rörelsen hos den flygande plattformen Två
olika metoder baserade på detta tillvägsgångsätt är testade på simulerade SAR
data och resultat är utvärderade. Första metoden är baserad på en optimerings-
formulering av sensorfusionsproblemet, vilket leder till en metod som hanterar
data blockvis, medan den andra baseras på sekvensiell behandling av radar da-
ta, vilket är en filtreringsformulering. De erhållna resultaten är lovande för båda
metoderna och den uppnådda noggrannheten är jämförbar med noggrannheten
som fås med navigeringshjälpmedel med hög prestanda, som Global Positioning
System (GPS).
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Notation

Symbols and Operators

Notation Meaning

xt State vector
yt Measurements vector
ut Known inputs vector
wt Process noise
et Measurement noise
Qt Process noise variance
Rt Measurement noise variance or range
x̂ Estimate of x

N (µ, P ) Gaussian distribution with mean µ and variance P
x0:N Short notation for {x0, x1, . . . , xN }
X, Y , Z Position in Cartesian coordinates
vX , vY , vZ Velocity in X−, Y− and Z−direction, respectively
aX , aY , aZ Acceleration in X−, Y− and Z−direction, respectively

I Grey-scale image (optical or SAR)
Ĩ Complex valued SAR image
R Set of real numbers
O Ordo
ẋt Time derivative of xt
∼ Is distributed according to
|x| Absolute value of x
||x||P P −1−weighted norm of x,

√
xT P −1x

x∗ Complex conjugate of x
arg min x Minimising argument with respect to x
arg max x Maximising argument with respect to x
∈ Is member of
< Is not member of

dim(x) Amount of elements in vector x
A ∗ B Convolution of matrices A and B
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xiv Notation

Abbreviations

Abbreviation Meaning

BFGS Broyden-Fletcher-Goldfarb-Shanno (quasi-Newton al-
gorithm)

CARABAS Coherent All RAdio BAnd Sensing
DCT Discrete Cosine Transform (focus measure)
DOF Degrees Of Freedom
EKF Extended Kalman Filter
MAP Maximum A Posteriori (estimate)
MV Minimum Variance (estimate)
RAR Real Aperture Radar
SAR Synthetic Aperture Radar
SML Sum-Modified-Laplacian (focus measure)
TG Tenengrad (focus measure)

TkBD Track Before Detect



1
Introduction

1.1 Background

Radar (Radio Detection and Ranging) is a system used for finding different ob-
jects in the environment. Usually, in radar, radio waves are transmitted from
the transmitter antenna and echoed waves from objects are received. By measur-
ing the time between transmission and reception of the waves, the range to the
objects can be determined. Radar has, since its introduction in the early 1940’s,
been used more and more in different areas of technology and science. It spans
from early military applications, where radar was used to detect and track enemy
aircraft to more recent applications in the automotive industry where radar is
used for detection of other vehicles or pedestrians on the road in order to prevent
accidents. The primary area of radar application is, just as when it was invented,
tracking of different objects for various purposes, like for example tracking of
airplanes in Air Traffic Control or cars in automotive anti-collision systems.

An example of a target tracking scenario is illustrated in figure 1.1a, where two
omni-directional ranging sensors are estimating the position of one stationary
target. It is easy to see that we can determine the target’s position based on the
intersection of the ranges R1 and R2. The accuracy of the target’s position is
dependent of the range accuracy of the radars. Note that there are two inter-
sections, giving the ambiguity in determination of the targets position. If even
more ranging sensors are used as in Figure 1.1b, more intersections of the ranges
are available and the target’s position can be determined with even higher accu-
racy. The same scenario can be obtained if we have one sensor carried by some
moving platform that is moving along the straight trajectory with velocity vt and
collecting radar echos from the stationary target, as in Figure 1.1c. Usually, the
targets that are tracked are also recognised as targets, i.e. some kind of target

1



2 1 Introduction

R1R2

RadarRadar

Target

(a) Target tracking scenario with two stationary radars and
one stationary target.

R1R2

RadarRadar

Target

(b) Target tracking scenario with five stationary radars and
one stationary target.

t 1t 2t 3t 4t 5v t

R5

R1

Target

(c) Target tracking scenario with one moving radar and one
stationary target.

Figure 1.1: Different target tracking examples.
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Figure 1.2: An aircraft carrying CARABAS, a low frequency UHF SAR. Image
is courtesy of Saab AB.

Figure 1.3: CARABAS SAR image of Simrishamn, Sweden. Image is courtesy
of Blekinge Institute of Technology.

detection and association is used. If that is not done, i.e. no tags are assigned to
the targets, and every radar echo is recorded and treated as target, we get the, so
called, track before detect (TkBD) approach [Salmond and Birch, 2001]. Suppose
now that, instead of one target as in the example above, we are tracking many
targets, each with different radar reflectance. Based on these reflections we can
obtain an “image” of the scene where targets are placed. This is exactly the idea
underlying Synthetic Aperture Radar (SAR), where this basic principle is used to
create high resolution images of the stationary scene with radar carried by the
flying platforms, like aircraft or satellites. In Figure 1.2 an aircraft carrying low
frequency UHF SAR, CARABAS, is shown and in Figure 1.3 an image of a small
town in southern Sweden, Simrishamn, produced using CARABAS is depicted.
One of the biggest advantages of radar images over optical images is the radar’s
all-weather operational capability, i.e. the radar is not occluded by the clouds.
This is a very important advantage that makes the radar an attractive imaging
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(b)Unfocused SAR image of two point tar-
gets with σ = 1.5.

Figure 1.4: Example SAR images with perturbed trajectory.

sensor. Moreover, the radar operates in different frequency bands compared to
optical images, making it possible to discover things invisible to optical systems.

1.2 Problem Formulation

In the above examples, it was assumed that the radar positions are known and
the only source of the targets’ estimated position error is the range measurement
inaccuracy. In many target tracking applications that assumption is valid, but
if the radar’s or the platform’s positions are unknown, which is always the case,
the targets’ estimated positions will suffer from additional inaccuracy caused by
the position error. In the context of SAR imaging, this inaccuracy is the domi-
nating source of the error, since measured range accuracy is usually high. Today,
many flying platforms are equipped with precision global navigation systems like
Global Navigation Satellite Systems (GNSS) which are able to deliver very accu-
rate position and velocity estimates. The downside of the GNSS is that they are
very easy to disturb or jam which means that some alternative, GNSS indepen-
dent, way of obtaining good navigation estimate is needed. This is particularly
important in military operations where access to GNSS can not be assumed. The
position inaccuracy will lead to different image distortions, of which image de-
focus is the most common one. An example of image defocusing is depicted
in Figure 1.4, where two point targets are imaged. Data are acquired with lin-
ear trajectory and constant speed. In Figure 1.4a, the same linear trajectory is
used for image creation, which results in a perfectly focused image. In the image
in Figure 1.4b, the variation in the platform’s cross-track position was added as
N (0, σ2), σ = 1.5 and the image is created with the assumption that the path was
linear. This gives the unfocused images as depicted. This leads to the conclusion
that if better position accuracy of the platform can be estimated, the distortions
can be minimised and more focused images obtained. This process is in SAR con-
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text known as auto-focusing. Many SAR algorithms do not use the position of
the platform explicitly, but rather assume a straight flying trajectory and try to
correct the images afterwards. In this way, the information about the trajectory
that the images contain is not used. However, the back-projection SAR algorithms
[Natterer, 1986] utilise the platform’s position and the information in the images
could be exploited to obtain better position of the platform and in turn better
images.

In the view of this approach for SAR images, the problem is closely related to
the Simultaneous Localisation and Mapping (SLAM), [Durrant-Whyte and Bailey,
2006, Bailey and Durrant-Whyte, 2006], where a map of the unknown environ-
ment is estimated at the same time as the platform’s position. The SLAM problem
has been well studied during recent years and many different solution methods
have been proposed. One method that has been quite successful is to solve the
SLAM problem in the sensor fusion framework. In the SAR application, the map
of the environment from SLAM, is the unknown scene that is imaged and can
be seen as the two dimensional map of point reflectors. The position of the plat-
form is the same as in the SLAM problem. The idea is now to apply the sensor
fusion framework as in the SLAM case and view the SAR images as a “sensor”
that contains information about the position of the platform and obtain the goal
mentioned above, i.e. better position estimate and better images.

1.3 Thesis Overview

In Chapter 2 the basic principles behind SAR are explained. In Chapter 3, the
sensor fusion framework is introduced and a method of using SAR images for
navigation purposes is suggested. In Chapter 4, different image focus measures
are evaluated on both optical and SAR images. Chapter 5 covers methods based
on the complete SAR images leading to the batch formulation or smoothing and
Chapter 6 describes the filtering approach based on the raw radar data. In Chap-
ter 7 conclusions and future work are discussed.

1.4 Contributions

Contributions relevant for this thesis:

Z. Sjanic and F. Gustafsson. Simultaneous Navigation and SAR Auto-
focusing. In Proceedings of 13th International Conference on Infor-
mation Fusion, Edinburgh, UK, July 2010.

This work introduces the simultaneous auto-focusing of the SAR images and nav-
igation in the sensor fusion framework. Auto-focusing problem is formulated as
a state estimation optimisation problem and solved with both local and global
methods.
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Other contributions:

Z. Sjanic, M. A. Skoglund, T. B. Schön, and F. Gustafsson. A Non-
linear Least-Squares Approach to the SLAM Problem. In Proceed-
ings of 18th IFAC World Congress (submitted to), Milano, Italy, Au-
gust/Septemeber 2011.

In this contribution, a nonlinear least-squares formulation of the visual SLAM
problem with 6-DOF platform motion description is posed and solved. the so-
lution is leading to the smoothed estimate of the platform’s states and the land-
marks. This work is submitted to the 18th IFAC World Congress, Milano, Italy,
August/September, 2011.

R. Larsson, Z. Sjanic, M. Enqvist, and L. Ljung. Direct Prediction-
error Identification of Unstable Nonlinear Systems Applied to Flight
Test Data. In Proceedings of the 15th IFAC Symposium on System
Identification, Saint-Malo, France, July 2009.

In this work, an approach for identification of unstable and nonlinear systems
based on prediction-error method is presented. The predictors are based on the
nonlinear state space description of the system. The methods are implemented
and evaluated on both simulated data and real flight test data with promising
results.



2
Principles of Synthetic Aperture

Radar

In this chapter the basic principles of the Synthetic Aperture Radar (SAR) are ex-
plained. It starts with the Real Aperture Radar (RAR), continues with the meth-
ods to create high resolution images and mentions some of the effects associated
with SAR.

2.1 Real Aperture Radar

In the simplest setup a radar image can be created with the moving platform car-
rying the side-looking radar and flying above the scene to be imaged. By sending
and receiving radar pulses along the trajectory, a range-azimuth image is created,
see figure 2.1. Since the energy in each radar pulse is spread out over the scene,
every pulse will produce a one-dimensional image according to the simple prin-
ciple; each echoed pulse is received and gated in the range bins according to the
time (t) it takes to receive the pulse, using the relation R = tc/2, where c de-
notes the speed of light. Since echoes are saved in the digital memory this will
cause some quantisation effects which are described in the Section 2.3 below. This
means that each range bin will contain the total energy reflected from the scene
on that specific range. When all of these simple one-dimensional images are
stacked next to each other, a full RAR image is created. RAR images will have the
imaged scene smeared across the azimuth, giving very poor effective resolution
which can be seen in Figure 2.2, where a simulated example of the RAR image
of two point targets is depicted. The resolution in the azimuth direction for the
RAR images is governed by the basic laws of the electromagnetism which state
that the radar lobe width is dependent of the antenna size and the wavelength
of the carrier according to λ/d, where d is antenna size and λ is the wavelength.
This will give the resolution λR/d where R is the range to the imaged scene. We

7
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Figure 2.1: Side-looking radar geometry. R is the range to the target.
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Figure 2.2: Real aperture radar image of the two point targets.
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see that by decreasing the wavelength or increasing the antenna we can make
the lobe narrower and increase the resolution. The wavelength is usually fixed
to a specific value and there is not much freedom of decreasing it, and besides
there are other unwanted effects if low wavelengths are used like cloud occlu-
sions. There are also limits regarding how large antenna a flying platform can
carry which limits that parameter as well. However, by using the movement of
the platform a long antenna can be synthesised and the resolution of the images
is drastically increased. This principle leads to the SAR [Cutrona et al., 1961].

