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Chapter 1

Introduction

The Divisions of Automatic Control and Communication Systems consist of
some thirty persons. We teach thirteen undergraduate courses to more than
eleven hundred students. The courses cover both traditional control topics
and more recent topics in model building and signal processing.

Our research interests are focused on the following areas:

— System Identification: We are interested in a number of aspects ranging
from industrial applications, to aspects of the fundamental theory and
properties of algorithms.

— Non-Linear and Hybrid Systems: Here we are interested both in de-
veloping theory for nonlinear systems and to understand and utilize
how modern computer algebraic tools can be used for practical anal-
ysis and design. Hybrid systems is an important and emerging field
covering problems of how to deal with systems with both discrete and
continuous phenomena.

— Sensor Fusion: Techniques to merge information from several sensors
are of increasing importance. We are involved in four different indus-
trial application of this kind, at the same time as we try to abstract
the common underlying ideas. Particle filters play an important role
in this context.

— Diagnosis and Detection Problems are very important in today’s com-
plex automated world. Within the Competence Center ISIS we work
with several industrial problems of this kind.



— Communication Applications: We have several applied and theoretical
projects that deal with communication systems.

— Robotics Applications: Within ISIS we have a close cooperation with
ABB Automation Technology Products — Robotics.

— Optimization for Control and Signal Processing: Convex optimization
techniques are becoming more and more important for various control
and signal processing applications. We study some such applications,
in particular in connection with model predictive control.

Details of these research areas are given in the corresponding sections of
this report.

Funding

We thank the Swedish Research Council (VR), the Swedish Agency for In-
novation Systems (VINNOVA) and the Foundation for Strategic Research
(SSF) for funding a major part of our research. The grant from SSF funds a
research program VISIMOD, which is a joint program for research in Visual-
ization, Modeling, System Identification, and Simulation. The participating
groups are from the Departments of Electrical Engineering, Computer Sci-
ence and from the Norrkoping Visualization and Interaction Studio, NVIS.
The program leader of VISIMOD is Lennart Ljung.

The Control and Communication Divisions take active part in the VIN-
NOVA Competence Center ISIS (Information Systems for Industrial Control
and Supervision), whose Director is Lennart Ljung. The ISIS Center started
in November 1995. Phase III of this Competence center started January 1,
2001 and lasted to the end of 2003. Phase IV will cover 2004 and 2005.

The divisions are also central partners in the Research School ECSEL (Ex-
cellence Center for Computer Science and Systems Engineering in Linképing),
which started its activities during 1996. This research school is funded by
the Foundation for Strategic Research (SSF) and is a joint effort between the
departments of Electrical Engineering and Computer Science.

Some Highlights

During the year Markus Gerdin, Andreas Eidehall, Erik Wernholt and Jonas
Gillberg defended their Lic. Eng. dissertations.

2



Several distinctions were awarded to the researchers of the group. Fredrik
Gustafsson received the Arnberg Prize from the Royal Swedish Academy of
Sciences (KVA) for “outstanding technical research of great relevance for
industrial applications”. Kent Hartman received the AF prize for his en-
gagement in education at different levels. Lennart Ljung received honorary
doctorates from the Universite de Technologie de Troyes in France and from
the Catholic University of Leuven in Belgium. He was also elected as foreign
associate of the US National Academy of Engineering (NAE).

Figure 1.1: March 31: Fredrik Gustafsson receives the Arnberg Prize from
the Royal Swedish Academy of Sciences (KVA).



Figure 1.2: September 15: Lennart Ljung delivers a lecture when receiving
the Docteur Honoris Causa degree from Université de Technologie de Troyes,
France.

Figure 1.3: October 2: Lennart Ljung receives the diploma at the induction
to the US National Academy of Engineering (NAE). Left: William A. Wulf,
President of NAE, Right: Craig Barrett, Chairman NAE and CEO of Intel.



Figure 1.4: October 12: Lennart Ljung receives the Ehredoctor Diploma from
Professor A. B. Oosterlink, Rector of the Katholieke Universiteit Leuven. In
the background, Professor Bart de Moor, promotor at the event.

Report Outline

In the following pages the main research results obtained during 2004 are
summarized. More details about the results can be found in the list of articles
and technical reports (See Appendices G and H. Numerals within brackets
refer to the items of these appendices). These reports are available free of
charge, most easily from our web-site. The next chapter describes how you
can search for our publications in our data base and download any technical
report.

We invite you to visit our home page:

http://www.control.isy.liu.se

The competence center ISIS has the home page
http://vir.liu.se/isis

and the VISIMOD Research Program is described in
http://www.ida.liu.se/zope/portals/visimod

For the research school ECSEL turn to
http://vir.liu.se/ecsel



Chapter 2

Network Services

There are a number of ways you can access the work produced at this group.
Most convenient is probably to email the person you wish to contact. The
email addresses are listed at the end of this activity report. Apart from these
shorter but quite arbitrary email addresses you can always use the general
form:

Firstname.Lastname@isy.liu.se

e.g., Lennart.Ljung@isy.liu.se.
We also have a generic email address:

Automatic.Control@isy.liu.se

or AC@isy.liu.se for short. Emails sent to this address are currently for-
warded to our secretary Ulla Salaneck.

Finally, you can also retrieve reports and software electronically using
our World Wide Web services. This is our preferred method of distributing
reports.

2.1 World Wide Web

The most powerful way to get in touch with the group is probably by using
our World Wide Web service (WWW). The address to our web pages is:

http://www.control.isy.liu.se
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When you surf around in our WWW-environment you will find some gen-
eral information over this group, the staff, seminars, information about un-
dergraduate courses taught by the group and you have the opportunity to
download technical reports produced at this group. This is the easiest way
to access the group’s work, just click and collect.

Our WWW service is always under development. We look forward to
your feedback regarding this service. If you have any questions or comments,
please send an email to our group of webmasters

rt_www@isy.liu.se

2.2 Publications Data Base

Selecting “Publications” in our web pages gives access to our publications
data base. See Figure 2.1. It allows you to search for publications by author,
area, year, and/or publication type. You can also search for words in the
title. The result of the search is given either as a clickable list of publications
(Choose HTML) or a list of BibTEX items (Choose Bibtex). See Figure 2.2
for an example of a search result. Clicking on the publication items brings you
to the home page of the publication with further information. See Figure 2.3.
Department reports can always be downloaded from the home page, while
articles and conference papers refer to a related department report that can
be downloaded in .ps or .pdf format.
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Type: An
P Y Area Hybrid Systems
Number: Non-linear Systems
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Responsible for this page: Automatic Control
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Figure 2.1: The publications data base interface.
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LiU >ISY > Control & Communication > Publications Database

Publications Database
Fill out relevant parts of the form below to find our publications. See help for further information about the
search.

Last name: Il]ung— First name: l—
Tide: | Year: 2004
Type: | Article Identification

Hybrid Systems
Number: I

Non-linear Systems
Keywords: |

Signal Processing
Search | © HTML © BibTex

Area:

3 documents matches.

Variance Expressions for Spectra Estimated Using Auto-Regression
Authors: L. L. Xie, L. Ljung
Published: Journal of Econometrics, Vol 118, pp 247-256, 2004.

Identification of piecewise affine systems via mixed-integer programming
Authors: J. Roll, A. Bemporad, L. Ljung
Published: Automatica, Vol 40, pp 37-50, 2004.

Figure 2.2: Example of search result.
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Educational aspects of identification software user interfaces T
Author: L. Ljung

Published: Proc. 13th IFAC Symposium on System Identification, pp 1590 -1594, 2003.

Research area |dentification

Keywords: education, software

Related report

by,

a

#
rery

Abstract:
Apparently many users of identification techniques learn the topic only via use of commercial software. This may or
may not include the software manual. This means that the software user interface -- graphical or not -- plays amajor role
in teaching identification theory and methodology to large number of users. This contribution deals with such
educational / pedagogical aspects software user interfaces.
In particular we focus on issues to hide certain design variables as defaults, and what can be done in case no defaults are
obvious. Other questions are how to force the user to appreciate and understand the quality of an identified model, and to
know what optional design choices and methods that are available, in particular if there is no Graphical User Interface
(GUI).

Bibentry:

@inproceedings{ Ljung:03aaa,

="Lennart Ljung",

Educational aspects of identification software user interfaces",
2003",

month = "Aug",

address = "Rotterdam, The Netherlands”,

editor = "P. van der Hof, B. Wahlberg, S. Weiland",

booktitle = "Proc. 13th IFAC Symposium on System Identification",
pages = "1590 -1594",

Figure 2.3: Example of a publication home page.
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Chapter 3

System Identification

3.1 Introduction

The research in System Identification covers a rather wide spectrum, from
general principles to particular applications.

During 2004, two licentiate theses, [2], and [3] have been finished in this
area. These will be described in the next few sections.

3.2 Estimation of Continuous Time Models

The licentiate thesis of Jonas Gillberg, [3] covers problems related to frequency-
domain identification of continuous-time systems.

Input and output relationships in the physical sciences are often modelled
in continuous time. The models can be devised from first principles and the
parameters almost always have an intuitive physical interpretation. Tradi-
tionally identification of these continuous-time models have been carried out
in the time domain, often via a discrete time version of the model. In the
thesis methods are presented and analyzed for doing the identification in the
frequency domain.

The first part of the work treats the identification of continuous-time
autoregressive moving average (CARMA) models. Here a continuous-time
counterpart to the discrete-time Whittle likelihood estimator

02 arg mein Vi, éf) (3.1)
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where

T AT S AL I, (3.2)
N e —1 (I)C<iwk,0) ’

is analyzed and used. Here ®.(iw, 6) is the signal spectrum for a model with

parameter vector 6 and @C(iw) is the periodigram estimate from data. This
method however needs an estimate of the continuous-time power spectral

density @DcT(zwk), which in turn would require continuous-time measurements.
This density is estimated from the discrete-time power spectral density

~
~

. (iw) = O (T) Py(eT) (3.3)

with the non-causal prefilter

eins_l 2¢
Pl ety & 1L 20 L (3.4)
f Bag_1(eTs) | '
20—

The entities Byy_1(2) are the so called Euler-Frobenius polynomials. This is
actually the frequency-domain version of the Wiener smoothing formulas if
the system is of relative degree [ and is approximated by a set of [ integrators.
Further on in the thesis a related, deterministic approach is derived for the
case of a continuous-time output error (COE) model.

Another issue which is discussed in the thesis is the relationship between
parameter bias and bias in the estimate of the continuous-time power spectral
density. The central result is the expression

E(0 —6o) ~ > S(iwy) Ad(iwy).
keN

where 0 are the estimated parameters and 6, are the true parameter val-
ues. The relative bias in the periodogram estimate of the power spectrum is

defined as

E&)(Zu}k) — CI)(Z'(,(Jj€7 00)
@(iwk, 90)
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The sensitivity of the parameter estimates to the relative bias in the peri-
odogram is

S(zwk) == \If(@o, @)*I\PR(QO, (I))
The so called relative sensitivity is defined as

(I)le (iwk, 90)

Wi(bo, @) = ®(iwy, 0p)

and

U(B, @) = Y Wi, ©)T4(6o, )"
keN

Non-interfering disturbances can occur in areas where the model spectrum ¢
is small and the relative bias can therefore be quite large. Hence in order to
avoid parameter bias it is necessary to ignore information from frequencies
where the relative bias and sensitivity are large.

3.3 Parameter Estimation in Differential-
Algebraic Equations

Markus Gerdins licentiate thesis, [2] deals with parameter estimation in
Differential-Algebraic Equations.

To make models of complex system, it is often desirable to combine physi-
cal modelling and system identification. This is called grey box identification.
The classical approach to grey box identification has been to make state-space
models with unknown parameters that are to be identified. However, mod-
ern modelling tools such as MODELICA are not based on state-space mod-
els. Instead the equations describing the system form a differential-algebraic
equation (DAE), .

