
Servo

crit:fail_ipol

idle

resetting

idle_wait_wait

data_servo!

s-248
moc.log:down

to_servo?

s-248
moc.log:down

ipol.crit:fail

crit:fail_ipol

idle_wait_dead
servo.crit:fail

crit:fail_servo
ack_servo?

pos_pos

g:down
rit:fail

log:down_moc

failing

down?

d

l

compute

wait

segment!

ail

ready?

fail?

down!

down?

d

l

ail

idle_wait

idle_isDown

fail_ip

failing_isD

dow

down

moc

down_
moc.lo

*

_d

m

_
o

n

p

D

ow

idle_wait
down_isDown
moc.log:down

ipol.crit:fail

ready_ipol?

n

fail_ipol?

exec

wait

data! to?

dead

crit:fail

ok

d i l?

n

o?

k

s-

Fault Isolation in Discrete Event Systems by Observational Abstraction
Dan Lawesson1, Ulf Nilsson1, Inger Klein2

(1) TCSLAB / (2) Automatic Control, Linköping University

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

Assumptions & motivations
We considered an industrial robot control system 
developed by ABB Robotics. The system is large, 
concurrent, has an object oriented architecture and is 
configurable, supporting different types of robots and cell 
configurations.
✦ Object orientation ⇒ encapsulation 

✦ Encapsulation ⇒ propagating error messages

The system is safety-critical and alarms that go off are 
logged and must be analyzed only when the system comes 
to a standstill.
✦ Concurrency ⇒ message order cannot be trusted

Aim
✦ Operator support

Single out the error message or critical event that 
explains the actual cause of the failure

✦ Diagnosability analysis
Determining, at desgin time, if enough error messages 
are produced to be able to isolate all faults.

Approach
✦ Model based (UML state machines)
✦ Searching for critical events in all possible executions 

that exhibit a given set of logged messages ⇒ state 
space explosion problems

✦ Large state space calls for abstraction

Local abstraction
✦ Internal component dynamics can be simplified as long 

as the rest of the system cannot tell the difference.
✦ Finding less complex but behaviorally equivalent state 

machines is feasible as long as the computation is 

local, and does not consider the global state space.

Composition
✦ Gradually merge components of the system, thus 

turning inter-component communication into internal 
dynamics suitable for abstraction.

✦ Abstract the merged components and iterate.
✦ Finally the whole system is abstracted by one state 

machine.

Fault isolation table
Having the whole system dynamics described in one 
state machine, the set of all possible error logs and 
the corresponding failure causes can be computed. 
This fault isolation table gives
✦ fault isolation by table look-up,
✦ diagnosability analysis,
✦ a least set of non-redundant error messages and
✦ discovery of executions that need more logging 

to be fault isolated.

Implementation: StateTracer
✦ StateTracer integrates with Argo/UML
✦ Provides all functionality described above
✦ Uses NuSMV to provide traces
✦ Pre model-checking abstraction to allow traces 

from parts of large systems.

Moc

Ipol

Servo

Bus

Server

Client
1

1

1

1

1

1

1

1

4

1