2.2 Synthetic Aperture Radar

As mentioned above the movement of the platform can be utilised to improve the
resolution in the azimuth direction. During the motion of the platform the scene,
which can be assumed to consist of point scatterers, will travel trough the radar
lobe and the slant range to it will vary, see Figure 2.1. This slant range variation
can be compensated for each radar echo and all of the echos can be integrated in
order to produce an image which can be expressed as

ISAR(R, A) =
∫
Dt

IRAR(R, t)g(R, t)dt (2.1)

where ISAR(R, A) is the SAR image, IRAR(R, t) is the RAR image (or raw radar
data), g(R, t) is the slant range compensating function, R is the range dimension,
t is the azimuth dimension of the raw data (or time dimension), A is the azimuth
dimension of the SAR image and Dt is the azimuth (or time) domain of the RAR
image. Image creation can be performed in the image (or time) domain or in
the frequency domain. Some of the most important frequency domain methods
are the Fourier-Hankel [Fawcett, 1985, Hellsten and Andersson, 1987, Andersson,
1988] and the ω-K migration methods [Rocca, 1987, Cafforio et al., 1991, Milman,
1993]. The frequency domain methods are generally fast, but has a downside that
they assume straight trajectories in order to work properly. However, in reality
the trajectory will never be straight, especially if the flying platform is a small
UAV. This will cause image distortions and auto-focusing is more complicated.
This opens up for the use of time domain methods, which are slower, but can
handle any trajectory shape. This of course is an important benefit, particularly
if SAR images are to be used for trajectory estimation, and time domain methods
will be considered from now on.

One of the most known time domain methods is back-projection [Natterer, 1986].
In the back-projection procedure each saved radar echo, which is one dimen-
sional, is back-projected onto a two dimensional area. In this way a poor quality
image of the scene is obtained. Now we can sum up all these back-projected im-
ages in order to obtain the full SAR image. This is equivalent to the integration
operation in (2.1), except that integration becomes summation due to the discrete
data. Figure 2.3 describes this procedure in a schematic way, and Figure 2.4 is the
resulting simulated image if the same raw data used for RAR from Figure 2.2 is
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+ ... ++ ... +

Raw radar data (Real aperture image)
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SAR image
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Figure 2.3: Back-projection operation schematically described.
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Figure 2.4: Synthetic aperture radar image of the two points.

used. The main downside of this kind of procedure is that the number of opera-
tions needed to synthesise an image is proportional to O(NM2) for a M ×M im-
age created from N radar echos. This can be a large number for large images and
long aperture times. However during recent years a modification to the original
back-projection, called fast factorised back-projection, has been developed. This
method can actually create of the SAR image in O(M2 logN ) number of opera-
tions [Ulander et al., 2003]. This implies considerable time saving and together
with the development of the computers, this allows to consider real time SAR
imaging.

It is now clear that in order to perform the back-projection (or factorised fast
back-projection) operation the trajectory of the platform must be known or oth-
erwise the resulting image will be distorted. The image distortion can manifest
itself in many ways, from pure translation through geometric distortion to defo-
cusing. Since translation and geometric distortions are hard to measure if the
true scene is unknown, these will not be considered here. Defocusing, which is a
very common distortion, is measurable, at least seen as an image property. The
main source of defocusing of the SAR images is the error in the trajectory estimate
used for creation of the images. In the frequency domain methods, a straight tra-
jectory is used, and if the real trajectory deviates from this assumption, it will
cause image defocusing. In the time domain methods, despite the fact that the
general trajectory form is used, deviations from the real trajectory will cause the
back-projected sub images to be shifted. The summation operation of the sub
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(a) Focused SAR image of two point tar-
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(b) Unfocused SAR image of two point
targets with σ = 0.5.
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(c) Unfocused SAR image of two point
targets with σ = 1.5.
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(d) Unfocused SAR image of two point
targets with σ = 3.

Figure 2.5: Example SAR images with different perturbed trajectories.

images will then cause defocusing. To illustrate this, the simple two point image
from Figure 2.4 can be used. If Gaussian white noise with different variances is
added to the cross-track position of the platform, images as in Figure 2.5 are ob-
tained. In Figure 2.5a, the image is created with the same trajectory as data were
acquired, which results in a perfectly focused image. In the other three images
the cross-track position noise was N (0, σ2) where σ = {0.5, 1.5, 3} and the im-
ages are created under the assumption that the trajectory was linear. This results
in defocused images, and the degree of defocusing depends on the noise vari-
ance. Much effort has been spent to correct for this, see for example Oliver and
Quegan [2004], Wahl et al. [1994], Xi et al. [1999], Morrison and Munson [2002],
Xing et al. [2009]. Traditionally, these methods are open-loop type, meaning that
the image is created with assumptions of linear flight trajectory and focusing is
done afterwards in an open-loop way discarding possible flight trajectory infor-
mation. This is a consequence of the off-line image generating process where the
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trajectory is no longer interesting. In the setup where SAR images are generated
on-line, an idea, as already mentioned, is to use information from the image defo-
cusing and navigation system together. The approach is to fuse this information
in a sensor fusion framework and try to obtain the best possible solution to both
focusing and navigation simultaneously. This will be covered in Chapter 3 and
how information about defocusing can be obtained will be extensively covered in
Chapter 4.

2.3 Quantisation Effects

Since radar measurements collected during flight are saved in discrete form, range,
as well as azimuth, will be quantised. The size of the quantisation depends on the
radar processing parameters, i.e. sampling frequency for range data and pulse
repetition frequency for azimuth data. The quantisation effect in the range direc-
tion will set the limit on attainable observability for the errors in the trajectory.
For example, for the situation in Figure 2.6, where a point target is considered,
Rt and R′t can be calculated as

R′t =
√
R2

0 + (x0 − (∆v)t)2 ≈ R0 +
(x0 − (∆v)t)2

2R0
(2.2a)

Rt =
√
R2

0 + (x0 − vt)2 ≈ R0 +
(x0 − vt)2

2R0
(2.2b)

∆v = v + δv (2.2c)

assuming that v is constant along the synthetic aperture and that x0 � R0, which
is true for the SAR geometry. This gives that

∆R(δv , t) = |Rt − R′t | =
∣∣∣∣∣∣2x0δv t − 2vδv t2 − δ2

v t
2

2R0

∣∣∣∣∣∣ (2.3)

must be larger than the quantisation bin for the velocity error to have influence
on the SAR image. Due to the fact that the largest possible t is limited (the im-
age is created after finite time), δv will then have a lower limit posed by the SAR
processing parameters and the particular flight case. An example is given in Fig-
ure 2.7, where it can be seen that for small δv , the range difference will never be
larger than the quantisation limit. This means that the real aperture images will
be the same and the observability of the velocity error in the azimuth direction is
lacking.
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Figure 2.6: Range error geometry with error in velocity of azimuth direction
only.

−0.04

−0.02

0

0.02

0.04

0

20

40

60
0

0.2

0.4

0.6

0.8

1

δ
v
 [m/s]

Difference between ranges

t [s]

∆
R

 [
m

]

Figure 2.7: Range difference as a function of δv and time for R0 = 4000 m,
x0 = 2300 m and v = 100 m/s. Note that the quantisation limit is 0.9 m.



3
Sensor Fusion Framework

In this chapter a basic approach to state estimation and sensor fusion is intro-
duced. This approach leads to the estimation solution in the form of a filter or a
smoother. Further, the incorporation of the SAR images or raw data in this frame-
work will be described. Moreover, dynamic and measurement models that will
be used are described.

3.1 State Estimation and Sensor Fusion

In many practical engineering applications, one works with dynamical systems
that can describe dynamical processes, e.g. movement of different objects, like an
aircraft. Additionally, information about some entities that characterise the dy-
namical system is also sought. In a perfect world it would be possible to measure
everything that is of interest, but in reality it is quite often not possible. This can
be due to the fact that sensors are too expensive, heavy or not very accurate. A
typical example of this problem is a situation where accelerations are measured,
but velocity and position of the moving platform are wanted. This leads to an
estimation problem. In this context, a particularly useful description of the dy-
namical systems is the state space description, usually in the form

xt+1 = f (xt , ut , wt) (3.1a)

yt = h(xt , ut , et) (3.1b)

where xt are the states of the system, ut are the known inputs, wt is the system
noise with variance Qt , yt are the measurements, et is the measurement noise
with variance Rt , f is a function that describes the dynamics of the system and h
is a function that relates the measurements and the states of the system. This is a

15
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rather general model of a system and one that is often used is

xt+1 = f (xt , wt) (3.2a)

yt = h(xt) + et (3.2b)

where noise term in the measurement equation appears in an additive way and
the known input ut is omitted. This poses no practical problems, since in most
cases the additive measurement noise is a plausible model and known input can
be modelled as time dependent functions f and h. In the rest of this thesis ut will
be omitted. The descriptions of the dynamics and measurements (3.1) and (3.2)
are in discrete time, which is suitable for implementation in computers and be-
cause most of the modern sensors deliver data in sampled form. Usually system
dynamics is dependent on the moving platform, so it can be fixed for each appli-
cation. In our case the dynamics of the system is modelled as aircraft dynamics
which will be described below.