F(&(t),€(1), u(t), 0) = 0. (3.5)

Here £(t) is a vector of physical variables, u(t) is an input signal and 6 is a
vector of (possibly unknown) constant parameters. To be able to combine
modern modelling tools with grey box identification, we examine how un-
known variables 6 in a DAE can be estimated from input and output data.
The goal is that the user only should need to work with graphical models,
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such as the one in Figure 3.1. When the user has indicated which parameters
that are unknown, where known inputs enter, where disturbances are present,
and which signals that are measured and provided measurement data, the
identification process should be fully automatic.

Figure 3.1: Modern modelling tools use graphical modelling. Research efforts
are made to connect such modelling tools directly to identification software.

Several aspects of the case when the DAE is linear,

E(0)E(t) = J(0)(t) + K (9)u(t) (3.6a)

y(t) = L(O)E(1), (3.6b)

are discussed in the licentiate thesis [2]. To get a basic understanding of
the properties of the model, and to lay the foundation for development of

identification procedures, different transformations and canonical forms for
the system (3.6) are reviewed. One important form is

Rt A R
ul 2 tﬂ (3.7h)
£(t) = Qz(t) (3.7¢)

where N is a nilpotent matrix and () is an invertible matrix. One important
characteristic of this form is that it can be computed efficiently using nu-
merical software, which is important if it is going to be used in identification
software. The computation of this form is discussed in [2] and in [29].
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The transformed variants of the DAE can also be used to sample the
model. An exact discrete time version of the continuous time model can be
calculated if the inter-sample behaviour of the input is known. This can be
useful for example when using discrete time measurements for identification.

Another important aspect of this form is that it shows the fact that the
internal variables £(t) may depend on derivatives of the input since the second
row of (3.7a) gives that

m—1

2(t) = =Du(t) - > N'Dul(t). (3.8)

=1

The fact that the internal variables might depend on derivatives of the
input implies that care must be taken when introducing noise in DAE sys-
tems. Since the derivative of white noise is not well defined, care must be
taken so that all variables of interest are well defined after introduction of
noise. Conditions for how noise can be added to the DAE (3.6) are discussed
in [2]. If u(t) is white noise in (3.8), we can for example see directly that it
must be required that

ND =0 (3.9)

for all components of z(¢) to be well defined. This condition can also be stated
in terms of the original system matrices in (3.6). When a noise model has
been introduced, it is possible to implement prediction error and maximum
likelihood estimation of the unknown parameters. Even if all parameters are
known, it is interesting to model noise affecting the system, e.g., for state
estimation using Kalman filters.

In [30], parts of the results are exemplified using measurements from a
laboratory process. It is shown how a MODELICA model and measurements
from a physical process can be combined to estimate parameters and states.

The optimisation problems that are solved to find the parameters in grey
box identification are often difficult to treat since they have several local min-
ima. It is therefore important to have good starting values for the parameter
search. One method to find starting values for linear DAE systems is dis-
cussed in [2]. Tt suggested that a polynomial which measures the difference
between the grey box model and a black box model should be formed. Initial
values for the parameters can then be found by minimising this polynomial.
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3.4 Nonlinear System Identification via Di-
rect Weight Optimization

In earlier Annual reports it has been described how a general non-linear
regression function can be estimated from data by a method we have termed
DWO - Direct Weight Opimization.

The basic nonlinear identification problem considered here can be phrased
as follows: Assume that we are given data y(t) and ¢(t), t =1,..., N from
the unknown nonlinear system

y(t) = fe(t)) + e(t)

where e(t) is a noise term with known variance o2. Estimate f(p*) for a
given point ¢*, assuming only that f has a given Lipschitz bound on the
derivative.

This type of identification problems arise, e.g., in the model-on-demand
framework, where the main idea is not to bother about building a global
model for a (possibly very complex) system, but instead keep a database of
experimental data and build local models at specific points ¢* only when
they are needed.

However, in practice the Lipschitz bound must be estimated. A strategy
for how this could be done is presented in [45].

3.5 Identification and Verification of Piece-
wise Affine Systems

Piecewise affine systems are composed of several affine subsystems, between
which switchings occur at different occasions. Such systems are obtained,
for instance, whenever an otherwise linear system contains bounded signals,
deadzones, or is controlled by discrete control laws. Piecewise affine systems
can be found in many applications, and the research activities in the field
have increased in the last decade.

Identification of piecewise affine systems is an area that is related to
many other research fields within nonlinear system identification, and one
can find several different methods and approaches which are applicable, or
at least related to the piecewise affine system identification problem. How-
ever, until recently there have been few attempts to design special-purpose

16



algorithms for these kinds of systems. In [14], such an algorithm, based on
mixed-integer programming, is presented. This approach guarantees that
an optimal model is found, at a price of greater computational complexity.
To reduce the complexity, one can either restrict the model class or use a
suboptimal optimization procedure. Both these alternatives have been in-
vestigated. Using piecewise affine Wiener models allows the complexity of
the identification problem to be reduced considerably. For the special case
where the estimation data only seldom switches between the different sub-
models, a way of trading off between optimality and complexity by using a
change detection approach is proposed.

3.6 Linear Models of Nonlinear Systems

Linear models of nonlinear systems are used in many applications. For ex-
ample, using standard system identification tools like the prediction-error
method, it is very common to estimate approximative linear models also
from measurements of the input and output signals of a nonlinear system.
Systems with stationary stochastic input and output signals and linear time-
invariant (LTI) approximations that are optimal in the mean-square error
sense have been studied in a particular research project for a few years.

The reason for this choice of approximation type is that parameter esti-
mates obtained by the prediction-error method under fairly general condi-
tions will converge to values that correspond to mean-square error optimal
LTI models when the number of measurements tends to infinity. The opti-
mal LTT model can be called the LTI Second Order Equivalent (LTI-SOE),
since it can explain the second order properties of the input and output sig-
nals. Some results about, and examples of, LTI-SOEs have previously been
published in a licentiate thesis and in conference papers, and they have been
described in earlier annual reports.

An interesting fact about LTI-SOEs is that they can be very sensitive to
small nonlinearities in the sense that a small nonlinear part in the system
might give a large contribution to the LTI-SOE. In previous publications, it
has been shown that it is easy to construct a nonlinear system that exhibits
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this behavior. Consider the system

y(t) = yi(t) + 0.01y, (1), (3.10a)
w(t) = u(t), (3.10b)
Yn(t) = u(t)?® (3.10¢)

with the input
u(t) = e(t) — 1.980e(t — 1) + 0.9801e(t — 2),

where e(t) is a white noise process with uniform distribution over the interval
[—1,1]. Since this input signal is bounded, the nonlinear contribution to the
output is small. However, for this input signal, the system will have an
LTI-SOE that is far from the linear part y;(t) = u(t) of the system.

In [28] and [27], it is shown that the sensitivity of an LTI-SOE to small
nonlinearities depends on how non-Gaussian the input signal is. For example,
consider the signal

where
1

€M(t> = i

M
Y alt), MeZ,.
k=1

= 5

The processes éx(t), k =1, ..., M are independent white signals with uniform
distribution over the interval [—1, 1] and zero mean. According to the central
limit theorem, the signal uy,(t) becomes more similar to a Gaussian signal
for larger values of M.

Realizations with 50000 samples of the input and output signals have
been generated and an output error model has been estimated for each pair
of signals. The differences between the frequency responses of these estimated
models are shown in Figure 3.2. Since the number of measurements is rather
high, the estimated output error models are close to the corresponding LTI-
SOEs. Hence, Figure 3.2 shows that the effects on the LTI-SOE from the
nonlinearities in a certain system will become smaller if the input gets more
Gaussian. These issues are also discussed in [68].

In control applications, the purpose of estimating a model of a system is
often to use it for control design. Hence, it is interesting to know how an
LTI-SOE can be made more useful for robust control design. This topic has
been investigated during the year and some results concerning control design
based on approximate linear models will be published in the future.
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Figure 3.2: Bode plot showing the estimated output error models of the
system (3.10) for a Gaussian input (thin solid) and for inputs u,; according
to (3.11) with M = 1 (thin dashed), M = 2 (thick solid) and M = 8 (thick
dashed).

3.7 Projection Techniques

3.7.1 Projection Techniques for Classification

In a broad variety of applications ranging from the information retrieval on
the Internet to the processing of sensor signals, there is a constantly growing
need to make use of patterns with very high dimensionality. One major task
is of course the accurate classification of these patterns, but very important
issues are also how to compress and how to wvisualize them. If numerical
vectors represent the patterns, both these latter issues can be addressed by
searching for special low-dimensional linear projections of the pattern vectors.

We usually assume every pattern is an observation of one of g popula-
tions. By classification we understand the task to infer which one of these
populations a given pattern is an observation of. Usually, the pattern vector
does not contain all information needed to make this inference fool proof.
The uncertainties due to absent information will be manifested as noise that
limits the possibility to distinguish between patterns from different popula-
tions. Given the probabilistic distribution of the noise, the Bayes error is a
well-known definition for how confident the inference can be at best, despite
the noise. No deterministic inference or classification rule can ever fall short
of the uncertainty given by the Bayes error.

When pattern vectors are projected on a low-dimensional plane, valuable
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information is usually lost with an increase in noise magnitude and Bayes
error as a consequence. This means it might not be possible to classify
the low-dimensional representation of a pattern with the same confidence as
allowed by the original pattern. Obviously, there is a whole set of k-dim-
ensional projections in the original n-dimensional pattern space (we assume
k < n). It is also rather obvious, that different projections in this set may
result in different Bayes error. A natural and not very novel idea is to use the
(particular) projection that gives the lowest possible Bayes error. However,
it turns out that generally, this projection is very difficult to find. It is even
difficult to compute the Bayes error for a given projection, and we are often
resigned to use approximations.

In [10] we address the problem to find projections of two populations with
equal or almost equal means, but with different covariance matrices. For this
case the well known Fisher’s linear discriminant analysis is not defined. The
particular assumption in the work is that one population is “small” with little
spread, while the other is “large”. This is a problem structure encountered
when one population models measurements on good or normal specimens,
while the other models measurements on a more general class of bad or
abnormal specimen.

In [10] we propose a method to find a linear projection from n to k di-
mensions where the spread of the good population is minimized with respect
to the bad population. The objective function

trace [(STX,9) 7' STE,S] (3.12)

is maximized over different orthonormal projections S € R™*. Here, Yy is
the covariance matrix of the good population and ¥, the cvariance matrix
of the bad population. It is shown that with normal distributed populations
with equal mean and k£ = 1, this projection has minimum Bayes error.

3.7.2 Projection Techniques for System Identification

Consider the nonlinear regression model

where the regression vector is defined as
T
Cr= (Ut Y1 Yi-ne Uteny Uteng—1° " Upmny—nyt1] - (3.14)
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This is a rather general model of a time-discrete SISO system with input
u; and output 1, and the modelling objective is to find the function f that
makes the expected magnitude of the residual v, small in some sense. Typ-
ically, the dimension n = n, + n; of the regression vector is too high to be
directly visualized, and often high enough to make numerical aspects of the
parameter estimation an issue that needs consideration.

For some systems it is meaningful to study low-dimensional linear pro-
jections of the regression vector,

¢ = STy, (3.15)

where S € R™*. A drained water tank is actually an example of such a
nonlinear system. The linear projection may enable both visualization and
efficient parameterization of the nonlinearity. The question is how to estimate
S.

In [51] we develop the idea, that the residual magnitude (magnitude of
vy) is closely related to the area occupid by the points ¢y, or rather @;. A
small area means that the points more or less lie on a curve in the column
space of S. This area may be used as a non-parametric criterion by which the
projection S is sought. In essence, the smaller area, the better projection S (a
normality constraint on S is subsumed here). How large is the area occupid
by a set of points? In [51] we use, inspired by Q. Zhang, the triangles of
a Delaunay triangulation of the points ¢; to induce an area measure. The
projection S is then found by minimizing this area measure.

It is found that the Delunay triangulation induce an excellent area mea-
sure. However, the resulting objective function is very complex with many
local minima. The rather negative conclusion is that this criterion is less
useful in practice when it comes to estimating the projection S.