Another, and more general, way of describing the system (3.2) is in the form of
conditional probability density functions for state transition and measurements

xt+1 ∼ p(xt+1|xt) (3.3a)

yt ∼ p(yt |xt) (3.3b)

From the system perspective these two descriptions are equivalent. The model
above are referred to as Markov process’, i.e. the state at time t is only depen-
dent of the state at time t − 1. In a similar way the measurement at time t is
conditionally independent of the states in all times except the state at time t. As
an example of model (3.3), take equation (3.2b) and suppose that the noise has
Gaussian distribution with zero mean and variance Rt . This will yield

p(yt |xt) = pet (yt − h(xt)) =
1

det{2πRt}1/2
e−

1
2 (yt−h(xt))T R

−1
t (yt−h(xt)) (3.4)

The estimation problem can now be posed as determining the states x1:N given
all the measurements y0:N (or equivalently expressed, obtaining the posterior dis-
tribution p(x0:N |y1:N )) and the model (3.2) or (3.3). One straightforward solution
is to find x0:N that maximise the posterior distribution, so called Maximum a
posteriori estimate (MAP)

x̂MAP
0:N = arg max

x0:N

p(x0:N |y1:N ) (3.5)

With help from the Bayes’ rule [Bayes, 1763]

p(x|y) =
p(y|x)p(x)
p(y)

(3.6)

the maximisation problem can be rewritten as

x̂MAP
0:N = arg max

x0:N

p(y1:N |x1:N )p(x0:N ) (3.7)
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(p(y1:N ) is omitted since it does not depend on x0:N and does not influence the
maximisation procedure). This formulation together with Markov and measure-
ment model assumption leads to the following MAP optimisation

x̂MAP
0:N = arg max

x0:N

p(x0)
N∏
t=1

p(yt |xt)p(xt |xt−1) (3.8)

where p(x0) is the prior of the states, i.e. the belief about the state values before
any measurements have arrived. The sequential solution to (3.8) is given by re-
cursive Bayesian filtering. The posterior distribution for each time instant can be
obtained as, see Gustafsson [2010] for complete derivation,

p(x1|y0) = p(x0) (Initialisation) (3.9a)

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
(3.9b)

p(yt |y1:t−1) =
∫
R
n

p(yt |xt)p(xt |y1:t−1)dxt (3.9c)

p(xt |y1:t−1) =
∫
R
n

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (3.9d)

Procedure (3.9) defines a very general nonlinear filter that can be applied to a
large class of the dynamic and measurements models. However, the close form
solution exists only in a few cases. In practice, one such important special case
where both the dynamic and the measurement models are linear, the prior has
Gaussian distribution and the process and the measurement noise are Gaussian
and white, is

f (xt , wt) = Fxt + wt (3.10a)

h(xt) = Hxt (3.10b)

x0 ∼ N (0, P0) (3.10c)

wt ∼ N (0, Qt) (3.10d)

et ∼ N (0, Rt) (3.10e)

Here, P0 is the initial state covariance matrix, i.e. the uncertainty of x0. For
that case it can be shown that procedure (3.9) becomes the Kalman Filter (KF)
[Kalman, 1960] which is a Minimum Variance (MV) and the Best Linear Unbiased
Estimator (BLUE). The equivalent formulation of (3.8) in the linear case becomes

x̂MV
0:N = arg min

x0:N

||x0||2P0
+

N∑
t=1

||yt − Hxt ||2Rt + ||xt − Fxt−1||2Qt

= arg min
x0:N

||x0||2P0
+

N∑
t=1

||et ||2Rt + ||wt ||2Qt (3.11)

which is a weighted least squares problem. Here, the notation ||x||P is P −1−weighted
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norm of x, ||x||P =
√
xT P −1x. If all the measurements are available at the estima-

tion time, the solution to (3.11) can be obtained with the Kalman smoother. If the
model is not linear, some approximate solutions to solve (3.9) must be applied,
where Extended Kalman Filter (EKF) [Kailath et al., 2000] and Particle Filter (PF)
[Gordon et al., 1993] are the most common approaches.

The state estimation method described above is basically the sensor fusion prob-
lem, i.e. by using the measurements from different sensors, y1:N , and using the
mathematical description of the form (3.2) or (3.3), the best possible estimate of
the states, x̂0:N , is obtained by filtering or smoothing.

3.2 SAR in the Sensor Fusion Framework

In this context, SAR images or raw radar data can be seen as measurements that
carry information about the flying platform’s states and can be utilised in the
sensor fusion. This principle is illustrated in Figure 3.1. In the top figure a tra-
ditional approach to SAR auto-focusing is depicted. Navigation data are used
only for the initial image creation and auto-focusing is performed with image
processing methods. In the middle and bottom figures, a sensor fusion block is
used to estimate the best possible estimate of the navigation states and in turn
SAR images, given all the available information. In the decentralised fusion ap-
proach information from the SAR processing is the complete image, while in the
centralised approach, raw radar data is used.

In the model above it is assumed that the measurements are available for each
time instant. In the centralised sensor fusion approach this could be achieved, as
will be demonstrated in Chapter 6, but in the decentralised approach, where only
the complete image is available some other kind of “measurement” must be used.
Since we are trying to focus the images, it is natural to define this measurement
as “how focused the image is” which will be the function of the whole image and
in turn of the whole unknown platform’s trajectory. As mentioned above, the
sensor fusion framework is a very flexible approach, where sensors can be added
or removed, they can work in different sampling rates or describe different states.
It is even possible to add scalar valued terms that are functions of the states or
the measurements and constraints of different kinds in the optimisation criterion
(3.8) or (3.11).

Given the measurement and dynamic model as described above, the information
from the SAR images can now be included in the optimisation problem. With
the possibility to include extra terms in the optimisation criterion, a solution to
the sensor fusion problem with SAR images included is to solve the following
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Figure 3.1: Top: SAR architecture where navigation data is used in an open-
loop manner. Middle: SAR architecture where navigation and SAR data are
used together in a decentralised sensor fusion framework. Bottom: SAR ar-
chitecture where navigation and SAR data are used together in a centralised
sensor fusion framework.
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minimisation problem

min
x0, w1:N

γFF(x0:N ) + γs

||x0||2P0
+

N∑
t=1

|| yt − h(xt)︸     ︷︷     ︸
et

||2Rt + ||wt ||2Qt

 (3.12a)

subject to
xt+1 = f (xt , wt) (3.12b)

where γF and γs are weights (γF + γs = 1, γF ≥ 0, γs ≥ 0) and t ∈ {0 : N }. Here
the focus measure F( · ) is the function that assumes its minimum for the most
focused image. In Chapter 4 some possible functions used for this purpose will
be evaluated.

3.3 System Model

As mentioned earlier for the sensor fusion framework to be applied a dynamical
model of the aircraft and measurement models of the sensors must be defined. In
its simplest form, a 3-DOF model of the aircraft can be expressed as [Farrell and
Barth, 1999]

Ẋt = vXt (3.13a)

Ẏt = vYt (3.13b)

Żt = vZt (3.13c)

v̇Xt = aXt (3.13d)

v̇Yt = aYt (3.13e)

v̇Zt = aZt (3.13f)

ȧXt = waXt (3.13g)

ȧYt = waYt (3.13h)

ȧZt = waZt (3.13i)

where X, Y , Z are positions of the aircraft, v{X,Y ,Z} are the aircraft’s velocities,
a{X,Y ,Z} are the acceleration and wa{X,Y ,Z} is the unknown external jerk. These
states of the aircraft describe pure translational motion and are expressed in some
global coordinate frame, called world coordinate frame, with an arbitrary origin.
There is another coordinate frame which is important and it is the navigation
frame. The navigation frame is attached to the aircraft and its axis are aligned
with the global frame, so there is no rotation between these frames. If these two
frames were the only frames considered (i.e. the aircraft does not rotate) the dy-
namics above will be sufficient. However, since all modern inertial measuring
equipment is strapped-down in the aircraft, the measurements obtained from
these will be expressed in the so called body frame of the aircraft. This frame is
attached to the aircraft (it has the same origin as the navigation frame) and its
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axis are aligned with the aircraft, i.e. it rotates with the aircraft. To describe the
rotation of the body frame relative to the navigation (and global) frame, and ob-
tain the full 6-DOF dynamic system model, we must introduce a way to describe
rotations between different frames. Here, two possible ways will be described,
Euler angles or quaternions.

3.3.1 Euler Angles

Euler angles φ, θ and ψ are called roll, pitch and yaw angle of the aircraft and
these describe the rotation of the body frame relative to the navigation frame
[Shuster, 1993]. This rotation is in matrix form expressed as (with notation s · =
sin( · ) and c · = cos( · ))

Cnb =


cθcψ −cθsψ sθ

sφsθcψ + cφsψ −sφsθsψ + cφcψ −sφcθ
−cφsθcψ + sφsψ cφsθsψ + sφcψ cφcθ

 (3.14)

This matrix is valid for the specific order of rotations about fixed axis (in this case
navigation frame), namely yaw-pitch-roll. If another order is used the rotation
matrix will be different, since the rotation operation is not commutative. Since
rotation matrices are orthonormal, the inverse rotation, Cbn, is calculated as Cbn =
(Cnb )T . Note that the term Euler angles is normally used for a different rotation
order and the order used here is called roll-pitch-yaw. However, here these terms
are considered equivalent.

The dynamics of the Euler angles is

φ̇t = ωXt + sin(φt) tan(θt)ω
Y
t − cos(φt) tan(θt)ω

Z
t (3.15a)

θ̇t = cos(φt)ω
Y
t + sin(φt)ω

Z
t (3.15b)

ψ̇t = −
sin(φt)
cos(θt)

ωYt +
cos(φt)
cos(θt)

ωZt (3.15c)

ω̇Xt = wωXt (3.15d)

ω̇Yt = wωYt (3.15e)

ω̇Zt = wωZt (3.15f)

where ω{X,Y ,Z} are the angular velocities of the aircraft measured in the body
frame and wω{X,Y ,Z} are the unknown external angular accelerations. We imme-
diately see that there exists a singularity in the dynamics for θt = ±π/2. In this
case the roll and the yaw angles are undefined. Fortunately, there is another rep-
resentation of the rotations in R3, with the help of the quaternions, that does not
suffer from these limitations.

3.3.2 Quaternions

Quaternions are defined in four dimensional space as q = [q0, q1, q2, q3]T , qi ∈ R.
To represent the rotation in R3, q is constrained to the unit sphere, i.e. qT q = 1
[Kuipers, 1999, Shuster, 1993]. The transformation from Euler angles to quater-
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nions is defined as

q0 = cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2) (3.16a)

q1 = sin(φ/2) cos(θ/2) cos(ψ/2) − cos(φ/2) sin(θ/2) sin(ψ/2) (3.16b)

q2 = cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2) (3.16c)

q3 = cos(φ/2) cos(θ/2) sin(ψ/2) − sin(φ/2) sin(θ/2) cos(ψ/2) (3.16d)

and from quaternions to Euler angles asφθ
ψ

 =

atan2(2(q0q1 + q2q3), 1 − 2(q2
1 + q2

2))
arcsin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), 1 − 2(q2
2 + q2

3))

 (3.17)

where atan2( · , · ) is arctan function defined for all four quadrants.

The dynamics of the quaternions can be expressed as

q̇t =
1
2


0 −ωXt −ωYt −ωZt
ωXt 0 ωZt −ωYt
ωYt −ωZt 0 ωXt
ωZt ωYt −ωXt 0

︸                            ︷︷                            ︸
S(ωt)

qt =
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

︸                ︷︷                ︸
S̃(qt)

ωt (3.18)

We see that the dynamics is still non-linear, but the non-linearities are much
simpler than for Euler angles (it is actually bilinear).

The rotation matrix corresponding to (3.14), but expressed in quaternions, is

Cnb =


q2

0 + q2
1 − q

2
2 − q

2
3 2(q1q2 + q0q3) 2(−q0q2 + q1q3)

2(q1q2 − q0q3) q2
0 − q

2
1 + q2

2 − q
2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(−q0q1 + q2q3) q2
0 − q

2
1 − q

2
2 + q2

3

 (3.19)

3.3.3 Measurements

So far we have defined the dynamics of the system, in this case a flying platform.
In order to get a complete model, we also need a measurement equation of the
form (3.1b) or (3.2b), where the latter is the most common and will be used in
the rest of the thesis. For the models above the natural measurements are the ac-
celerations and angular rates which are measured with accelerometers and rate
gyros. These are often combined in an inertial measurement unit (IMU). The
IMU is strapped to the platform and hence aligned with the platform’s body co-
ordinate frame. Hence, measurements that come from the IMU are accelerations
and angular rates expressed in the body coordinate frame. In the dynamics (3.13)
above, accelerations are assumed to be relative navigation frame. This leads to a
measurement equation of the form

amt = Cnb (at − g) + eat (3.20)

where the superscript m stands for measured and g = [0, 0, −9.81]T since ac-
celerometers measure gravitation force as well. The measurement equation for
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the angular rates is simply

ωmt = ωt + eωt (3.21)

eat and eωt are white Gaussian noises with variances Ra and Rω.