3.7.3 Visualization Techniques for System Identifica-
tion

System Identification is inherently an interactive art. Results from prelimi-
nary model building are studied by the user. Based on such studies, decisions
about new model structures are taken. The studies are typically of visual na-
ture, often simple 2-dimensional line plots of correlation functions and resid-
uals. Visualization techniques have gone through a significant development
during the past decade. It is an interesting problem to study what such new
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techniques may offer in terms of improved interaction in system identifica-
tion, particularly when the identification involves nonlinear and time-varying
dynamics.

In [43] we give some illustrations of what can be achieved in this way. We
describe an ezperimental setup where results from estimation and simulation
in MATLAB are communicated to and displayed by a high-end visualiza-
tion module built with AVS/Express. AVS/Express is a comprehensive and
versatile data visualization tool with a graphical application development
environment.

The experimental setup was developed in collaboration with the Norr-
koping Visualization and Interaction Studio (NVIS), Linkoping University.
NVIS conducts research within the areas of computer graphics, scientific vi-
sualization and virtual reality. At NVIS there is, among much other special
equipment, a virtual reality theater with a cylindrical wall on which graphics
are shown, for instance, system identification data. The wall is 10 meters
wide and 3 meters high and covers about 150 degrees of the field of view.
Each of the three CRT projectors covers a third of the wall and edge blending
is used to join the three pictures into a single big picture. Stereoscopic vision
is achieved using CrystalEyes glasses synchronized using infrared light.

Figure 3.3 shows an example, where time varying dynamics are revealed
by plotting a 2-dimensional projection of the regression vector versus time.
A wolume rendering technique is used that gives the user the feel of both
depth and density in data. The volume can be rotated interactively, and by
the use of special 3-D glasses, the user has the feeling of beeing immersed
into the data. In [44] the visualization techniques are described to the detail.

3.8 Using ANOVA for Selecting Regressors
in Non-linear Models

Techniques to apply Analysis of Variance (ANOVA) to select regressors in
non-linear models have been described in earlier annual reports. In general,
system identification is data centred. Simple things are tried first; Is a linear
model sufficient to describe the data? To invalidate a linear model, the
residuals are examined with whiteness tests and the fit of the model on
validation data is used to form an opinion of how good the model is. Thus,
a linear model is often available, or easily computed.
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Figure 3.3: The experimental setup running on a semi-immersive display.
This is a photograph of the screen in the NVIS virtual reality theater.

ANOVA can be used for finding proper regressors and model structure for
a nonlinear model by fitting a locally constant model to the response surface
of the data [96]. A clever parameterisation of a locally constant model makes
it possible to perform hypothesis tests in a balanced and computationally
very effective way. Let

y(t) = gu(t),u(t —=T),...,u(t —kT)) + e(t)
=07 01(t) + g2(a(t)) + e(t)

be a general nonlinear finite impulse response model with input w(t) and
output y(t), sampled with sampling time 7. Let ¢1(t) be a vector contain-
ing the regressors that affect the output linearly (with parameters ;) and
o(t) the regressors that affect y(¢) nonlinearly through the function go(-).
Three main questions can be answered by both running ANOVA directly on
identification data and running ANOVA on the residuals from a linear model:

e Should the regressor u(t — k;T') be included in the model at all, and

23



should it be included in ¢ (t) or wo(t)?

e What interaction pattern is present? Can g(-) be divided into additive
parts containing only subsets of the regressors? What subsets?

e Are there nonlinear effects in the residuals from a linear model?

There are much to be gained by the division into a linear and a nonlinear
subset of the regressors [54] instead of assuming a full nonlinear model. The
complexity of any black-box type of model depends heavily on the size of
Pa(t).

In [95], an idealised case is examined to quantify the difference between
running ANOVA directly on identification data and first estimate an affine
(linear with constant offset) model and then running ANOVA on its residuals.
The purpose is to answer the questions above.

3.9 Subspace Methods

So called Subspace methods have been the subject of considerable recent in-
terest in the literature on System Identification. The methods are intriguing,
since they are numerically efficient, fast and do not require iterative search.
At the same time they contain several design variable choices, and there is no
full understanding about the best choices of these. We have reported on sev-
eral aspects of subspace methods in earlier annual reports. A specific aspect
is that subspace methods usually fail with closed loop data. A modification
that takes care of that problem is described in [50]. The idea is to make
an estimate of the innovations sequence, in order to avoid the correlation
between past innovations and the input.
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Chapter 4

Nonlinear Systems

4.1 Backstepping for rigid bodies

Backstepping is a Lyapunov based nonlinear control design method that pro-
vides an alternative to feedback linearization. In [75] a method for backstep-
ping control of a rigid body is developed, based on a vector description of
the dynamics. The control design gives insight into the controller structure
and how it depends on the rigid body structure. In particular the method
can be used for the design of controllers for aircraft dynamics.

4.2 Control allocation

Control allocation deals with the problem of distributing a given control
demand among an available set of actuators. Most existing methods are
static in the sense that the resulting control distribution depends only on
the current control demand. In [9] a method for dynamic control allocation
is proposed, in which the resulting control distribution also depends on the
distribution in the previous sampling instant. The method extends regular
quadratic programming control allocation by also penalizing the actuator
rates. This leads to a frequency dependent control distribution which can
be designed to, e.g., account for different actuator bandwidths. The con-
trol allocation problem is posed as a constrained quadratic program which
provides automatic redistribution of the control effort when one actuator
saturates in position or in rate. When no saturations occur, the resulting
control distribution coincides with the control demand fed through a linear
filter.
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4.3 DAE models

General approaches to modeling, for instance using object-oriented software,
lead to differential algebraic equations (DAE), also called implicit systems or
descriptor syatems. For state estimation using observed system inputs and
outputs in a stochastic framework similar to Kalman filtering, one needs to
augment the DAE with stochastic disturbances (process noise). This might
lead to mathematical difficulties because of hidden differentiations of the
signals. In [30] it is discussed how such problems can be detected and avoided.

If some parameters in DAE models are unknown, one might need to
estimate them from measured data from the modeled system. This is a form
of system identification called gray box identification. In [2] it is investigated
how gray box identification can be performed for linear descriptor systems.
To solve the problem, some well-known canonical forms are used to examine
how to transform the descriptor systems into state-space form. In general,
the input must be redefined to make the transformation into state-space form
possible. The implementation requires numerical software which is discussed
in [29].

4.4 Robustness and model error models

Much attention in robust identification and control has been focused on lin-
ear low order models approximating high order linear systems. In [6] the
more realistic situation with a linear model approximating a non-linear sys-
tem is considered. It is described how a non-linear model error model can
be developed, that allows a complete linear design process. The result is a
closed loop system with performance robustness guarantees (in terms of gain
from disturbance to output) against the nonlinear error. Clearly the design
can be successful only if the linear model is a reasonably good approximation
of the system. A particular aspect of the design process is to define a work-
able definition of “practical stability” for robust control design, with possible
nonlinear model errors. For that purpose affine norms are used.

4.5 Nonlinear non-minimum phase systems

For nonlinear systems, instability of the zero dynamics is known to corre-
spond to the non-minimum phase property of linear systems. For linear sys-
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tems it is also known that non-minimum phase is associated with certain step
response behavior e.g. undershoot. The corresponding step response prop-
erties of nonlinear systems are investigated in [31]. It is also investigated
whether a certain nonlinear canonical form gives insight into the relation
between step response and non-minimum phase behavior.
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Chapter 5

Sensor fusion

This project is carried out by Division of Communication Systems and Divi-
sion of Automatic Control in cooperation with our industrial partners SAAB
(Dynamics and Gripen) Volvo (Cars), NIRA (Automotive algorithms) and
FOI (laser scanning systems). Highlights of the year are

e The licentiate thesis by Andreas Eidehall [1].

e The sensor fusion work got international and national recognition by
several major research grants which will support and extend the scope
of the previous ISIS sensor fusion project:

— FP5 IST project MATRIS for real-time tracking of cameras using
inertial sensors and image information.

— The Swedish research programme Intelligent Vehicle Safety Sys-
tem (IVSS) granted the application SEFS (SEnsor Fusion for
Safety systems), where Chalmers and Volvo are partners.

— The Swedish research council (VR) granted the project Sensor
informatics and sensor fusion.

These projects have in common that vision information is considered
as a sensor in a sensor fusion framework.

5.1 Overview

We will here describe the general area of sensor informatics. We split the
sensor informatic problem into
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Motion dynamics 2thin) = Flelt), w(t) ~ altein) = As(ty) +w(ty)
Sensors: IS, GIS, Vision y(tx) = h(x(t), e(tr)) y(tr) = Cx(ty) + e(ty)
Filter Approximate PF = #'F “Exact” KF = #&F

Table 5.1: Quverview of a sensor fusion system with possible filtering ap-
proaches. The sensor delivers measurements y(ty,) with time stamps ty,, which
may come irreqular in time and with jitter noise. This is the subject of Sec-
tion 5.3. For almost linear models and Gaussian shaped noise, 25t should
be prefered, while for non-linear models or sensors with non-Gaussian error
distributions should at least be 2FF. The theoretical best choice and compu-
tational aspects are the subjects of Section 5.2.

e high-level sensor fusion and
e low-level sensor sampling problem.

The reason for the latter is that it turns out to be a fundamental sensor fusion
problem that must be solved when the data is not uniformly sampled or, due
to bus communciation problems for instance, a sampling jitter is present.

The general problem of utilizing all available sensor information is called
sensor fusion. Mostly, one assumes that the sensor measurements are related
by a dynamic model, and we face a filtering problem. The optimal solution
given by Bayes’ law is well-known. In case the dynamic model is linear,
the Kalman filter theory applies. In the non-linear case, several numerical
approximations have appeared in the past, though quite few applications of
these have been reported. It was first with the invention of the particle fil-
ter by Gordon et al. in 1993 that a general working solution with a sound
theoretical basis that the signal processing community started to apply ap-
proximate non-linear filtering to real-world problems. During the past five
years, many applications have been reported, and the theory has made sub-
stantial progress. Table 5.1 summarizes the sensor fusion model and the two
choices of linear or non-linear filtering.

Pre-processing of sensor signals is in many cases decisive for the sen-
sor fusion performance. We have found that for several inertial navigation
problems, non-uniform sampling is in particular critical. In Table 5.1, non-
uniform sampling is illustrated as explicit time stamps t; attached to each
measurement. In a model-based filtering framework, this does not pose a
problem in itself. The main problems are random errors on ¢, and determin-
istic jitter (cyclic unknown error) in ;. Non-uniform sampling is a relatively
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unexplored area in signal processing where few hard facts are available.

5.2 Sensor fusion projects

The current projects include

e Particle filters for system identification. A wellknown general approach
to system identification is to put the model structure on state space
form, and extend the state vector with the parameters to be identi-
fied. The interesting question is how well the particle filter performs
on such models, and it is not trivial to answer the question since the
augmented state vector does not lead to an ergodic process which is
one requirement for the particle filter theory. For linear model struc-
tures, this approach leads to a bilinear state space model, and then an
important practical question is how to marginalize the state vector to
get a lower-dimensional state vector. This is the subject of [56]. For in-
stance, marginalizing the parameters avoids the problem of ergodicity

mentioned above.

e The marginalized particle filter as a general tool has the potential of
increasing estimation accuracy and reducing computational complexity

at the same time. Complexity issues are analyzed in [49].

e Positioning of robot tools, [47, 48]. Using accelerometers at the tool of
a robot and sensor fusion techniques, the accuracy of tool positioning

can be increased.

e Fundamental limitations in filtering. What is the ultimate accuracy
that can be achieved given infinite computational and memory re-
sources? The Cramér-Rao lower bound gives once such accuracy bound
for the second order moment. For linear systems with non-Gaussian
noise, the Kalman filter is the linear filter that provides the best sec-
ond order accuracy, but non-linear filters as the particle filter may give
much better performance. In [39], explicit results are given for this

case.

5.3 Non-uniform sampling

Non-uniform sampling naturally occurs in the following cases
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e Event-based sampling as for instance the angular measurements that
are done on rotating shafts. This occurs in the drive line and at the
wheels (“ABS sensors”) in vehicles and in robot arms, for instance.
That means that the sensor delivers time instants ¢ for a uniform angle
grid 2wk/N. Due to imperfect angle sensors, a regular jitter (offset to
t;) occurs. This jitter should be eliminated close to the sensor, since
the error is hard or even impossible to estimate in (time-domain) sensor
fusion.

e Using parallel computations for high-speed applications, as the project
on parallel AD Converter structures, in Figure 5.1, a jitter effect occurs
due to lack of exact synchronization of the computation blocks. That
means, that the sampling times have a cyclic and unknown offset added
to them.

e Stochastic sampling jitter occurs when time stamps of sensor measure-
ments have unknown random errors. This occurs for instance in some
communication protocols as CAN in vehicles and in high-speed applica-
tions where clock synchronization in not perfect. Theory of frequency
analysis based on samples subject to stochastic jitter is developed in
in [25, 33, 26], where an application to queue management control is
given.

e System identification based on non-uniform samples with known sam-
pling instants, is treated in [3].

5.4 Automotive collision avoidance

An automotive collision avoidance system incorporates many important sen-
sor fusion aspects:

e Navigation for ego-motion estimation.
e Target tracking for situational awareness.
e Road prediction for hazard evaluation.

e Decision support.
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Figure 5.1: Previous research projects in non-uniform sampling

The challenge is to design these in a system showing an extremely low false
alarm rate and good intervention performance. Our collaboration with Volvo
Car Corp has given valuable knowledge, which has been substantiated in sev-
eral demonstrator vehicles that have been tested extensively with successful
result. The publications this year include the following projects:

e A sensor fusion framework for all three tasks of navigation, tracking and
road prediction. This includes a curved coordinate system following the
road [23], where the host vehicle’s and tracked vehicles’ lateral positions
are given as deviations from the reference lane. In this way, all relevant
parameters are collected in one state vector, where sensor inputs from
own intertial sensors and wheel speeds are mixed with radar, lidar, IR
and vision information in a common measurement model.

e Stochastic uncertainty for decision support is treated in [42].

e The paper [46] demonstrates how the particle filter can be used to
utilize multiple radar reflections in tracked vehicles using a multi-modal
probability density function for the radar measurement noise.
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5.5 Laser radar systems

This project concerns target recognition methods and performance analysis
of estimation algorithms based on data from a generic laser radar system.
This year’s work treated recognition of ground targets with complex shape.

Data processing methods in this area are usually developed separately for
military or topographic applications, seldom with both application areas in
mind. In civilian applications, ground surface estimation and classification of
natural objects, for example trees, is common. Once the natural objects have
been detected and classified, buildings can be reconstructed and vehicles can
be recognized. In [41], an overview of methods from both areas is presented.
By combining methods originating from civilian and military applications,
we believe that the tools for scene analysis becomes available.

A first approach to recognition of ground targets from irregularly sampled
laser radar data is presented in [32]. It is based on the fact that man-made
objects of complex shape can be decomposed to a set of rectangles. The
ground target recognition method consists of four steps; estimation of the
target’s 3D size and orientation, segmentation of the target into parts of
approximately rectangular shape, identification of segments that contain the
main parts of the target and matching the of target with CAD models. An
example is shown in Figure 5.2. In [32], its application in a decision support
system for ground target recognition is presented.

Back view

Figure 5.2: Target recognition of a tank. Left: 3D size and orientation
estimation using rectangle fitting. The identified main parts are barrel (o)
and turret (x). Right: Matching with low-resolution CAD model.

33



Chapter 6

Detection and Diagnosis

6.1 Fault Isolation in Control Systems with
Object Oriented Architecture

Introduction

Developing control systems for complex systems is a difficult and increasingly
important task. Large control systems have traditionally been developed us-
ing structured analysis and functional decomposition. Today, many large
systems are designed using an object oriented approach. This has several
advantages over traditional approaches, including better possibility to cope
with complexity and to facilitate maintenance and reuse. It leads to new
kinds of problems, though, and we concern ourselves with the problem of
fault propagation caused by an object oriented software architecture. As ba-
sic inspiration and case study we have used a commercial control system for
industrial robots developed by ABB Robotics; the system is highly config-
urable, programmable and has an object oriented architecture. More work
on industrial robots is described in Chapter 8.

Object-oriented design goals such as encapsulation and modularity often
stand in direct conflict with the need to generate concise information about
a fault situation, and to avoid propagating error messages. Error messages
are sent by individual objects to notify, e.g., an operator that an error con-
dition has been detected. The aim to encapsulate information implies that
individual objects, or groups of objects, in general do not know how close
they are to the fault or if the fault has already been adequately reported by
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another part of the system. When a fault situation occurs, e.g, a hardware
component failure, a broken communication link or a real-time fault, it is
not a very desirable system behavior to present a multitude of error mes-
sages from different parts of the system to an operator. For the operator,
who normally has no insight in the internal design of the control system, it
can be very difficult to understand which error message that is most relevant
and closest to the real fault. For objects that are close to each other it is
possible to suppress error messages by information passing, but this is not
always feasible.

There are two main objectives of our work: On the one hand we want to
devise a method that can be used for operator support. The aim is then to
single out the error message that explains the actual cause of the failure, or
possibly an unobservable critical event explaining the observations. We aim
to discard error messages which are definitely effects of other error messages,
while trying to isolate error messages (or critical events) which explain all
other messages. That is, we propose a fault handling scheme as an extra
layer between the operator and the core control system, performing post-
processing of the fault information from the system to achieve clear and
concise fault information to the operator, without violating encapsulation
and modularity. On the other hand, our method can also be used at design
time. At the design level, we want to find out, at design-time, if the error
log design is sufficient, that is, if enough error messages are produced to be
able to isolate all faults.

The fault isolation is done in two steps. In the first phase a structural
model fault isolation is done, and in a second phase a behavioral model
fault isolation is used only if needed. If the structural model fault isolation
is successful in finding a single cause of all the error messages, the second
phase of behavioral model fault isolation is not needed.

The structural model is represented mainly by the class diagrams in UML
(Unified Modeling Language). The main advantage with using a software en-
gineering model is that it can be developed and maintained at a relatively low
cost as it is an integrated part of the software development process. From the
error messages in the error log we can find the cause-effect relation between
the error messages. If there is no unique maximal element initially, we use the
UML model, in particular the class diagrams, to extend the original graph.
A prototype implementation of the structural approach has been made and
tested on the ABB Robotics industrial robot control system.
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Behavioral fault isolation

Since the structural model thus is an abstraction of all possible behaviors, it
is not unlikely to have circular dependencies in the structural model without
ever having circular dependencies in any specific scenario. When such a
circular dependency occurs in the explanation graph the structural model is
not sufficient to perform successful fault isolation, but having a behavioral
model of the objects involved in the cycle we may be able to break the
cycle. A dependency in the structural model, say class A depends on class
B, means that there exists a scenario where an instance of class A depends on
an instance of class B. It is not possible to deduce whether the dependency
holds in the scenario at hand or not, since the model does not discriminate
between different scenarios. By modeling also the behavior of the objects
we get the opportunity to reason about dependencies that hold only under
certain circumstances, i.e. in certain scenarios.

Our main focus lately has been to extend the structural approach to
fault isolation using behavioral methods -more precisely we use UML state
machines as notation for the behavioral model- and class instances rather
than classes. We use the concept of strong root candidate. A strong root
candidate is an event that is known to have occurred, and there is a run
(consistent with the log) where this event is the first critical event.

When starting behavioral model fault isolation we have a limited set of
root candidates, i.e. events in the scenario that are suspected to have caused
the failure of the system. This set is an output from the structural model
fault isolation.

We propose an approach to fault isolation based on model checking to
locate strong root candidates (if they exist!). The property of being a strong
root candidate is then expressed in the temporal logic CTL (normally used
for verification). And we use an existing model checker to single out the
strong root candidates. However, a main obstacle in model checking is the
so-called state-space explosion—the number of global system states typically
increases exponentially with the number of subsystems. Techniques have
been proposed to stretch the limits of model checking (e.g., symbolic model
checking and partial order reduction). However, in our case we do not solve a
general model checking problem but a more specific problem. Consequently
there are more efficient abstraction mechanisms for our particular problem,
and we propose such a method in [94, 93]. The general idea is that we are
only interested in the correlation between the first critical event and the set
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of messages that are logged during the execution. Hence, we can abstract
away details not only about parallel object interleavings as in partial order
reduction, but also ignore order of messages and dynamics that in the global
system model does not change the set of messages sent or the order of critical
events. For example, cyclic behavior where no critical events occur can be
abstracted to a single state. Before applying model checking we perform ab-
straction, thus reducing the state space considerably and facilitating checking
of the strong root candidates using model checking.

The result produced by our method is a table that maps all possible
message logs to the corresponding strong root candidates. The table, called
the fault isolation table, can of course be used for fault isolation; given a log
and the fault isolation table, the strong root candidates can be found simply
by table lookup. The primary use is in diagnosability analysis, though. The
table partitions all possible system runs in equivalence classes of runs with
the same logged messages. Each partition corresponds to a row in the table.
If for such a row, there are several strong root candidates, we conclude that
runs in the corresponding class are not diagnosable. If an error message is
redundant, it will be evident from the table. If it depends on some other
message, the two will only appear in certain configurations in consistent
logs. The exponential size of the table indicates that it is not feasible to
use it explicitly in general for systems with a large set of logged events.
Then, abstractions of the table can be considered and presented to a user,
for example the set of table rows that indicate non-diagnosability.

We have developed a prototype tool, StateTracer, that takes a description
of a system as input and produces a fault isolation table as output along with
visualizations of all merged objects. The system description is given in UML.

6.2 Fault detection and diagnosis in process
control systems

This project is carried out by in cooperation with ABB Automation Systems
and ABB Corporate Research. The aim is to study and develop methods for
detection and diagnosis in process control applications.

This project focuses on fault detection and diagnosis in pulp and paper
processes. Typical characteristics of these systems are that they are large
systems with a large number of signals/sensors, and the physical models are
of limited accuracy.
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We investigate how to make a model of a system with a large number of
signals, where furthermore only a small part of the signal space contains data
under normal operations. PCA, principal component analysis is a promising
method for this, where singular value decomposition is used to find the rele-
vant parts of the signal space. The PCA model can then be used to compare
measured process output with model output, and compute a test statistic,
which will differ from zero when a fault has occurred.

Once a fault is detected, the next step in the fault detection and diagnosis
is to find the faulty sensor. Using a probabilistic approach we can minimize
the misclassification.

PCA has usually been employed for static systems, and for certain sam-
pling rates, the pulp and paper process can be regarded as such. It is however
also interesting to include dynamic information into the model, i.e., by in-
cluding delayed versions of the signals in the regressor. This is known as
dynamic PCA, dPCA, and closely related to subspace methods.

Another approach to fault detection is the parity space approach which
is an elegant and general tool for additive faults in linear systems and is
based on intuitively simple algebraic projections and geometry. It provides
a tool to compute a residual vector that is zero when there is no fault in the
system and reacts to different faults in different patterns, enabling a simple
algorithm for diagnosis (deciding which fault actually occurred). Examples
on simulated data often show very good results. A main drawback is that the
approach does not take measurement errors and state noise into consideration
as in the classical Kalman filter literature.

We mix the linear state space models used in fault detection and Kalman
filtering, treating deterministic and stochastic disturbances in different ways.