3.3.4 Specialisation of the Model Used Here

In the setup here, the platform is assumed to be flying in a fairly straight trajec-
tory during image acquisition. Since the origin and the orientation of the global
coordinate frame is arbitrary it can easily be placed aligned with the trajectory,
i.e. the X-axis is aligned with the along-track (or azimuth) direction, the Y -axis
is aligned with the cross-track (or range) direction and the Z-axis is pointing up-
wards. Since rotation of the platform is also assumed negligible during image
acquisition no rotation dynamics is needed (or at least can be approximated with
zero). Due to the inertial properties of the flying platform, one more simplifica-
tion we can do is to assume that the flying altitude is constant. With all these
assumptions, the following 2-DOF dynamics can be used:

Ẋt = vXt (3.22a)

Ẏt = vYt (3.22b)

v̇Xt = aXt (3.22c)

v̇Yt = aYt (3.22d)

ȧXt = wXt (3.22e)

ȧYt = wYt (3.22f)

where X and Y are the horizontal positions of the aircraft, X is the position in
the azimuth direction and Y is the position in range direction, vX and vY are the
velocities in the X- and Y -directions respectively and aX and aY are the accelera-
tions in X- and Y -directions respectively. This model is discretised into (Ts is the
sampling time):

Xt+1 = Xt + Tsv
X
t +

T 2
s

2
aXt +

T 3
s

6
wXt (3.23a)

Yt+1 = Yt + Tsv
Y
t +

T 2
s

2
aYt +

T 3
s

6
wYt (3.23b)

vXt+1 = vXt + Tsa
X
t +

T 2
s

2
wXt (3.23c)

vYt+1 = vYt + Tsa
Y
t +

T 2
s

2
wYt (3.23d)

aXt+1 = aXt + Tsw
X
t (3.23e)

aYt+1 = aYt + Tsw
Y
t (3.23f)
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where w{X,Y }t are modelled as Gaussian white noise. This dynamics is purely
linear and time invariant and can be written in the form

xt+1 = Fxt + Gwt (3.24a)

F =

 I2 TsI2
T 2
s
2 I2

02×2 I2 TsI2
02×2 02×2 I2

 (3.24b)

G =


T 3
s
6 I2
T 2
s
2 I2
TsI2

 (3.24c)

In most cases the measurements that are available are positions and velocities,
usually from some Global Navigation Satellite System (GNSS), like GPS, and ac-
celerations from the IMU. This gives the measurement equation in the form

yt = I6xt + et (3.25)

Given the dynamics and the measurements the Kalman Filter can be used to esti-
mate xt , giving x̂t and the corresponding covariance Pt . Since the model is purely
linear and the noise is assumed to be white and Gaussian, this filter is optimal
and its estimate is the best we can accomplish given the measurements.

3.3.5 Stationary Estimate Accuracy

The covariance of the estimate, due to the fact that the system is time invariant
and linear, will converge to the stationary covariance P̄ which can be calculated
as [Gustafsson, 2010]

P̄ = FP̄ FT − FP̄ HT (HP̄ HT + R)−1HP̄ FT + GQGT (3.26)

where F and G are defined in (3.24), and H is defined in (3.25). For a typical
navigation sensor used in an UAV, the accuracy for these parameters (assumed to
be measurement noise) can be summarised according to Table 3.1 and Q, which
represents disturbance on the states like wind turbulence, will be taken here as
diag{0.25, 0.25} [m/s2]. With these values stationary accuracy is given in the third
column in Table 3.1. The stationary accuracy of the states will be used to define
the range of the initial values for the estimation procedures with SAR information
included. Because it is interesting to evaluate the performance of the estimation
procedure with only inertial measurements and SAR images, the positions and
velocities will not be used as measurements.

Parameter Accuracy (1σ ) Stationary accuracy (1σ )

Position 3 m 0.093 m
Velocity 0.4 m/s 0.012 m/s
Acceleration 0.06 m/s2 0.015 m/s2

Table 3.1: Accuracy and stationary accuracy for the navigation parameters.
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3.4 Some Estimator Performance Measures

In the chapters to follow, the sensor fusion methods described above will be evalu-
ated on different SAR images and with some different measurements. To achieve
this, some different performance measures are needed to evaluate both the state
estimation and image quality. If x̂ = [x̂1, . . . , x̂N ]T , are unbiased estimates of the
scalar parameter x, Root Mean Square Error (RMSE), defined as

RMSE(x̂) =

√∑N
k=1(x̂k − x)2

N
(3.27)

is one popular measure of the accuracy, i.e. it is the estimate of the standard
deviation.

To assess the quality of the SAR images obtained with different methods the
power of the error image can be used. This can be defined as

EI =

∑M
i=1

∑N
j=1 |Îij − Iij |2

MN
(3.28)

where Î is the M ×N complex SAR image obtained with the estimation procedure
and I is the perfect focused SAR image, i.e. created with true trajectory.
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Measuring Focus

In optimisation criterion (3.12a), a focus measure F( · ) is used to incorporate the
information from the SAR images. The focus measure is a function of the whole
trajectory x0:N since the SAR image is a function of the same. In Huang and Jing
[2007] several measures of the image focus are evaluated. Two measures that
perform well according to this paper are Sum-Modified-Laplacian and Tenengrad
and these two measures will be analysed in this chapter. Also some classical
image focus measures like image entropy are evaluated. The evaluation will be
performed on both optical and SAR images.

4.1 Focus Measures

4.1.1 Sum-Modified-Laplacian

The Sum-Modified-Laplacian focus measure is defined as

∇2
MLIij =|2Iij − I(i−1)j − I(i+1)j |+

|2Iij − Ii(j−1) − Ii(j+1)| (4.1a)

SML(I) =
M−1∑
i=2

N−1∑
j=2

∇2
MLIij · I[∇2

MLIij≥T ](∇
2
MLIij ) (4.1b)

where Iij is the M ×N image grey-scale intensity for pixel coordinate (i, j), I is the
indicator function, and T is the threshold value. This measure has its maximum
for the most focused images. Since (3.12a) is a minimisation criterion, SML can
be inverted or negated to fit into this criterion.

27
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4.1.2 Tenengrad

The Tenengrad focus measure is defined as

TG(I) =
M−1∑
i=2

N−1∑
j=2

S2
ij · I[Sij>T ](Sij ) (4.2)

where Sij is the Sobel gradient in pixel coordinate (i, j),

Sij =
√

(S rij )
2 + (Scij )

2 (4.3)

where S r and Sc are row and column Sobel gradients respectively, T is the thresh-
old value and I is the M ×N image. The Sobel gradients are obtained by convolv-
ing the image with the row and column Sobel kernels D r and Dc,

S r = D r ∗ I (4.4a)

Sc = Dc ∗ I (4.4b)

D r =

−1 0 1
−2 0 2
−1 0 1

 (4.4c)

Dc =

−1 −2 −1
0 0 0
1 2 1

 (4.4d)

Just as SML, TG has it maximum for the most focused images. This problem is
circumvented in the same way as for the SML.

4.1.3 Discrete Cosine Transform

Further, the Discrete Cosine Transform (DCT) can be used to measure image fo-
cus, see Kristan et al. [2006]. The main idea is that focused images have higher
frequency components than unfocused images. The focus measure based on DCT
is defined as

DCT(I) = 1 −
∑T
ω=1

∑T
ν=1 |D(ω, ν)|2

(
∑T
ω=1

∑T
ν=1 |D(ω, ν)|)2

(4.5)

where

D(ω, ν) = αωαν

M−1∑
i=0

N−1∑
j=0

Iij cos
(
π(2i + 1)ω

2M

)
cos

(
π(2j + 1)ν

2N

)
(4.6a)

αω =


1√
M
, ω = 0√

2
M , 1 ≤ ω ≤ M − 1

(4.6b)

αν =


1√
N
, ν = 0√

2
N , 1 ≤ ν ≤ N − 1

(4.6c)
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is the Discrete Cosine Transform of the image I and T is the threshold. Even
DCT behaves as TG and SML, i.e. it attains the maximum value for the sharpest
images.

4.1.4 Entropy

Another measure of the image focus is image entropy calculated as

E1(I) = −
256∑
k=1

pk log2(pk) (4.7)

where pi is an approximated grey level distribution of theM×N grey-scale image.
A grey-scale SAR image is taken as the amplitude image Iij = |Ĩij |, where Ĩij is
the complex-valued SAR image. pi can be obtained from the image histogram,
calculated as

pk =

{
# of pixel values |Ĩij |

}
∈ [k − 1, k]

MN
(4.8a)

k ∈ [1, 256] (4.8b)

The more focused the image is, the higher the entropy is [Ferzli and Karam, 2005],
exactly as for the previous mentioned measures. Note however that entropy mea-
sure is primarily used for optical images, whose defocus (or rather unsharpness)
have different nature from the defocus of SAR images. In Section 4.3 it will be
shown that the entropy for a SAR image is lower the more focused the image is.
Example histograms and entropy values for the images in Figure 2.5 are given in
Figure 4.1.

An alternative definition of entropy (and more frequently used in the SAR con-
text) is [Yegulalp, 1999, Xi et al., 1999, Morrison and Munson, 2002],

E2(Ĩ) = −
M∑
i=1

N∑
j=1

pij ln(pij ) (4.9a)

pij =
|Ĩij |2∑M

i=1
∑N
j=1 |Ĩij |2

(4.9b)

This entropy, on the other hand, will have its minimum for both optical and SAR
images, as will be shown in the evaluations in Sections 4.2 and 4.3.

4.2 Evaluation on Test Optical Image

For the purpose of evaluation of the different focus measures, the image in Fig-
ure 4.2 is used. The evaluation will be performed for different thresholds where
it is applicable and for different degrees of defocus (or unsharpness).
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(b) Histogram of the unfocused image
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Figure 4.1: Histograms for the images in Figure 2.5 and corresponding en-
tropy 1 values. Note the log-scale on y-axis.
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Figure 4.2: Test image used for evaluation of the focus measures. Image is
courtesy of University of Southern California, Los Angeles, California, USA.
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Figure 4.3: Ratio of the different focus measures for focused and unfocused
optical images as a function of the threshold.

4.2.1 Threshold Dependence

In order to evaluate the performance of the different measures, the ratio between
focused and unfocused images, F(Ifocused)/F(Iunfocused), is plotted for the test im-
age as a function of threshold T (F is one of TG, SML or DCT). Unfocusing is
performed with the Gaussian low-pass filter kernel with size 5 × 5 pixels and
with standard deviation σ = 1.5. The results are plotted in Figure 4.3. Since en-
tropy does not depend on the threshold, only one value is obtained for this case,
E1(Ifoc)/E1(Iunfoc) = 6.99/6.80 = 1.03 and E2(Ifoc)/E2(Iunfoc) = 12.40/12.42 = 0.99.

4.2.2 Blur Kernel Dependence

In Figure 4.4 the ratio F(Ifocused)/F(Iunfocused) is plotted for different standard
deviations of the 5 × 5 Gaussian low-pass kernel, in the range σ ∈ [0, 4]. Higher
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variance will yield a less focused image. For the measures that depends on the
threshold, the threshold values are chosen based on the results from Section 4.2.1,
i.e. the threshold values that give high ratio between focused and unfocused
images. For this particular evaluation they are TTG = 350, TSML = 270 and TDCT =
2.

4.3 Evaluation on Test SAR Images

For SAR images, basically the same evaluation as above will be performed, but in
this case defocusing will be caused by the different trajectory errors, which is the
main reason for SAR image defocusing.

4.3.1 Threshold Dependence

To get a feeling for how different focus measures perform on SAR images as a
function of the threshold, the same evaluation is done as in Section 4.2.1. The
example SAR image used in the evaluation is in Figure 4.5. Defocusing is here
obtained with adding range direction noise with standard deviation σ = 1.5. Re-
sults are plotted in Figure 4.6. Exactly as above, since entropy does not depend
on the threshold, there is only one value for each σ . In particular, σ = 1.5 gives
E1(Ifoc)/E1(Iunfoc) = 1.91/5.12 = 0.37 and E2(Ĩfoc)/E2(Ĩunfoc) = 4.28/8.10 = 0.53.

4.3.2 Position Blur Dependence

Another test of the focus measures that is performed is how they depend on the
variance of the noise in the range direction for a given threshold, similar to the
evaluation in Section 4.2.2. The simulation is performed with the same noise
realisation, but different variances, i.e. position in range direction is

Yt =
√
Qwt (4.10)

where wt is N (0, 1) and Q ∈ [0, 9] (standard deviation is between 0 and 3). The
result is depicted in Figure 4.7. From these plots it can be noticed that DCT and
entropy 2 measures behave as expected, i.e. the ratio between focused and unfo-
cused image is monotonically increasing as a function of the standard deviation
for DCT and decreasing for entropy 2 measure. For TG, SML and entropy 1, how-
ever, there is a difference between optical and SAR images. For optical images, all
three measures will have their maxima for focused images, while for SAR images
they will have their minima. This behaviour can be explained both by the look of
the test image, two bright points and lot of dark area, and the nature of the SAR
images, i.e. SAR images usually look like they are negative optical images and
contain more dark areas than optical images.

In order to obtain an image which is more informative, a scene in Figure 4.8 is
created. A smaller image is created to minimise the dark area. This image should
be more representative for the SAR images. The simulation above is modified and
the maximum value for the standard deviation of the noise is set to 1.5 instead
of 3. This is done because the smaller image might cause rand effects which will
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Figure 4.4: Ratio of the different focus measures for focused and unfocused
optical images as a function of the standard deviation of the Gaussian blur
kernel.
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Figure 4.5: Example SAR image used for evaluation of the focus measures.

negatively influence the focus measures. The results are depicted in Figure 4.9.
It can be noticed in these plots that TG and SML behaves as expected now, but
SML has a highly nonconvex form. This indicates that SML might not be suitable
measure for the SAR images. Entropy 2 and DCT behaves still as expected, and
entropy 1, just as in the previous case, attains minimum for the most focused SAR
image.

4.3.3 Evaluation on Perturbed Trajectory

In order to evaluate the focus measures behaviour for different trajectories on
the simulated SAR images, simulations with different trajectory errors are per-
formed. The trajectory is simulated with the model (3.24a) and trajectory errors
consist of different incorrect initial conditions on velocity in azimuth direction,
vX0 , and acceleration in range direction, aY0 . The nominal initial values are cho-
sen as vX0 = 100 m/s and aY0 = 0 m/s2 and acceleration error is varied between
−0.045 and 0.045 m/s2 and velocity error is varied between 99.962 and 100.038
m/s. Those values are chosen as 3σ -values, based on the results from Section 3.3.
The noise, wX/Yt , is set to zero in these simulations, i.e. the trajectory is completely
deterministic. This has been done in order to be able to illustrate focus measures
in a two dimensional plot. On the other side, all focus measures, as functions
of the state noise are convex and impose no problems in the minimisation step.
In Figure 4.10 trajectory examples with some different acceleration and velocity
errors are shown.

All five focus measures, TG with threshold value T = 550, SML with T = 170,
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Figure 4.6: Ratio of the different focus measures for focused and unfocused
SAR images as a function of the threshold.
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Figure 4.7: Ratio of the different focus measures for focused and unfocused
SAR images as a function of the standard deviation of the noise in the range
direction.
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Figure 4.8: Example SAR image with more informative scene.

DCT with T = 5 and entropy measures 1 and 2, are compared on the image in
Figure 4.8. The thresholds are chosen according to the results from the simula-
tions in Section 4.3.1. Results are depicted in Figure 4.11 where 1σ−, 2σ− and
3σ− standard deviations of the states from Section 3.3.5 are also drawn. The con-
tours in the plots are the level curves of the focus measures as a function of the
error in the initial states, vX0 and aY0 . The level curves for the measures with the
maximum for the correct values of the initial states, like TG or SML, are inverted.

Further, plots where only one parameter, vX0 or aY0 , is varied are presented in
Figure 4.12 (all measures are normalised between 0 and 1). From all these figures
it looks like that all measures except entropy 2 have several local minima and are
highly non-convex. We also see that TG and SML do not have minimum value
for the correct velocity value and that DCT has its minimum in the wrong value
of the acceleration. The entropy measures perform fairly well, and entropy 1 has
much sharper global minimum than entropy 2. Based on this, the entropy 1 and
the entropy 2 measures look as the most attractive measures since they behave
good for the correct values of the states, they do not have any threshold to tune
and entropy 2 is also smooth and convex.

The focus measures’ performance is also tested on a more unstructured scene
illustrated in Figure 4.13a. This scene is created by randomly placing 150 point
targets and assigning them a random reflectivity. The focus measures for this
scene are shown in Figure 4.13. Here it can be seen that the measures look even
worse and not even the entropy 1 measure has its global minimum for the correct
values of the states. Entropy 2 is however still convex and smooth in the vicinity
of the correct values of the states, and is still the most promising alternative to
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Figure 4.9: Ratio of the different focus measures for focused and unfocused
SAR images with more informative scene as a function of the standard devi-
ation of the noise in the range direction.
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−0.01 m/s velocity error and 0.01 m/s2 acceleration error, 0.005 m/s ve-
locity error and 0.005 m/s2 acceleration error, 0.02 m/s velocity error and
−0.01 m/s2 acceleration error, 0.005 m/s velocity error and −0.035 m/s2 ac-
celeration error.
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(a) SAR image of the structured scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 4.11: Focus measures for the image with more informative structured
scene. Standard deviations of the states are also drawn.
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(a) Focus measures with no velocity error.
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(b) Focus measures with no acceleration error.

Figure 4.12: Focus measures for the structured scene with only error in aY0
and vX0 .
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use as a focus measure in the minimisation criterion.

The focus measures above are evaluated on images that have no noise, i.e. the
images are perfect. In reality, that is not the case, and images contain some noise
caused by the noise in the radar measurements. Therefore, the same two scenes
are used again, but white Gaussian noise with variance σ2 = 1.5 is added to the
radar echos. The images obtained with this setup are depicted in Figure 4.14a
and Figure 4.15a. The focus measures for these two images are shown in Fig-
ure 4.14 and Figure 4.15. It can be seen in these plots that entropy 2 measure
still behaves good, it is smooth and convex in the vicinity of the true values of the
navigation states. The only thing that happens with entropy 2 is that the value of
the function is different, but the principal form is the same as for the noise free
case.

Another thing that can be noticed from these plots is that the entropy 1 measure
does not have a pronounced global minimum in the case of structured scene,
as it has for the noise free case. It looks similar to the case with unstructured
scene. This is not surprising since the unstructured scene will behave like the
image noise for the focus measure. It also looks like TG measure behaves better
for the noisy case, at least around the true values of the navigation states. The
explanation might be that TG measure has a threshold that can filter out the
noise.

The conclusion from the evaluation above is that entropy 2 measure works quite
fine for both cases, with and without noise in the radar measurements, and it is
the smoothest measure of all tested ones. Entropy 1 could be used as well, at least
for the scenes with structure, while TG seems to work for the case with the noise
in images. The drawback of the TG measure is the threshold that must be tuned
to the different imaged scenes.
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(a) SAR image of the unstructured scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 4.13: Focus measures for the image with more informative unstruc-
tured scene.
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(a) Noisy SAR image of the structured
scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 4.14: Focus measures for the noisy image with more informative
structured scene. White Gaussian noise with variance σ2 = 1.5 is added
on the radar echoes.
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Simulated noisy SAR image
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(a) Noisy SAR image of the unstructured
scene.
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(b) TG focus measure with T = 550.
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(c) SML focus measure with T = 170.
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(d) DCT focus measure with T = 5.
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(e) Entropy 1 focus measure.
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(f) Entropy 2 focus measure.

Figure 4.15: Focus measures for the noisy image with more informative un-
structured scene. White Gaussian noise with variance σ2 = 1.5 is added on
the radar echoes.



5
Methods Based on the Complete SAR

Images

As demonstrated in Section 4.3.3, all measures, except maybe DCT, can be used
as a measure of the image focus, and used in (3.12a). If common minimisation
methods are used, as for example gradient based methods, numerical gradients
must be calculated for most of the focus measures. Since most of the functions
are non-convex, gradient based methods may be inefficient and the global search
method must be used there in order to find the global minimum. One exception
from these obstacles is the entropy 2 measure. For that measure, the gradient
can be calculated, at least semi-analytically and it is convex in the vicinity of
the correct values, except for the ridge. A local method can be used here, for
example some quasi-Newton method, in order to get near the global minimum
and then some other measure with sharper global minimum can be used [Sjanic
and Gustafsson, 2010]. However, since in general the focus measure function
is also a function of the scene that is imaged, it is not certain that the global
minimum will be pronounced, as is the case with image in Figure 4.13a.

In this section both quasi-Newton search and global grid based search methods
will be demonstrated on some different examples of scenarios and the perfor-
mance will be evaluated.

5.1 Gradient Based Search

Gradient search methods will be exemplified here with a couple of examples with
different trajectories and errors in them. As mentioned above, the entropy 2 mea-
sure can be used as a first step to get near the global minimum, since it is convex
but very flat in the proximity of the global minimum, and then some other mea-
sure can be used to find the global minimum, for example entropy 1 due to its

47
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sharp minimum for the correct values or Tenengrad if noisy images are consid-
ered. In the previous chapter only two states and their initial values are consid-
ered, vX0 and aY0 , in order to be able to depict the focus measures. In general the
minimisation should be applied for these states for all or at least some of the time
instants along trajectory. Such an example will be studied later in this chapter.

A gradient search can, for the general problem minx f (x), be formulated as

xk+1 = xk + µkH(xk)−1∇f (xk) (5.1a)

∇f (x) =
∂
∂x
f (x) (5.1b)

where µk is step size with µ0 = 1, f (x) is the loss function as in (3.12a) and
H(x) is some (positive definite) matrix. The initial estimate, x0, can be taken as
the usual estimate from the navigation system. In the simplest case H can be
chosen as the identity matrix and the procedure becomes a pure gradient search.
The disadvantage of such procedure is the slow convergence, especially if the
function to be minimised is ridge-like. If H is chosen as the Hessian of f , the
procedure becomes a Newton search. The Newton search has a fast convergence,
it is constructed for one-step convergence for quadratic functions, and is to prefer
if the Hessian is available. In many cases the Hessian is either not available or
very difficult to obtain, as in the case considered here, and some approximate
methods must be applied. One option is to calculate it as

H(x) = ∇f (x) · (∇f (x))T + λI (5.2)

where λ is chosen as a small number, usually ∼ 10−6, to avoid singularity. This
procedure resembles of Levenberg-Marquardt procedure for least squares. An-
other approach is a quasi-Newton search, and BFGS in particular, where the
Hessian is approximated by utilising gradients of the function during the search,
see Nocedal and Wright [2006]. The general gradient search procedure is sum-
marised in Algorithm 1.

In all these procedures it is essential to obtain the gradient of the loss function.
Because of the special structure of the focus measure function and the SAR pro-
cessing algorithm, the complete analytical gradient is hard to obtain. For exam-
ple, for the Entropy 1 measure it is hard to differentiate a histogram of the image.
In this case numerical methods must be used. However, for the Entropy 2 mea-
sure it is almost possible to obtain analytical gradient and this will be described
in the next subsection.