In [36, 79] a comparison is made between the parity space analyzed in
a stochastic setting and PCA. The result is thaty PCA has similar fault
detection and isolation capabilities as the stochastic parity space approach.
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Chapter 7

Communication Applications

7.1 Introduction

The third generation cellular radio systems is in many aspects conceptually
different from the first and second generations. In these previous generations,
resource management was to a large extent concentrated on channel alloca-
tion, where users share a fixed resource such as channels similar to classic
work by Erlang et al. In the third generation (as well as in some upgraded
second generation systems), the available resource is not fixed, but flexible
and depend critically on the network deployment. The wireless communica-
tion system comprises many algorithms which have to be implemented in a
distributed fashion but mutually affect each other. Also the information is
distributed, and full observability of the system behavior is almost always
not possible. Therefore, careful design and analysis of the various algorithms
is crucial.

This project is carried out by Division of Communication Systems and Di-
vision of Automatic Control in cooperation with Ericsson Research. The aim
is to apply methods from control theory and signal processing to algorithms
on different layers in wireless communications systems.

One instructive approach is to separate the resource management in two
segments:

e Radio resource management. This segment focuses on the radio access
network to enable efficient transport of data from transmitters to re-
ceivers. Aspects, such as efficiency, feasibility, stability, fairness etc are
central.
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e Data network control. The data over the links is not continuous, and its
flow depend on the behaviour of the core network run by the operator,
and of other connected networks, such as the Internet. The data flow
depends on both end-to-end transport protocols and on flow control
mechanisms in nodes.

The activities are concentrated to:

e Identification and modeling of different network components and layers,
based on control theory methodology. Primarily, the algorithms can be
separated with respect to time constants, input and output signals, and
physical location, to identify potential conflicts.

e Development of coordinating radio network algorithms. This also in-
cludes studying cross-couplings and conflicts between existing algo-
rithms, as well as investigating robustness of distributed algorithms.

e Model data flow control to better relate to radio network properties.

7.2 Project Overview

The projects will be described using a top down approach, from flow control
of data packets sent over the wireless links, via radio interface admission
control of new users and finally to control of individual transmitter powers.
The overall situation is depicted in Figure 7.1.

Data flow control primarily makes impacts on the core network and other
connected networks, but also relates to radio network properties. Uplink load
estimation and control addresses the situations at the base station, which is
monitored in the RNC (Radio Network Controller). Control of individual
transmitter powers mainly deals with the situation between the base station
and the mobile situation.

7.3 Data Network Flow Control

Many people consider 3G as the technology that makes Internet generally
available to mobile users. This means that the fields of telecommunications
and data communications will overlap to a greater extent than before. While
the paradigm in data communications is flexibility, the key word within
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Figure 7.1: Radio network connected to a core network and the Internet
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telecommunications is efficiency of the wireless link. Therefore, some flow
control mechanisms used of wired Internet causes problems when used di-
rectly over wireless links. Furthermore, these flow control mechanisms were
designed assuming different traffic characteristics than prevalent today. The
field of data network control is “hot” within academia, and much effort is
spent on modeling the control protocols and the queues of the switches and
routers. The main idea with the project is to combine core knowledge in con-
trol theory and in telecommunications resource management, to form better
understanding as well as better and more relevant models for the observed
phenomena. One distinguishing property of the flow control problems is
that new information becomes available upon packet arrivals, which means
that the input signals are non-uniformly sampled in time. To better control
queue lengths etc, a model of the observed data is instructive. [33] dis-
cusses frequency analysis of non-uniformly sampled data. The impact from
the sampling can be seen as a frequency window applied to the continuous
time Fourier transform to spread a distinct continuous time frequency over
a frequency range.

In order to study the impact from modifications to queue management etc
in combined fixed and wireless networks, additions to the network simulator
ns-2 has been made. The Master Thesis [131] describes recent modeling
of radio resource management and investigates the impact from using too
simlified models of either the fixed or the wireless part of the network. The
conclusion is that in order to quantify end-to-end performance accurately,
neither part can be represented by simplistic delay models.

Related to this project are also the two Master Theses [115, 149], which
addresses the performance of evolved 3G systems for streaming services and
in unlicenced frequency spectrum, respectively.

7.4 Uplink Load Estimation and Control in
WCDMA

A prerequisite for proper behavior of radio network algorithms is that not
more users than actually can be served are admitted into the system. This is
of course intuitive, but with limited observability rather difficult to ensure.
The situation is especially hard in the uplink communications from mobiles
to the base stations, since the system has no absolute control of the trans-
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mitter powers of the mobiles. These depend in turn on the radio propagation
conditions, which are subject to rapid changes. A relevant quantity is the
total received power relative to the noise power, often referred to as the noise
rise, NR. This can be associated to a cell load L, which is defined by

1
NR = ——-.
1-L
As also seen in Figure 7.2, it is very important to operate at moderate load
levels. Fluctuations at high load levels have a critical impact on the noise
rise.
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Figure 7.2: Relation between noise rise and load

A high level of noise rise means that many mobiles will have insufficient
transmission power to transmit data successfully at the allocated service data
rate (i.e. insufficient service coverage). It is also an indication of potential
instability problems in the network. The key property is feasibility, which
means that there exists finite transmission power levels for each uplink con-
nection to meet the allocated service requirements. This is discussed in detail
in 70, 5].

The load estimation accuracy can be improved if the channel activity is
considered instead of using a full activity assumption. Some ideas relating
activity estimation and load estimation are presented in [57].

Ensuring an efficient uplink communication is not only about ensuring
proper admission and congestion control of potential users. There is also
performance to gained by improving data transport over individual links.
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Uplink Transmission Timing [59, 58] is a method based on statistical multi-
plexing of uplink usage, aiming at a certain channel activity for the individual
links, and a dezentralized scheduling mechanism in the mobile that aim at
the target channel activity, while selecting transmission instants carefully to
minimize power consumption and thereby the uplink interference contribu-
tion.

Another plausible improvement is on the receiver side. The uplink recep-
tion is interfered by all other incoming connections to the same base station -
connections that are known. Similar to noise cancelling, this interference can
be at least partically cancelled using advanced multi-user receivers. Some
system performance aspects of interference cancellation is discussed in [37].

7.5 Transmitter Power Control

The main resource in future 3G systems such as WCDMA is power and
spectrum. Since the users share the same spectrum, power control is an im-
portant means to utilize the resources efficiently. The control of each trans-
mitter power can be seen as distributed feedback control loops. As such, time
delays, feedback bandwidth, sample rate etc. constitute fundamental limita-
tions to the power control performance, which most naturally are analyzed
using control theory methodology [8, 7]. Furthermore, control theory also
facilitates the control design, and a compact discussion regarding the control
theory aspects of power control is found in these publications.

7.6 Related Work

Some work bridges the reasearch projects. Positioning in wireless commu-
nication networks is one example where a sensor fusion approach is used
to address the problem. Since nonlinearities and non-Gaussian noise are
present, the particle filtering framework is plausible.
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Chapter 8

Robotic Applications

8.1 Introduction

This work is to a large extent carried out in cooperation with ABB Robotics
within the competence center ISIS (Information Systems for Industrial Con-
trol and Supervision). The overall aim of the work is to study and develop
methods for improvement of the performance of robot control systems.

8.2 Multivariable and Nonlinear Identifica-
tion of Industrial Robots

Erik Wernholt’s licentiate thesis [4] treats various aspects of identification of
industrial robots.

The ultimate goal for robot identification is to find an accurate global
nonlinear flexible model, suitable for, e.g., control design (both the controller
structure and tuning), simulation, analysis, and diagnosis. The identification
of such a complex model is a huge task, both in finding suitable model struc-
tures and efficient identification procedures, and is still a topic for further
research.

Figure 8.1 gives an overview of some common model structures and
identification procedures. The global nonlinear flexible model is denoted
M(ORB 9FB ONL) where the parameter vector 6 is divided into rigid body
parameters, 072 flexible body parameters, 87, and parameters describing
nonlinearities, 8% (for example, backlash, friction, and nonlinear stiffness).
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The global nonlinear rigid model, M“VE(GEE 9NL) is obtained by ignor-
ing flexibilities (denoted by 6% = 0). For the local linear flexible model,
MEEF(9RP 9"P), the global model M (677,075 §N") is linearized around the
operating point X = Xj and nonlinearities are ignored (denoted by ' = 0).

A number of different identification methods exist, based on these model
approximations. The main objective of Erik Wernholt’s licentiate thesis [4]
is the identification of flexibilities and nonlinearities (shaded boxes in Fig-
ure 8.1). In particular, a nonparametric frequency domain estimation method
for the multivariable frequency response function (MFRF) is evaluated and
analyzed. Nonlinear gray-box identification is also treated. Since identifica-
tion in robotics is a much studied problem, one important part of the thesis
also is to give an overview of earlier results.

For the MFRF estimation method, an approximate expression for the
estimation error has been derived which describes how the estimate is af-
fected by disturbances, the choice of excitation signal, the feedback and the
properties of the system itself. The MFRF estimation method has been eval-
uated using both simulation data and experimental data from an ABB IRB
6600 robot. A number of different aspects regarding excitation signals and
averaging techniques have been studied. It is shown, for instance, that the
repetitive nature of the disturbances further limits the choice of excitation
signals. Averaging the estimates over several periods of data or using exper-
iments with identical excitation does not give any significant reduction due
to the repetitive disturbances. The results are presented in [4] and [61].

A three-step identification procedure is also proposed in which parameters
for rigid body dynamics, friction, and flexibilities can be identified only using
measurements on the motor side of the flexibility. The main point is the last
step, where the parameters of a nonlinear physically parameterized model (a
nonlinear gray-box model) are identified directly in the time domain. The
first two steps give special attention to the problem of finding good initial
parameter estimates for the iterative optimization routine. The procedure
is exemplified using real data from an experimental industrial robot. The
results are presented in [4] and [106] and is also accepted for publication at
the 2005 IFAC World Congress.

Another contribution to the area of robot identification is given in [18]
where recursive grey-box identification is considered. A physically parame-
terized two-mass model of the movement around axis one is considered. Some
of the physical parameters are assumed to be know and the remaining are
estimated using a recursive prediction error algorithm.
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Figure 8.1: Overview of the robot identification problem and some common
subproblems and identification methods. The shaded boxes denote what is

treated in [4].
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8.3 Iterative Learning Control

Iterative learning control (ILC) is a control method that utilizes a repetitive
behavior that exists in many practical control applications, for example in
the control of industrial manipulators. By using the error from previous
iterations of the same action the error can be reduced. The structure of the
problem is shown in Figure 8.2 where the output of the ILC algorithm is
up+1(t) defined for 0 <t < ty.

Mathematically the algorithm can be formulated as

Up1 = Q(up + Ley)

where wu; is the input to the controlled system and e; is a measure of the
control error. ) and L are operators that can be chosen by the user. When
controlling a standard industrial robot only measurements from the motors
are available although it is the arm that should be controlled. ILC on the
motor does not always give a good result for the tool path tracking, and there-
fore additional sensors is a natural extension to increase the performance. In
[35] some results from such an approach are presented. The process used in
the experiments is a laboratory scale 1-DOF flexible joint process. Using a
simple sensor fusion approach the information from the motor angle and the
arm acceleration are merged into an estimate of the arm angle. This estimate
is then using in an ILC algorithm with good result.

Another aspect of ILC is studied in [12], where the use of time-varying
filters in the ILC-algorithm is considered. This comes as a logical consequence
when a stochastic framework is applied to the problem. It is shown that
zero error convergence can be achieved although the system model has an
error of 100 % and there are stochastic disturbances acting on the output

ug(t) yr(t)

- GC
- - ILC J
{ur (O} et T ()

Figure 8.2: An example of a system controlled using ILC.
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of the system. The trade-off between convergence speed and measurement
disturbance sensitivity is also covered in [12].

8.4 Sensor integration

Modern industrial robot control is usually based only upon measurements
from the motor angles of the manipulator. The ultimate goal however is to
make the tool move according to some predefined path. During 2004 a new
project was initiated where the aim has been to apply Bayesian estimation
techniques for sensor fusion with application to robotics. In Figure 8.3 a
robot equipped with a 3-axes accelerometer is shown.

\7

Figure 8.3: An ABB IRB1400 robot with a 3-axes accelerometer mounted on
top of the gripper.

The Bayesian estimation techniques have been applied to a realistic flex-
ible robot model in [48, 47, 88, 90]. In [48] measurements from the robot in
Figure 8.3 are analyzed to support the modeling of the accelerometer sensor.
Estimation using the Eztended Kalman Filter (EKF) is also introduced and
some preliminary results are reported. The estimation process is further de-
veloped in [47] where the EKF is compared to the particle filter estimation
approach. In [88] and [90] modeling aspects are stressed and the sensitivity
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to parametric model errors is investigated. All the results so far are for a
simulated robot, the next step will therefore be to do position estimation on
a real robot.

8.5 Control

In [98] a realistic four mass model of one joint in an industrial robot is
described. The model includes a nonlinear spring and a description of the
uncertainties in the parameters that can be found in a practical robot system.
The aim in [98] is also to present a control competition, organized by Stig
Moberg and Jonas Ohr at ABB in Visteras. In the paper a detailed descrip-
tion of a design exercise is presented and the goal is to find a robust controller
that effectively can reduce the effect of arm and motor disturbances.

A master thesis project [143] on control of a 3 degree-of-freedom robot
arm using LQ and LQG techniques finished during 2004. This project serves
as a continuation of a series of master’s theses where the aim is to develop a
platform for simulation studies of a realistic robot model and study different
control strategies for multivaribale control.

In [69] a gain scheduling control of a nonlinear system is presented. It is
assumed that the reference trajectory is given in advance. Multiple frozen
operating times are chosen on the reference trajectory and a linear time
invariant model is obtained at each operating time. A linear parameter
varying model is then constructed by interpolating the region between the
neighboring frozen operating times. A gain scheduling state feedback law
is designed by a linear matrix inequality formulation. The effectiveness is
demonstrated in a numerical simulation of a tracking control of a two-link
robot arm.
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Chapter 9

Optimization for Control and
Signal Processing

9.1 Introduction

The research in optimization for control and signal processing is currently
focused on efficient optimization algorithms for robustness and stability anal-
ysis of control systems and for model predictive control. Also stability anal-
ysis of nonlinear systems with applications to flight control systems is inves-
tigated.

9.2 Optimization Algorithms for Robustness
Analysis

In this project we study how to construct efficient Interior-Point (IP) algo-
rithms for the Semidefinite Programs (SDPs) that originate from the Kalman-
Yakubovich-Popov (KYP) lemma. They have several applications, e.g., lin-
ear system design and analysis, robust control analysis using integral quadratic
constraints, quadratic Lyapunov function search, and filter design.

Typically standard SDP solvers cannot handle KYP-SDPs of more than
small to medium size in reasonable time, typically the limit is about 50 state-
variables, resulting in roughly 1000 optimization variables. With specially
tailored KYP-SDP-solvers problems with several hundred state-variables,
corresponding to roughly tenths of thousands of variables can be handled.

ol



The computational complexity stems from the cost of assembling and
solving the equations for the search directions in the IP algorithms. Two
avenues have been investigated to circumvent this problem. One is to use
decomposition algorithms. This work has been presented in [105]

Another way of attacking the above problem is to consider the dual prob-
lem and make use of an image representation of some of the constraints.
This will reduce the number of variables in the dual problem such that the
computation complexity is reduced with two orders of magnitude with re-
spect to the state-dimension. A Matlab implementation of the code is pub-
lically available at http://www.control.isy.liu.se/research/authors/
reports/2517/kypd.html and is described in [104, 60]. Ragnar Wallin re-
ceived the best student paper award for [60] at the IEEE Conference on
Computer Aided Control Systems, 2004. The solver is one of the solvers in
YALMIP.

Applications related to the above mentioned methods for stability anal-
ysis of nonlinear systems and for clearance of flight control laws have been
reported in [34, 38].

Further research on control applications of SDPs are presented in [40].

9.3 Model Predictive Control

Model Predictive Control (MPC) has proven to be very useful in process
control applications. Efficient optimization routines to be used on-line is
an active area of research. In [17] it is shown how to efficiently solve an
optimal control problem with applications to model predictive control. The
objective is quadratic and the constraints can be both linear and quadratic.
The key to an efficient implementation is to rewrite the optimization problem
as a second order cone program. This can be done in many different ways.
However, done carefully, it is possible to use both very efficient scalings as
well as Riccati recursions for computing the search directions.

In recent years the interest in controlling so-called hybrid dynamical sys-
tems has increased. Hybrid dynamical systems are systems with both contin-
uous and discrete components. They are useful, e.g., when modeling systems
containing logics, binary control signals or when approximating non-linear
systems as piecewise linear systems. When MPC is used for control of hy-
brid systems, the optimization problem to solve at each sampling instant
becomes a Mixed Integer Quadratic Programming (MIQP) problem. These

52



problems have in general exponential computational complexity in the num-
ber of discrete variables and are known to be N"P-hard. In order to be able to
solve such optimization problems in real time, it is necessary to decrease the
computational effort needed. Research has been done on utilizing structure
when solving these MIQP problems. The result is a preprocessing algorithm
applicable to unconstrained MPC problems for systems with both real val-
ued and binary control signals which may reduce the computational time
considerably. The work is presented in [20, 21].
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M Mechanical Engineering. 165 participants. Lecturer: Inger Klein.

Y Applied Physics and Electrical Engineering. 150 participants.
Lecturer: Lennart Ljung.

D Computer Engineering. 100 participants. Lecturer: Anna Hagen-
blad.

I Industrial Engineering and Management. 175 participants. Lec-
turer: Svante Gunnarsson.

TB, KB Engineering Biology and Chemical Biology Programs. 104 partic-
ipants. Lecturer: Torkel Glad.

e Control Theory Y (Reglerteori Y). For the Applied Physics and Elec-
trical Engineering and Computer Science and Engineering Programs.
Multivariable systems, Fundamental limitations in feedback control
systems, LQG-control, Loop transfer recovery, Loop shaping methods,
Nonlinear systems, Optimal control. 98 participants. Lecturer: Torkel

Glad.
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Control Theory I (Reglerteori I) For the Industrial Engineering and
Management and Mechanical Engineering Programs. Multivariable
systems, Sampled data systems, LQG-control. 12 Participants. Lec-
turer: Mikael Norrlof.

Automatic Control M, advanced course (Reglerteknik, fortsittningskurs
M). For the Mechanical Engineering Program. Modelling, Bond graphs,
System Identification, Nonlinear systems, Signal processing. 12 partic-
ipants. Lecturer: Svante Gunnarsson.

Digital Signal Processing (Digital Signalbehandling). For the Applied
Physics and Electrical Engineering and Computer Science and Engi-
neering Programs. Spectral analysis, Filtering, Signal Modeling, Wiener
and Kalman filtering, Adaptive filters. 95 participants. Lecturer:
Fredrik Gustafsson.

Modelling and Simulation (Modellbygge och Simulering). For the Ap-
plied Physics and Electrical Engineering program. Physical system
modelling, Bond graphs, Identification methods, Simulation. 82 par-
ticipants. Lecturer: Torkel Glad.

Digital Control (Digital Styrning). For the Applied Physics and Elec-
trical Engineering, Computer Science and Engineering and Industrial
Engineering and Management Programs. Numerical control, binary
control and PLCS, process computers and applications of digital pro-
cess control. 95 participants. Lecturer: Inger Klein.

Real Time Process Control (Realtidsprocesser och reglering). For the
Information Technology Program. Real time systems. PID control. 30
participants. Lecturer: Inger Klein.

Linear Feedback Systems (Aterkopplade linjdra system). For the Infor-
mation Technology Program. Linear systems, controllability, observ-
ability, feedback control. 30 participants. Lecturer: Inger Klein.

Control Project Laboratory (Reglerteknisk projektkurs) For the Ap-
plied Physics and Electrical Engineering and Computer Science and
Engineering Programs, Modelling and identification of laboratory pro-
cesses, Controller design and implementation, 45 Participants. Lec-
turer: Anders Hansson.
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e Automatic Control Project Course (Reglerteknik - projektkurs M) For
the Mechanical Engineering Program. Project work, mainly carried
out in industri. The projects involve modeling, controller design and
implementation. 4 Participants. Lecturer: Svante Gunnarsson.

e Introduction to MATLAB (Introduktionskurs i MATLAB). Available
for several Engineering Programs. 750 Participants. Lecturer: Fredrik
Gustafsson.

e Project work (Ingenjorsprojekt Y). Develop an understanding of what
engineering is all about and how the work is performed. - Adminis-
tration, planning, communication, documentation and presentation of
project work, 20 Participants. Lecturer: Anders Hansson and Kent
Hartman.

e Perspectives to computer technology (Perspektiv pa datateknik).
Project work with focus on computer technology, 6 Participants. Lec-
turer: Kent Hartman.

B.Sc. (tekn.kand.)-program

e Automatic control, EI (Electrical Engineering) 5 units, 21 participants.
Contents: Dynamical systems, the feedback principle, frequency do-
main analysis and design of control systems, robustness and sensitivity
of control systems, sampling, implementation, some examples of nonlin-
earities in control systems. Simulation of dynamic systems. Lecturer:
Kent Hartman.

e Automatic control, advanced course, EI 2 units, 21 participants. Con-
tents: Sequential control and logic controllers. A typical industrial
control system. Lecturer: Kent Hartman.

e Automatic control, MI/KI (Mechanical Engineering and Chemical En-
gineering) 4 units, 55 participants. Contents: Sequential control and
logic controllers. Fundamentals of automatic control, dynamical sys-
tems, feedback, differential equations, frequency analysis, Bode plots,
stability, simple controllers, sampling, implementation, simulation of
dynamic systems. Lecturer: Kent Hartman.
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B.2 Graduate Courses

e System Identification. Lecturer Lennart Ljung, Literature: L. Ljung:
System Identification: Theory for the User. Prentice Hall 1999, 2nd
ed.

e Optimal Filtering. Lecturer Fredrik Gustafsson, Literature: Kailath,
Sayed, Hassibi: Linear Estimation; Steven Kay: Fundamentals of sta-
tistical signal processing: estimation theory.

e Convex Optimization for Control. Lecturer Anders Hansson . Liter-
ature: Boyd, S. and L. Vandenberghe: “Convex Optimization”, Cam-
bridge University Press, 2004.

e Linear Systems. Lecturer Torkel Glad. Literature: Wilson J. Rugh,
Linear System Theory, Prentice Hall, 1996.
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Appendix C

Seminars

Large-scale reverse engineering by the Lasso. Michael Hornquist,
Linkopings universitet, February 5, 2004.

Systems Biology and Dynamic Pathway Modeling. Kwang-Hyun
Cho, University of Ulsan, Korea, February 12, 2004.

Probabilistic and Statistical Methods in Advanced Control. Rudolf
Kulhavy, Honeywell Automation & Control Solutions, February 16,
2004.

A Flight Control Design of an Unmanned Space Vehicle Using Gain-
Scheduling. Atsushi Fujimori, Shizuoka University, Japan, March
11, 2004.

Robotstyrning; Om multipla sensorplattformar i natverk. Ake
Wernersson, FOI, Linkoping, March 25, 2004.

Multiple Robot Control — Why and How. Hakan Fortell, ABB
Robotics, April 1, 2004.

Nagra reglerproblem inom bioteknik (Control problems in bio technol-
ogy). Per Hagander, Lund University, April 15, 2004.

GloptiPoly 3 - a Matlab package for globally optimizing polynomial
moments. Didier Henrion, LAAS-CNRS, France, April 22, 2004.

Verifying Safety with Barriers. Stephen Prajna, California Institute
of Technology, April 29, 2004.
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Generating Exponentially Stable Oscillations in Nonlinear Systems by
Feedback with Application to Walking Mechanisms. Anton Shiriaev,
Umea universitet, May 5, 2004.

Some recent LMI-based results in the analysis of dynamical systems.
Graziano Chesi, University of Siena, Italy, May 5, 2004.