5.1.1 Calculating the Gradient

Here the calculations to obtain an analytical gradient of the entropy 2 function
will be presented. The key to doing this is simply the chain rule for gradient
calculation, i.e. if we, for example, have a function f (x(t)) and want to obtain
∇tf , the chain rule states that

∇tf =
∂f

∂x
∂x
∂t

(5.3)
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Algorithm 1 Gradient search procedure

Input: Initial iterate of the optimisation parameters x0, raw radar data, toler-
ance thresholds ε1, ε2, ε3
Output: Solution x̂, focused SAR image

k := 0
repeat

Calculate gradient of the cost function, ∇f (xk)
Calculate (approximate) Hessian, H(xk)
µk := 1
repeat
xk+1 := xk + µkH(xk)−1∇f (xk)
µk := µk/2

until f (xk+1) < f (xk)
k := k + 1

until ||xk − xk−1||2 < ε1 or ∇f (xk−1) < ε2 or ||f (xk) − f (xk−1)||2 < ε3

In order to apply the chain rule, first the decomposition chain of the entropy 2
focus measure will be done and then, all partial derivatives will be presented.

The first function to be differentiated is Entropy 2 focus measure

F = −
M∑
i=1

M∑
j=1

pij ln pij = −
M2∑
i=1

pi ln pi (5.4)

where last equality is simply reformulation of the double sum by vectorising the
image. Next, each pi is obtained by

pi =
|Ĩi |2∑
j |Ĩj |2

(5.5)

meaning that pi is a function of the absolute value of the complex-valued SAR
image. In the next step, we need to obtain derivative ∂|Ĩ |/∂R. In the creation of
the image, a back-projection sum is evaluated and all partial images are summed.
Each partial image is a function of one column in the RAR image and the range
from the platform to each pixel in the SAR image, see Section 2.2. Unfortunately
it is not easy, if not impossible, to obtain analytical expression for this derivative,
∂|Ĩ |/∂R. However, this value can simply be obtained during image creation by
means of numerical derivation. The cost for that procedure is memory demand
and execution time which both are doubled. But this increase in cost is constant
no matter how many parameters optimisation is performed over. If compared to
calculating numerical gradients, the cost for that is increasing linearly with the
number of parameters.

Last function that needs to be calculated is the range as a function of the states,
R(xt). To calculate the analytical expression of this function some SAR geometry



50 5 Methods Based on the Complete SAR Images

Yt

Rm

Z0

RN

X t

Xm

Point Target

Platform

R

Ψ

Imaged Scene

Figure 5.1: SAR geometry. The figure is not to scale.

preliminaries are needed. In order to express range as a function of the states,
the geometry setup as in Figure 5.1 can be considered. From the figure it can be
seen that the range Rt can, with help from cosine theorem, be expressed as

Rt =

√
R2
N + Y 2

t − 2 cos
(π

2
− Ψ

)
RNYt (5.6a)

RN =
√
R2
m + (Xm − Xt)2 (5.6b)

i.e. as a function of the trajectory. Here the exact expression for the range along
the trajectory is used, unlike in most of the SAR literature, where approximate
and linearised expressions are used, see for example Xing et al. [2009]. This is
due to the fact that in low frequency SAR application, as the one considered here,
the ratio between range and trajectory length is not negligible due to the lobe
width. If approximate expressions are used, too large errors will be introduced
in the beginning and the end of the trajectory.

Next, the dynamical model (3.24a) can be used to express the position states used
in the range expression above as a function of any other state by using that

xt = Ft−kxk , t > k (5.7)

Note that the noise term is neglected since it is equivalent to optimise over noise
and over acceleration states, so the latter one is used here to simplify the expres-
sions. This gives that positions can be expressed as

Xt = X0 + Ts(t − k)vXk +
T 2
s (t − k)2

2
aXk (5.8a)

Yt = Y0 + Ts(t − k)vYk +
T 2
s (t − k)2

2
aYk (5.8b)

If these expressions are used in the (5.6a), we can easily obtain partial derivatives
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of the range with respect to the velocities and accelerations in arbitrary time
points. Now we have everything needed to calculate the gradient of the focus
measure with respect to the trajectory states. The decomposition of the gradient
is

∂F
∂x

=
∂F
∂p

∂p

∂|Ĩ |
∂|Ĩ |
∂R

∂R
∂x

(5.9)

and the partial derivatives are, in turn (with cos(π/2 − Ψ ) = sin(Ψ ))

∂F
∂pi

= − ln pi − 1 (5.10a)

∂pi
∂|Ĩj |

=


2|Ĩj |

∑
|Ĩ |2−2|Ĩj |2 |Ĩi |

(
∑
|Ĩ |2)2 , i = j

− 2|Ĩj |2 |Ĩi |

(
∑
|Ĩ |2)2 , i , j

(5.10b)

∂Rt
∂vXk

= −
(Xm − Xt)Ts(t − k) − sin(Ψ )(Xm−Xt)YtTs(t−k)

RN

Rt
(5.10c)

∂Rt
∂vYk

=
YtTs(t − k) − sin(Ψ )RNTs(t − k)

Rt
(5.10d)

∂Rt
∂aXk

= −
(Xm − Xt)T 2

s (t − k)2 − sin(Ψ )(Xm−Xt)YtT 2
s (t−k)2

RN

2Rt
(5.10e)

∂Rt
∂aYk

=
YtT

2
s (t − k)2 − sin(Ψ )RNT 2

s (t − k)2

2Rt
(5.10f)

and ∂|Ĩ |/∂R is numerically calculated during image formation. Now, at least for
entropy 2 focus measure, we can calculate the gradient (semi-) analytically and
use it in the minimisation procedure. The second term in (3.12a) is easy to differ-
entiate, since it is a quadratic form and h(x) is a linear function in this case.

5.1.2 Numerical Examples

In order to demonstrate the behaviour of the gradient search for this setup, the
SAR image from Figure 4.11a is used. In order to illustrate the behaviour, only
two optimisation variables are considered here, x0 = [vX0 , a

Y
0 ]T and the algorithm

is initiated with different starting points x0 based on the stationary covariance
of the states in the system. Those values are [100.005, 0.005]T , [99.99, 0.01]T ,
[99.995, 0.02]T , [100.02, −0.01]T and [100.005, −0.035]T . In Figure 5.2a, the
gradient search based entropy 2 measure is illustrated and we can see that so-
lutions converge to the flat ridge-like area close to the correct acceleration, but
not necessarily to the correct velocity. In Figure 5.2b, the gradient search where
the entropy 1 measure is used is depicted. In this case the algorithm is initiated
with the solution from the entropy 2 search. It can be seen that this minimisation
strategy works pretty well, although one solution is stuck in a local minimum. In
that case the velocity error is the largest one of all errors. Note also that only the
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focus measure is used to find estimate of the states i.e. γs is set to zero while γF
is set to one in Equation 3.12a.

It is interesting to see how the image created with the solution that is stuck in the
local minimum of the entropy 1 measure looks like compared to the unfocused
image that is started with. As illustrated in Figure 5.3, it can be seen that the
image created with values from the minimisation procedure is very close to the
focused image and much better than the unfocused images that are started with.
The probable explanation for this comes from the fact that small azimuth direc-
tion velocity errors do not influence the final image much due to the quantisation
effects. However the estimate of the navigation states is not correct.

In the second example a more realistic setup is done. The optimisation problem
to be solved is

min
vX0 ,a

Y
0 ,w

Y
bN/4c,w

Y
bN/2c, w

Y
b3N/4c

0.99E1,2(x0:N ) + 0.01

 N∑
t=1

||amYt − aYt ||2Rt + ||wYt ||2QYt


(5.11a)

subject to
xt+1 = Fxt + Gwt (5.11b)
X0
Y0
vY0
aX0

 =


0
0
0
0

 (5.11c)

wXt = 0, t ∈
{
0 : N

}
(5.11d)

wYt = 0, t <
{
bN/4c, bN/2c, b3N/4c

}
(5.11e)

QYt =

∞, t ∈
{
bN/4c, bN/2c, b3N/4c

}
0, otherwise

(5.11f)

P0 = ∞ · I2 (5.11g)

where model (3.24) is used and am is the measured acceleration with additive
white Gaussian noise with Rt = 0.0022 m2/s4. E1,2(x0:N ) is either entropy 2 or
entropy 1, exactly as in the previous example. It is assumed that a disturbance
on Y -direction acceleration will act on the platform in an impulse like manner
only a few times during the SAR image generation and that the amplitude of
the disturbance is set free. This is the meaning of equation (5.11f). It is also
assumed that the acceleration in X-direction will vary slowly due to the platforms
inherited inertia in this direction, so it can be assumed to be zero. Both scenes
from Figure 4.11a and Figure 4.13a are used and 30 Monte Carlo simulations are
performed in order to evaluate the performance of the estimation procedure.

Resulting RMSE of the parameters and the mean value of the error image power
is presented in the Table 5.1 and Table 5.2 for both structured and unstructured
scene. Here the actual acceleration is presented instead of the process noise value,
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(a) Search trajectory for five different values of x0 using entropy 2 focus mea-
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Figure 5.2: Search trajectory for five different values of x0 using two different
entropy measures.
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(a) Image created with error in veloc-
ity of 0.02 m/s and in acceleration of
−0.01 m/s2.
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(b) Image created with error in veloc-
ity of 0.014 m/s and in acceleration of
−0.0003 m/s2.
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(c) Focused image as a reference.

Figure 5.3: Resulting images from the minimisation procedure with starting
point [100.02, −0.01]T .

Parameter RMSE (opt. with E2) RMSE (opt. with E1)

v̂X0 7.05 · 10−3 m/s 7.04 · 10−3 m/s
âY0 9.94 · 10−4 m/s2 9.15 · 10−4 m/s2

âYbN/4c 6.51 · 10−4 m/s2 6.34 · 10−4 m/s2

âYbN/2c 6.89 · 10−4 m/s2 6.84 · 10−4 m/s2

âYb3N/4c 6.02 · 10−4 m/s2 6.03 · 10−4 m/s2

Mean value of the
error image power

149.6 126.9

Table 5.1: RMSE for the estimated parameters and the mean value for the
error image power for the structured scene.
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(a) SAR image of the structured scene cre-
ated with noisy position data.
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(b) SAR image of the unstructured scene
created with noisy position data.

Figure 5.4: SAR images created with noisy position data.

Parameter RMSE (opt. with E2) RMSE (opt. with E1)

v̂X0 11.2 · 10−3 m/s 11.2 · 10−3 m/s
âY0 11.61 · 10−4 m/s2 10.98 · 10−4 m/s2

âYbN/4c 6.63 · 10−4 m/s2 6.52 · 10−4 m/s2

âYbN/2c 9.31 · 10−4 m/s2 8.86 · 10−4 m/s2

âYb3N/4c 7.77 · 10−4 m/s2 7.58 · 10−4 m/s2

Mean value of the
error image power

1348 1242

Table 5.2: RMSE for the estimated parameters and the mean value for the
error image power for the unstructured scene.
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(a) Image of the structured scene after
minimisation with Entropy 2 as focus
measure.
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(b) Image of the structured scene after
minimisation with Entropy 1 as focus
measure.
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(c) Image of the unstructured scene af-
ter minimisation with Entropy 2 as focus
measure.
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(d) Image of the unstructured scene af-
ter minimisation with Entropy 1 as focus
measure.

Figure 5.5: Resulting images from the gradient search minimisation.

since it is more interesting. It can be noticed that the improvement of the RMSE
after further minimisation with entropy 1 is not very big, it is in the magnitude
of 10−5. It suggests that the extra step of minimisation with entropy 1 can be
skipped if faster procedure is sought.

In Figure 5.4 a noisy position (one of the 30 noise realisations) is used for the
image generation. We see that both images are unfocused and the image of the
unstructured scene is pretty bad, all the dominant targets are blurred. In Fig-
ure 5.5 the images after minimisation with entropy 2 and 1 are depicted (for the
same noise realisation as above). Here it can be seen that improvement in the im-
age with extra minimisation with entropy 1 is impossible to see with the naked
eye, i.e. the improvement of the navigation states does not visibly improve the
images. This could be expected from the results from MC simulations.
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The resulting estimates of the parameters and error image power after entropy
1 minimisation for the two scenes and this particular realisation of the noise are
presented in the Table 5.3.

Parameter Structured scene Unstructured scene

v̂X0 9.236 · 10−3 m/s 10.13 · 10−3 m/s
âY0 -3.057 · 10−4 m/s2 -1.707 · 10−4 m/s2

âYbN/4c -0.553 · 10−4 m/s2 -1.733 · 10−4 m/s2

âYbN/2c 11.15 · 10−4 m/s2 10.25 · 10−4 m/s2

âYb3N/4c 1.384 · 10−4 m/s2 1.234 · 10−4 m/s2

Error image power 51.37 53.12

Table 5.3: Error in the estimated parameters for the two scenes after entropy
1 minimisation procedure.

5.2 Global Grid Search

As demonstrated in Section 5.1, the gradient based search method is able to es-
timate the navigation states that produce fairly good SAR images. This method
is still prone to the local minima problem due to the non-convexity of the focus
measures, especially if initial values of the optimisation parameters are far away
from the solution. A solution to that problem is a global search method. The
most straightforward approach is to use a grid search and find the minimum of
the loss function, (3.12a) in the grid. This approach can be described according
to Algorithm 2. The function dim(x) returns the amount of elements in x. The

Algorithm 2 Grid search procedure

Input: Initial value of the optimisation parameters x0, raw radar data, grid size
for each parameter Si , amount of grid points for each parameter Ni
Output: Solution x̂, focused SAR image

Create grid G(xi , ji) of the parameter values centred on x0 with Ni grid points
and with grid resolution ∆i = Si /Ni ,
i = 1, . . . ,dim(x), ji = x0

i − Si /2, x
0
i − Si + ∆i , . . . , x

0
i + Si /2

for all i in 1 to dim(x) do
for all ji in x0

i − Si /2 to x0
i + Si /2 step ∆i do

V (G(xi , ji)) := value of the loss function (3.12a) for parameter xi evaluated
in grid point ji

end for
end for
x̂ := arg min x V
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performance of such method is dependent of the grid size and its resolution. The
better performance is achieved with the larger grid (suitable size could be e.g. 2σ
standard deviation of the parameters) and that has a fine grid resolution. These
choices directly influence the amount of executions of the SAR image creation
algorithm, which is

dim(x)∏
i=1

Ni , (5.12)

Ni = amount of grid points for parameter i,

i = 1, . . . , dim(x).

This means that the higher performance requires more execution time and slower
algorithm, i.e. there is a fundamental balance between performance and speed.
This kind of algorithm can be implemented in an iterative manner where the grid
size and resolution is changed between iterations, since it is assumed that each
iteration makes the estimate better. In this case, a coarser and larger grid can be
used in the first iteration, and finer and smaller grid in the successive iterations.
The total amount of executions of the SAR algorithm is, in this case

M∑
j=1

dim(x)∏
i=1

Nij , (5.13)

Nij = amount of grid points for parameter i in iteration j,

M = amount of iterations,

j = 1, . . . , M,

i = 1, . . . , dim(x).

The iterative approach can be beneficial if the amount of optimisation parameters
is large and the accuracy demand is high, i.e. the grid resolution should be fine.

5.2.1 Numerical Examples

The performance of the global grid search will be evaluated on the test SAR im-
ages as in Section 5.1.2. The same optimisation cases, with both two and five
optimisation parameters, are evaluated for the structured scene only. the focus
measure that is used is entropy 1 due to its pronounced minimum value for the
correct parameters for the structured scene. If noisy SAR images are used, TG
could have been used as well, as noticed in Chapter 4. Because the grid search
is a time consuming procedure and its result is only used as a comparison to
the gradient search method, no Monte Carlo simulations are done and only the
structured scene is used.

The error in the estimated parameters and error image power using the grid
search procedure is presented in Table 5.4 and the resulting SAR images are de-
picted in Figure 5.6. It can be seen that the estimate of the parameters in both
cases is very close to the true parameters. The only source of the inaccuracy in
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(a) Focused SAR image generated with es-
timated trajectory with two optimisation
parameters.
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(b) Focused SAR image generated with es-
timated trajectory with five optimisation
parameters.

Figure 5.6: SAR image generated with estimated trajectories with two and
five optimisation parameters respectively.

Parameter Two parameter case Five parameter case

v̂X0 5 · 10−3 m/s -3 · 10−3 m/s
âY0 2 · 10−4 m/s2 -5 · 10−4 m/s2

âYbN/4c - -5 · 10−4 m/s2

âYbN/2c - -5 · 10−4 m/s2

âYb3N/4c - -5 · 10−4 m/s2

Error image power 2.60 70.25

Table 5.4: Error in the estimated parameters for the structured scene with
the grid search minimisation procedure.

this case is the combination of the initial parameter vector x0 and the grid resolu-
tion, which causes the grid points not to coincide with the true parameter values.





6
Methods Based on Raw Radar Data

In this chapter methods based on raw radar data, or RAR, are used to acquire
information about the platform’s motion and in that way obtain better trajectory
in the filtering framework.

6.1 Introduction to Phase Gradient or Range Gradient
Methods

In the previous sections the common factor for the auto-focusing procedure is
that SAR images, either real or complex, are used to obtain a focus measure as
a function of the platform trajectory. Since essentially the same information is
contained in the raw SAR measurements, these can be used for the same goal,
i.e. auto-focus and extracting the platform’s trajectory. Since raw SAR data con-
tains phase delay information (which is discarded during image formation), it
is that information that is mainly used for auto-focusing. These methods are
called Phase Gradient (PG) or Phase Difference (PD) methods, see for example
Oliver and Quegan [2004], Xing et al. [2009], Wahl et al. [1994], Yegulalp [1999]
or Fienup [1989] for details.

The basis for this approach is the fact that the phase delay of the radar echo data
is proportional to the range which will vary hyperbolically as a function of time,
see (5.6) and Figure 5.1,

ϕt = −4π
λ
Rt (6.1)

where λ is the wavelength of the radar carrier. It is seen that phase delay and
range are proportionally related to each other. That means that phase and range

61
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can be used equivalently, it is only the factor −4π/λ that differs. Here, exactly
as in previous sections the platform’s altitude is assumed constant but the model
is easily adapted to the case when altitude is varying. We can now calculate the
time derivative of the phase delay and obtain

ϕ̇t = −4π
λ
Ṙt (6.2)

The range derivative, Ṙt , can be calculated by taking the time derivative of the
range from (5.6) (repeated here for convenience)

Rt =
√
R2
N + Y 2

t − 2 sin (Ψ )RNYt (6.3a)

RN =
√
R2
m + (Xm − Xt)2 (6.3b)

By using the chain rule we obtain

Ṙt =
−(Xm − Xt)vXt + Ytv

Y
t − RN sin(Ψ )vYt + Yt sin(Ψ )(Xm−Xt)vXt

RN√
R2
N + Y 2

t − 2RNYt sin(Ψ )
(6.4)

As mentioned in Chapter 2, in the SAR applications where radar frequency is
high or antenna size is large, the lobe is narrow and an approximate expression
for the range and its gradient can be used without much loss of accuracy. The
source of the approximation in this case is the fact that the synthetic aperture
length, 2Xm, and deviation Yt are much shorter than the range to the middle of
the scene, Rm. The range can then be approximated with the Taylor expansion as

Rt ≈ Rm +
(Xm − Xt)2

2Rm
(6.5)

and the range gradient calculated with this approximate expression and under
the assumptions that velocity vXt is constant (reasonable assumption for short
aperture times) is a linear (affine) function of time

Ṙt ≈ −
(Xm − Xt)vX

Rm
= − (Xm − vX t)vX

Rm
= −Xmv

X

Rm
+

(vX )2

Rm
t (6.6)

The PG methods try to estimate the slope of this linear function from the raw
data in order to compensate for the phase delay error caused by the platform’s un-
known motion. This compensation is then applied during azimuth compression
in order to focus the image. For the time domain image formation approach, this
is equivalent to estimating the unknown motion. The assumption made above
about narrow radar lobe is not applicable to the SAR systems which operates with
low frequency. This will imply that range gradient cannot be approximated with
the linear function except in the narrow band around zero phase delay. Due to
this, the method of fitting a linear function in order to compensate for the phase
delay error described above will not work satisfactory for the low frequency SAR.
That is why, just as in the previous sections, the exact expression for the range is
used here.
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If we look at the equation (6.4) we see that the right hand side consists of states of
the dynamical model, i.e. positions, velocities and some (known) constants. The
left hand side of the equation is the entity that can be estimated from the SAR
data (either raw or partially processed). This implies that we have a measurement
equation from the standard sensor fusion and filtering framework in the form

yt = h(xt ; θ) + et (6.7a)

xt = [Xt Yt v
X
t v

Y
t ]T (6.7b)

θ = [Rm Xm Ψ ]T (6.7c)

and some standard filtering methods, such as the EKF or the particle filter, can
be applied.

6.2 Estimating the Range Gradient

In order to create measurements from (6.7), we need an estimate of the phase
delay. Phase delay estimation kernel, proposed in Fienup [1989], is (superindex
m stands for measured)

ϕ̇mt =
1
T

arg
{∑

R

IRAR(R, t)I ∗RAR(R, t − T )
}

(6.8)

where IRAR(R, t) is the complex RAR image from (2.1), i.e. raw radar data, I ∗

denotes the complex conjugate, R is the range dimension and t is the azimuth
(or time) dimension and T is the time between pulses which is the inverse of
the pulse repetition frequency. This estimate can be calculated in a sequential
manner, pulse by pulse and be interpreted as a measurement yt for each time
instance and used in the filtering framework. The problem with both of these
methods is that they are developed for the high frequency SAR systems where
phase gradient can be approximated with a linear function. Since this is not
the case in the low frequency SAR system some other method must be applied.
If seen in the context of back-projection and subimage processing described in
Chapter 2, if each radar echo is used to generate a subimage, the complete SAR
image is then simply the sum of all subimages. Each subimage is created with
some assumption about range from the platform to the scene, either correct or
perturbed, and the raw data contain information about the correct range. This
in turn means that each (complex valued) pixel in the back-projected subimage
will contain the information about the range between the platform and the scene.
However, due to the phase wrapping effect in the complex number arithmetic, the
absolute value of the range cannot be obtained. However, it is possible to estimate
the range derivative from the consecutive subimages in a manner similar to (6.8)
in the following way

ϕ̇mt =
1

TM2

M∑
i=1

M∑
j=1

arg
{
Ĩij (t)Ĩ

∗
ij (t − T )

}
(6.9)
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where Ĩij (t) is the complex M × M subimage generated from radar echo t, see
Section 2.2 and Figure 2.3, and T is the time between radar pulses. This is ba-
sically an estimate of the average range to the centre of the imaged scene. The
subimage is created with an assumption of straight and constant velocity trajec-
tory with nominal state values. Note that it is only raw data used for the image
generation that is summed here, not the whole range dimension as in (6.8). This
is important, if the image to be created is not the same size as the raw data. Range
gradient estimated with (6.9) is illustrated in Figure 6.1 (plotted with dotted line)
together with analytically calculated range gradients based on (6.4) (plotted with
solid and dashed lines). The one plotted with solid line is based on the correct
trajectory, i.e. data are collected with the same trajectory used for the analytical
expression. For the range gradient plotted with dashed line another trajectory,
different from the one used for collecting data, is used. As it can be seen from
this plot the estimate of the range gradient (6.9) can be interpreted as a measure-
ment yt and (6.4) can be interpreted as h(xt) giving the standard measurement
equation. With this relation a standard EKF is applied and the performance is
evaluated.