Delta Operator Formulations of Estimation and Control. Graham C.
Goodwin, University of Newcastle, Australia, May 14, 2004.

Theory and Application of Constrained Estimation. Graham C. Good-
win, University of Newcastle, Australia, May 17, 2004.

What do Elvis Presley, Mobile Phones and Lap Top Computers have in
Common? Graham C. Goodwin, University of Newcastle, Australia,
May 18, 2004.

Overview of the Research at Nihon University in the field of Automotive
Engineering & ITS. Ichiro Kageyama, Nihon University, June 10.
2004.

Direction-dependent dynamics — theory and application. Fredrik
Rosenqvist, Chalmers University of Technology, September 16, 2004.

Robot Path Planning: An Object-Oriented Approach. Morten Strand-
berg, S3, KTH, October 7, 2004.

A Well-posed Approach to ARMA Estimation and Hinf Control Syn-
thesis. Anders Blomqvist, Optimization and Systems Theory, KTH,
October 28, 2004.

Design and Analysis of Feedback Structures in Chemical Plants and
Biochemical Systems. Henning Schmidt, Fraunhofer-Chalmers Re-
search Centre, November 18, 2004.

Model Reduction for Linear Time-Varying Systems. Henrik Sand-
berg, Lund University, November 11, 2004.

Regleroptimering ger forbattringar i processindustrin. Krister Fors-
man, ReglerDoktorn, December 2, 2004.
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Appendix D

Travel and Conferences

Daniel Axehill participated at Reglermote 2004, Goteborg, May 2004, 43th
IEEE Conference on Decision and Control, Paradise Island, December,
2004.

Andreas Eidehall participated at the IEEE Intelligent Vehicles Sympo-
sium, Parma, Italy, June 2004.

Frida Eng participated in 2004 in the International Conference on Acous-
tics, Speech and Signal Processing, Montreal, Canada, and in Regler-
motet, Goteborg, Sweden, as well as in the Fifth conference on Com-
puter Science and Systems Engineering, Norrkoping, Sweden.

Martin Enqvist participated in Reglermote 2004 in Gothenburg, Sweden,
May, 2004 and in the 6th IFAC Symposium on Nonlinear Control Sys-
tems in Stuttgart, Germany, September, 2004.

Erik Geijer Lundin participated at Reglerméte, Goteborg, May,2004, HY-
CON kick-off meeting, Paris, October, 2004, the 10th Annual Swedish
Workshop on Wireless Systems 2004, Smadalaro, December, 2004.

Markus Gerdin participated at Reglermote 2004, Goteborg, May 2004,
Fifth Conference on Computer Science and Systems Engineering, Norr-
koping, October 2004.

Fredrik Gunnarsson participated in Vehicular Technology Conference in
Milan, Italy, May 2004, and the 10th Annual Swedish Workshop on
Wireless Systems 2004, Smadalaro, December, 2004.
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Svante Gunnarsson attended the CDIO meetings at US Naval Academy,
Annapolis, Maryland, June 2004, and Queens University, Belfast, UK,
September 2004.

Anna Hagenblad participated in Reglermote’04, Goteborg, May 26-27,
2004.

Anders Hansson participated in Reglermote '04 in Goteborg, visited ON-
ERA, Toulouse, France, February 18, and LAAS, Toulouse, France,
February 19, 2004 as well as the 43rd IEEE Conference on Decision
and Control, Paradise Island, The Bahamas, December 14, 2004.

Kent Hartman participated at the TEKIT-dagen, Linkoping, April 2004,
Samverkansgruppen for hogskoleingenjorsutbildningarna, Vaxjo, April
2004, Reglermotet, Goteborg, May 2004, CUL-dagen, Linkoping, Novem-
ber 2004.

Anders Helmersson participated at 2nd Chinese-Swedish Conference on
Control, Beijing, China, October 16-17, 2004.

Gustaf Hendeby participated at Reglermdte 2004, Gothenburg, May, 2004.
Ola Harkegard participated at Reglermdte 2004, Gothenburg, May, 2004.

Rickard Karlsson participated at the AmericanControl Conference, Boston,
MA, USA, June, 2004.

Inger Klein participated in Reglermote 2002, Gothenburg, Sweden, May,
2004.

Ingela Lind participated at the ERNSI Workshop System Identification,
Dobogoko, Hungary, 3-6 October 2004.

Lennart Ljung participated in the 1st International Symposium on Con-
trol, Communications and Signal Processing in Mammamet, Tunisia
March 21-24. June 7-8 he participated in the conference Systems and
Control: Challenges in the 21st Century, organized in connection with
the inaguration of the new control group at Delft University in the
Netherlands. On June 13-17 he participated in and coorganised Redis-
cover ‘04 in Savtat, Croatia and June 30 to July 3 he participated in the
American Control Conference in Boston, MA, USA. From September 1
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to September 3 he took part in the IFAC symposium on Nonlinear Con-
trol, NOLCOS in Stuttgart, Germany and September 14-16 he visited
the Universite de Technologie de Troyes, UTT, France to receive an
honorary doctoral degree. September 30 to October 5 he visited Wash-
ington DC, in order to be inducted into the US National Academy of
Engineering, (NAE). And October 10-14 he visited Katholieke Uni-
versiteit Leuven, Belgium to receive another honorary doctoral degree.
Ljung participated in the Second Chinese-Swedish Workshop on Con-
trol in Beijing, China, October 14-20 and visited Tsinghua University
on October 19. December 13-17 he took part in the IEEE Conference
on Decision and Control, Paradise Island, the Bahamas.

Mikael Norrlof visited Center for Dynamics of Complex Systems, Univer-
sita degli Studi di Firenze, Italy, April 13, participated at the Re-
glermote 2004, Gothenburg, May 2004, IEEE Conference on Control
Applications, Taipei, Taiwan, September, 2004, and the VINNOVA
Competence Center Workshop 2004, Stockholm, November, 2004.

Jacob Roll participated at the ERNSI Workshop, Dobogoko, Hungary, Oc-
tober 2004, HY CON kickoff meeting, Paris, October 2004, and Nordita
Workshop, Copenhagen, December 2004.

Ulla Salaneck particiapted in Reglermote’04, Goteborg, May 26-27, 2004,
ERNSI, October 3-6, 2004 and the Second Chinese - Swedish Control
Conference, Beijing, China, October 16-17, 2005

Thomas Schon visited DaimlerChrysler, Department for Research and Tech-
nology, Powertrain Control, Stuttgart, Germany, February 13, partici-
pated at Reglermotet, Goteborg, Sweden, May 2627, participated at
the 7th International Conference on Information Fusion, Stockholm,
Sweden, June 2004, participated at ERNSI Workshop System Identifi-
cation, Budapest, Hungary, October 4-6, participated at the fifth Con-
ference on Computer Science and Systems Engineering, Norrkoping,
Sweden, October 20-21, participated at project meetings (EU project,
MATRIS) Darmstadt, Germany, February 12, London, United King-
dom, April 2628, Kiel, Germany, November 8-10.

David Tornqvist participated at Reglerméte 2004, May, 2004, The Ameri-
can Control Conference 2004, Boston, USA, June/July, 2004 and Fifth
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Conference on Computer Science and Systems engineering, October,
2004.

Ragnar Wallin participated at the International Symposium on Computer
Aided Control System Design, Taipei, Taiwan, September, 2004.

Erik Wernholt participated in Reglermote 2004 in Goteborg, Sweden, May
2004, and in the 43rd IEEE Conference on Decision and Control, Par-
adise Island, The Bahamas, December 14-17, 2004.
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Appendix E

Lectures by the Staff

e Daniel Axehill: Adaptive Cruise Control for Heavy Vehicles, Regler-
mote’04, Goteborg, Sweden, May 26, 2004.

e Daniel Axehill: A Preprocessing Algorithm with Applications to MPC;
Fifth Conference on Computer Science and Systems Engineering, Norr-
koping, Sweden, October 21, 2004.

e Daniel Axehill: A Preprocessing Algorithm with Applications to MPC;
43th IEEE Conference on Decision and Control, Atlantis, Bahamas,
December 15, 2004.

e Frida Eng (née Gunnarsson): Frequency analysis using non-uniform
sampling with application to active queue management, International
Conference on Acoustics, Speech and Signal Processing, Montreal,
Canada, May, 2004.

Also held at Reglermotet, Goteborg, Sweden, 2004 and Fifth conference
on Computer Science and Systems Engineering, Norrkoping, Sweden,
2004.

e Frida Eng: On Modeling and Control of Network Queue Dynamics.
Guest lecture in a PhD course on Communication, September, 2004
and in an undergraduate course on Automatic Control, October, 2004.

e Martin Enqvist: Some Results on Linear Models of Nonlinear Systems,
Department of Signals, Sensors and Systems, Royal Institute of Tech-
nology (KTH), Stockholm, Sweden, March 11, 2004.
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Martin Enqvist: LTI Approximations of Slightly Nonlinear Systems:
Some Intriguing Examples, Reglermote 2004, Gothenburg, Sweden,
May 26, 2004.

Martin Enqvist: LTI Approximations of Slightly Nonlinear Systems:
Some Intriguing Examples, 6th IFAC Symposium on Nonlinear Control
Systems, Stuttgart, Germany, September 3, 2004.

Markus Gerdin: Computation of a Canonical Form for Linear Difl-
erential-Algebraic Equations, Reglermote 2004, Goteborg, Sweden, May
26, 2004.

Torkel Glad: Stability Analysis of Nonlinear Systems using Frozen
Stationary Linearization, American Control Conference, Boston, USA
June 30, 2004. Step responses of nonlinear non-minimum phase sys-
tems, NOLCOS’04, Stuttgart, Germany, September 3, 2004.

Fredrik Gunnarsson: Post-processing of Drive Test Measurements using
Spatial Filtering, Vehicular Technology Conference, Milan, Italy, May,
2004.

Fredrik Gunnarsson: Aspects of Power Control in Wireless Communi-
cations Networks, KTH, October 6, 2004.

Fredrik Gustafsson: Sensorkluster, sensorfusion och virtuella sensorer,
Conference presentation at Transportforum in Linkoping. January 15,
2004.

Fredrik Gustafsson: The particle filter with applications, Uppsala Uni-
versity, January 28, 2004.

Fredrik Gustafsson: Particle filtering with positioning applications and
Automotive Safety Systems, Two plenary lectures at the 23rd Benelux
meeting on Systems and Control in Helvoirt, Belgium, March 17, 2004.

Fredrik Gustafsson: Tutorial on sensor fusion and particle filtering, for
the EU FP5 project Matris partners in London, April 27, 2004.

Fredrik Gustafsson: Numerical methods for navigation, Conference lec-
ture at Avigen in Linkdping, September 9, 2004.
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Anders Hansson: The KYP-SDP solver KYPD, ONERA, Toulouse,
France, February 18, 2004.

Anders Hansson: Stability of Nonlinear Systems using Frozen Station-
ary Linearization, LAAS, Toulouse, France, February 19, 2004.

Anders Helmersson: Reduced-order LMI-based H,, synthesis,
2nd Chinese-Swedish Conference on Control, Beijing, China, October
16-17, 2004.

Rickard Karlsson: Model-based Statistical Tracking and Decision Mak-
ing for Collision Avoidance Application, American Control Conference,
Boston, MA, USA, June, 2004

Rickard Karlsson: Particle Filtering in Practice — Sensor Fusion, Posi-
tioning, and Tracking, ISIS Annual Workshop Linkoping, November 4,
2004.

Lennart Ljung: Challanges of Nonlinear System Identification, ICSSSP
2004, Hammamet, Tunisia, March 23, 2004.

Lennart Ljung: Univeristy Cooperation with Industry: Formats and
Results, DCSC Symposium: Systems and Control: Challenges in the
21st Century, Delft, The Netherlands, June 8, 2004.

Lennart Ljung: Identification of Nonlinear Systems: Possibilities and
Problems, Rediscover Clip’04, Cavtat, Croatia, June 16, 2004.