6.3 EKF and Evaluation of the Performance

Given the dynamical and the measurement models of the system as in (3.2a) and
(3.2b), the EKF is defined by the following recursive steps, [Kailath et al., 2000,
Gustafsson, 2010],

x̂t+1|t = f (x̂t|t , 0) (6.10a)

Pt+1|t = FtPt|tF
T
t + BtQtB

T
t (6.10b)

Ft =
∂
∂x
f (x, w)

∣∣∣∣∣
x=x̂t|t , w=0

(6.10c)

Bt =
∂
∂w

f (x, w)
∣∣∣∣∣
x=x̂t|t , w=0

(6.10d)

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1)) (6.10e)

Pt|t = Pt|t−1 − KtHtPt|t−1 (6.10f)

Ht =
∂
∂x
h(x)

∣∣∣∣∣
x=x̂t|t−1

(6.10g)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1 (6.10h)

Here x̂t|t is the estimate of the states in the time t given all the measurements
up to the time t and x̂t|t−1 is the estimate of the states at time t given all the
measurements up to the time t − 1. Pt|t and Pt|t−1 are their respective covariances.
The rest of the notation follows from Section 3.1.

The dynamical model of the system used in this case is the same as in the Sec-
tion 3.3, i.e. (3.24a). The measurements that are used are the range gradient
Ṙmt obtained from (6.9) and scaled with factor −4π/λ, and the accelerations. The
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Figure 6.1: Range derivative estimated from data (dotted line) and calcu-
lated by the analytical expression (solid and dashed lines). Solid line curve
is generated with correct trajectory, while dashed is not.
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measurement equation is then


ãXt
ãYt
Ṙmt

︸︷︷︸
yt

=


aXt
aYt

−(Xm−Xt)vXt +Ytv
Y
t −RN sin(Ψ )vYt +

Yt sin(Ψ )(Xm−Xt )vXt
RN√

R2
N+Y 2

t −2RN Yt sin(Ψ )

︸                                                     ︷︷                                                     ︸
h(xt)

+


ea

X

t

ea
Y

t

eṘt

︸︷︷︸
et

, (6.11)

where ãt is the measured acceleration, and et is white Gaussian noise with covari-
ance matrix W = diag{Wa, Wa, WṘ} (here covariance matrix of the measurement
noise is called W instead of R to avoid collision with range which is called R).
In order to use EKF, the Jacobian of the measurement equation with respect to
the states, ∂h/∂x is needed. For the measurement equation above, the Jacobian is
(omitting time index for readability)

∂h
∂x

=


∂h1
∂X

∂h1
∂Y

∂h1
∂vX

∂h1
∂vY

∂h1
∂aX

∂h1
∂aY

∂h2
∂X

∂h2
∂Y

∂h2
∂vX

∂h2
∂vY

∂h2
∂aX

∂h2
∂aY

∂h3
∂X

∂h3
∂Y

∂h3
∂vX

∂h3
∂vY

∂h3
∂aX

∂h3
∂aY

 (6.12)

and the nonzero elements are (with sin(Ψ ) = sΨ )

∂h1

∂aX
=1 (6.13a)

∂h2

∂aY
=1 (6.13b)

∂h3

∂X
=
vX + (Xm−X)vY sΨ

RN
− Y vX sΨ

RN
+ (Xm−X)2Y vX sΨ

R3
N

R
−(

(Xm − X)vX − Y vY + vYRN sΨ −
(Xm−X)vXY sΨ

RN

)
(Xm − X)

(
1 − Y sΨ

RN

)
R3
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Xm − X −
(Xm−X)Y sΨ

RN

R
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∂h3

∂vY
=
Y − RN sΨ

R
(6.13f)

Using this setup an EKF has been applied to two cases, one where range gradient
measurement has not been used and one where it has. In order to simulate some-
what more realistic acceleration measurements, a bias of 0.005 m/s2 is added to
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the X-direction and -0.005 m/s2 to the Y -direction in addition to the noise. The
performance is then compared in terms of RMSE of the trajectory and difference
between correct and EKF focused SAR images.

The RMSE for the position and velocity based on the 30 Monte Carlo simulations
as a function of time for cases with and without range gradient measurement
is depicted in Figure 6.2a and Figure 6.2b for the structured scene and in Fig-
ure 6.3a and Figure 6.3b for the unstructured scene. The mean value of the power
of the error image is 384.1 and 3596, respectively. These values can be compared
to the values in Table 5.1 and Table 5.2. The resulting images created with one
of the 30 EKF estimated trajectories are depicted in Figure 6.4. It can be seen
in these images that addition of the range gradient measurement improves the
image focus and the estimate of the navigation states, especially compared to the
pure inertial estimates.

6.4 Comparison between Filter and Optimisation
Method’s Results

It is interesting to compare the results from the two suggested methods, optimi-
sation and filter based. Since both methods have their advantages and disadvan-
tages, it is the application and its need that decides which method to use and
when. If shear performance is compared, the optimisation method performs bet-
ter than the filter method. This is not surprising since the optimisation method
is smoothing and smoothing always has better performance than filtering. This
is illustrated in Figure 6.5 and Figure 6.6 where the RMSE values of the X− and
Y−position are compared for the two methods and the structured and the un-
structured scene respectively. It is also seen that both methods perform slightly
better for the structured scene, which is also expected. The focus measures which
are used perform better on the structured scenes according to Chapter 4 and so
does the range (or phase) gradient method [Wahl et al., 1994, Yegulalp, 1999].

On the other hand, the filter method is sequential and works on the subimages
from each radar echo, giving the possibility of a real time implementation. The
optimisation method is batch oriented and as such it is more suitable for off line
applications or slow updates of the navigation parameters (complete SAR image
must be created in order to estimate the navigation parameters). An efficient
implementation of the optimisation algorithms is needed for the slow updates
and this might require some heuristics.
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(a) RMSE for the EKF estimated position for the structured scene.
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(b) RMSE for the estimated velocity for the structured scene.

Figure 6.2: RMSE for the estimated position and velocity for the structured
scene. X is the azimuth (or along track) dimension and Y is the range (or
cross track) dimension.
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(a) RMSE for the EKF estimated position for the unstructured scene.
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Figure 6.3: RMSE for the estimated position and velocity for the unstruc-
tured scene. X is the azimuth (or along track) dimension and Y is the range
(or cross track) dimension.
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(a) Image of the structured scene created
with trajectory from the pure inertial esti-
mate.
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(b) Image of the structured scene created
with trajectory from the estimate with
range gradient as measurement.
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(c) Image of the unstructured scene cre-
ated with trajectory from the pure inertial
estimate.
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(d) Image of the unstructured scene cre-
ated with trajectory from the estimate
with range gradient as measurement.

Figure 6.4: Images of the structured and unstructured scene created with
estimated trajectories with and without range gradient measurement.
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(a) RMSE of the X−direction position from optimisation and filter based meth-
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Figure 6.5: RMSE for the estimated position from the optimisation and filter
based methods, structured scene.
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(a) RMSE of the X−direction position from optimisation and filter based meth-
ods for the unstructured scene.
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Figure 6.6: RMSE for the estimated position from the optimisation and filter
based methods, unstructured scene.



7
Concluding Remarks

7.1 Conclusions

In this work a problem of simultaneous auto-focusing of SAR images and obtain-
ing a good estimate of the navigation states by using the sensor fusion framework
is presented. The solution is given for both complete SAR images and raw radar
data leading to batch and filtering methods, respectively. The first one is more
suitable for off-line applications, although it is not limited to these, while the sec-
ond one can be applied to an on-line case. The methods have been evaluated on
simulated test images, that should be representative for the imaged scenes.

The results from both batch and filter based methods show a good potential of
obtaining good auto-focused images and fairly good navigation states estimate,
without high precision navigation aids, like GNSS. The two-stage batch method
based on two different focus measures works good. In the first stage the smooth
and convex measure, but with no pronounced minimum for the correct param-
eters (like the entropy 2 focus measure) is used, and some other measure (like
entropy 1 or TG) with sharper minimum for correct parameter values is used in
the second stage. The benefit of the second stage, at least in the evaluated cases, is
not high and the second stage could be skipped if the accuracy is sufficient after
the first stage.

If the results from both methods are compared to the accuracy obtained with-
out SAR images used as a sensor, but with all navigation states measured, the
performance is better in the batch case, which is expected. For that case, the per-
formance is fully comparable with the case where all states are measured. For the
filter case, the performance is somewhat worse, especially for the unstructured
scene, but still better than the accuracy of the measurements from Table 3.1. How-
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ever, due to the nature of the SAR images, there are ambiguities that still lead to
the limitations in quality of the navigation states estimate.

7.2 Future Work

Since only simulated images are used in this thesis, the next logical step is to use
real data from the CARABAS radar and apply the described methods to these. In
that case a complete 3-DOF or even 6-DOF dynamical model is needed. However,
the methods that are suggested here are general and flexible and extension of the
dynamics is not a problem.

Another thing that could be further investigated is the focus measures used for
SAR images. Here, focus measures traditionally used in optical image processing
are tested. Although they seem to work satisfactory for SAR images, they are
tailored for optical images that have quite different nature. Therefore it would be
interesting to try to find a focus measure for the SAR images where SAR images
creation process and their nature are taken into account. The aim is to find some
more robust, possibly convex measure.

The raw data method applied here is related to the phase gradient (PG) method
used extensively for SAR auto-focusing. The method seems to work well, but it
would be interesting to apply some other parametric methods in the raw data do-
main. For example, as demonstrated in Chapter 2, a point target will be imaged
as a hyperbola in a RAR image. If a scene contains such point targets it should be
possible to search for the hyperbolas in the raw data and estimate the platform’s
motion from these. This method would be coupled to the SLAM method even
tighter where usual features in the images are replaced with hyperbolas in the
raw radar data and the ideas and approach from Sjanic et al. [2011] could then
be applied.

Another idea related to SLAM and parametric methods that can be further ex-
amined, is the concept of “Cooperative SAR”. Here, N platforms with radars are
flying around and collecting radar echoes from the scene. The scene is modelled
as a set of D dominant point scatterers at positions sd , and at each time instant
each platform registers ranges to the L strongest echos. The following measure-
ment model is then obtained

y it = ||pit − sdl || + e
i
t (7.1)

y it : platform i’s detections from the radar echos at time t, dim(y it ) ≤ L,
pit : position of the platform i at time t,

sdl : position of the scatterer d, dl is association of echo l to scatterer d,

eit : measurement noise for platform i at time t,

i = 1, . . . , N ,

d = 1, . . . , D,

l = 1, . . . , L.



7.2 Future Work 75

This approach differs from the basic SAR approach, which is nonparametric and
similar to the TkBD, since some kind of association between measurements and
scatterers is needed and strong assumption about the scatterers in the scene is
made.
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