Lennart Ljung: State of the Art in Linear System Identification - Time
and Frequency Domain Methods, The American Control Conference,
Boston, MA, June 30, 2004.

Lennart Ljung: Integrated Frequency-Time Domain Tools for System
Identification The American Control Conference, Boston, MA, July 2,
2004.

Lennart Ljung: Estimation of Gray Box and Black Box Models from

Nonlinear Circuit Data IFAC Symposium on Nonlinear Control Sys-
tems, NOLCOS, Stuttgart, Germany, September 1, 2004.
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Lennart Ljung: Adaptive DWO Estimator of a Regression Function,
IFAC Symposium on Nonlinear Control Systems, NOLCOS, Stuttgart,
Germany, September 3, 2004.

Lennart Ljung: Models and Reality, Speech at the Acceptance of the
Honorary Doctoral Degree at the Universite de Technologie de Troyes,
France, September 15, 2004.

Lennart Ljung: Nonlinear System Identification: Possibilities and Prob-
lems Workshop on System Identification and Data Modeling, on the oc-
casion of the Honoris Causa, awarded to Professor Dr Lennart Ljung,
Katholieke Universiteit Leuven, Belgium, Belgium, October 12, 2004.

Lennart Ljung: University in Cooperation with Industry: Formats and
Results. second Chinese-Swedish Workshop on Control, Beijing, China,
October 17, 2004.

Lennart Ljung: Nonlinear System Identification: Possibilities and Prob-
lems Tsinghua University, Beijing, China, October 19, 2004.

Lennart Ljung: OSIRIS, A Proposal for a VINN Excellence Center,
ISIS Workshop, Linkoping, November 4, 2004.

Mikael Norrlof: Position estimation of an industrial robot using ac-
celerometers and sensor fusion techniques, ABB Automation Technolo-
gies AB, Visteras, Sweden, March 23, 2004.

Mikael Norrlof: Some challenges in industrial robot modeling and con-
trol, Center for Dynamics of Complex Systems, Universita degli Studi
di Firenze, Italy, April 13, 2004.

Mikael Norrlof: Bayesian Position Estimation of an Industrial Robot
using Multiple Sensors, IEEE Conference on Control Applications, Taipei,
Taiwan, September 2, 2004.

Mikael Norrlof: Iterative Learning Control of a Flexible Robot Arm Us-
ing Accelerometers, IEEE Conference on Control Applications, Taipei,
Taiwan, September 3, 2004.

Mikael Norrlof: Towards improved performance for industrial robots,
ISIS Workshop, Linkoping University, Sweden, September 2, 2004.
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Mikael Norrlof: Vérldens noggrannaste robotstyrning, VINNOVA Com-
petence Center Workshop, Riksdagshuset, Stockholm, Sweden, Septem-
ber 17, 2004.

Mikael Norrlof: Some fundamental limitations in CITE Iterative Learn-
ing Control, Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden, October 28, 2004.

Thomas Schon: Nonlinear Estimation Using the Particle Filter, Daim-
lerChrysler, Research and Technology, Powertrain Control, Stuttgart,
Germany, February 13, 2004.

Thomas Schon: Sensor Fusion for the MATRIS Project, BBC R&D,
London, United Kingdom, April 27, 2004.

Thomas Schon: Particle Filter for System Identification, Reglermotet,
Goteborg, Sweden, May 26, 2004.

David Toérnqvist: Transmission Timing — A Control Approach to Dis-
tributed Uplink Scheduling in WCDMA, American Control Conference
2004, Boston, USA, June 30, 2004.

Ragnar Wallin: Efficiently solving semidefinite programs originating
from the Kalman-Yakubovich-Popov lemma using general purpose SDP
solvers, Optimization and systems theory, Department of Mathematics,
KTH, Stockholm, Sweden, March 12, 2004.

Ragnar Wallin: KYPD: A solver for semidefinite programs derived
from the Kalman-Yakubovich-Popov lemma, IEEE International Sym-
posium on Computer Aided Control System Design, Taipei, Taiwan,
September 2, 2004.

Erik Wernholt: On the Use of a Multivariable Frequency Response Es-
timation Method for Closed Loop Identification, 43rd IEEE Conference
on Decision and Control, Paradise Island, The Bahamas, December 14,
2004.
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Appendix F

Publications

Licentiate Theses

1]

A. Fidehall. An automotive lane guidance system. Technical Re-
port Licentiate Thesis no. 1122, Department of Electrical Engineering,
Linkoping University, SE-581 83 Linkoping, Sweden, Nov 2004.

M. Gerdin. Parameter estimation in linear descriptor systems. Tech-
nical Report Licentiate Thesis no. 1085, Department of Electrical En-
gineering, Linkdping University, SE-581 83 Linkoping, Sweden, Apr
2004.

J. Gillberg. Methods for frequency domain estimation of continuous-
time models. Technical Report Licentiate Thesis no. 1133, Department
of Electrical Engineering, Linképing University, SE-581 83 Linkoping,
Sweden, Dec 2004.

E. Wernholt. On multivariable and nonlinear identification of indus-
trial robots. Technical Report Licentiate Thesis no. 1131, Department
of Electrical Engineering, Linkoping University, SE-581 83 Linkoping,
Sweden, Dec 2004.

Journal Papers and Book Chapters

[5]

E. Geijer Lundin and F. Gunnarsson. Characterizing uplink load —
concepts and algorithms. In M. Guizani, editor, Wireless Commu-
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[12]

[13]

[14]

nications Systems and Networks, chapter 14, pages 425-441. Kluwer
Academics, 2004.

T. Glad, A. Helmersson, and L. Ljung. Robustness gurantees for linear
control designs with an estimated nonlinear model error model. In-
ternational Journal of Robust and Nonlinear Control, 14:959-970, Aug
2004.

F. Gunnarsson. Fundamental limitations of power control and radio
resource management in wireless networks. Wireless Communications
and Mobile Computing, 4(5):579-591, Aug 2004.

F. Gunnarsson. Power control in wireless networks - characteristics and
fundamentals. In M. Guizani, editor, Wireless Communication Systems
and Networks, chapter 7, pages 179-208. Kluwer Academics, 2004.

O. Harkegard. Dynamic control allocation using constrained quadratic

programming. Journal of Guidance, Control, and Dynamics,
27(6):1028-1034, Nov 2004.

D. Lindgren and P. Spangéus. A novel feature extraction algorithm for
asymmetric classification. IEEFE Sensors Journal, 4(5), Oct 2004.

T. McKelvey, A. Helmersson, and T. Ribarits. Data driven local coor-
dinates for multivariable linear systems and their application to system
identification. Automatica, 40(9):1629-1635, Sep 2004.

M. Norrlof. Disturbance rejection using an ILC algorithm with iteration
varying filters. Asian Journal of Control, 6(3):432-438, Feb 2004.

M. Norrlof and S. Gunnarsson. A note on causal and CITE iterative
learning control algorithms. Automatica, Apr 2004.

J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine
systems via mixed-integer programming. Automatica, 40(1):37-50, Jan
2004.

A. Stenman, F. Gustafsson, and K. Forsman. A segmentation based
approach for detection of stiction in control valves. Journal of Signal
Processing and Adaptive Control, 17(7-9), Feb 2004.
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[16] L. L. Xie and L. Ljung. Variance expressions for spectra estimated
using auto-regression. Journal of Econometrics, 118(1-2):247-256, Jan
2004.

[17] M. Akerblad and A. Hansson. Efficient solution of second order cone
program for model predictive control. International Journal of Control,
77(1), Jan 2004.

[18] M. Ostring and S. Gunnarsson. Recursive identification of physical
parameters in a flexible robot arm. Asian Journal of Control, 6, Feb
2004.

Conference Papers

[19] M. Amirijoo, J. Hansson, S. Son, and S. Gunnarsson. Robust quality
management for differentiated imprecise data services. In Proceedings
of the 25th IEEE International Real-time systems symposium, Lisabon,
Portugal, Dec 2004.

[20] D. Axehill and A. Hansson. A preprocessing algorithm for MIQP
solvers with applications to MPC. In Proceedings of Reglermate 2004,
Goteborg, Sweden, May 2004.

[21] D. Axehill and A. Hansson. A preprocessing algorithm for MIQP
solvers with applications to MPC. In Proceedings of the 45th IEEE
Conference on Decision and Control, pages 2497-2502, Atlantis, Par-
adise Island, Bahamas, Dec 2004.

[22] D. Axehill, J. Sjéberg, and K. Lindqvist. Adaptive cruise control for
heavy vehicles. In Proceedings of Reglermdte 2004, Géteborg, Sweden,
May 2004.

[23] A. Eidehall and F. Gustafsson. Combined road prediction and tar-
get tracking in collision avoidance. In Proceedings of IEEFE Intelligent
Vehicles Symposium, pages 619-624, Parma, Italy, June 2004.

[24] A. Eidehall and F. Gustafsson. Combined road prediction and tar-
get tracking in collision avoidance. In Proceedings of IEEFE Intelligent
Vehicles Symposium, pages 619-624, Parma, Italy, Nov 2004.
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[25]

[20]

28]

[29]

[30]

[31]

[32]

[33]

F. Eng and F. Gustafsson. Frequency analysis using non-uniform sam-
pling with application to active queue management, extended. In Pro-
ceedings of Reglermote 2004, May 2004.

F. Eng and F. Gustafsson. Frequency analysis using non-uniform sam-
pling with application to active queue management, extended. In Fifth
conference on Computer Science and Systems Engineering, CCSSE04,
pages 147-151, Dec 2004.

M. Enqvist and L. Ljung. LTI approximations of slightly nonlinear
systems: Some intriguing examples. In Proc. NOLCOS 200/ - IFAC
Symposium on Nonlinear Control Systems, Stuttgart, Germany, Sep
2004.

M. Enqvist and L. Ljung. LTI approximations of slightly nonlinear
systems: Some intriguing examples. In Reglermdte 2004, May 2004.

M. Gerdin. Computation of a canonical form for linear differential-
algebraic equations. In Proceedings of Reglermdte 2004, Goteborg,
Sweden, May 2004.

M. Gerdin and T. Schon. Noise modeling, state estimation and system
identification in linear differential-algebraic equations. In Fifth Confer-
ence on Computer Science and Systems Engineering, pages 153 — 163,
Norrkoping, Sweden, Oct 2004.

T. Glad. Step responses of nonlinear non-minimum phase systems. In
Preprints, 6th IFAC Symposium on Nonlinear Control Systems, NOL-
COS 2004, pages 1445-1449, Stuttgart, Germany, Sep 2004.

C. Gronwall, T. R. Chevalier, A. Persson, M. Elmqvist, S. Ahlberg,
L. M. Klasen, and P. Andersson. An overview of methods for recogni-
tion of natural and man-made objects using laser radar data. In Proc.
SPIE, volume 5412, pages 310-320. SPIE, 2004.

F. Gunnarsson, F. Gustafsson, and F. Gunnarsson. Frequency analysis
using non-uniform sampling with application to active queue manage-
ment. In International Conference on Acoustics, Speech and Signal
Processing, 2004, May 2004.
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[34]

[35]

[36]

[38]

[42]

K. S. Gunnarsson, J. Hansson, F. Karlsson, A. Hansson, and R. Wallin.
Clearance of flight control laws using linear fractional transformations.
In Proceedings of AIAA Guidance, Navigation, and Control Conference
and Fzxhibit, Providence, Rhode Island, Aug 2004.

S. Gunnarsson and M. Norrlof. Iterative learning control of a flexi-
ble robot arm using accelerometers. In IEEE Conference on Control
Applications, Taipei, Taiwan, Sep 2004.

A. Hagenblad, F. Gustafsson, and I. Klein. A comparison of two meth-
ods for stochastic fault detection: the parity space approach and prin-
cipal component analysis. In Proceedings of Reglermote 2004, May
2004.

B. Hagerman, F. Gunnarsson, H. Murai, M. Tadenuma, and J. Karls-
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