Target Tracking
Le 8: Selected topics

Gustaf Hendeby and Rickard Karlsson

Div. Automatic Control
Dept. Electrical Engineering
gustaf.hendeby@liu.se,
rickard.g.karlsson@liu.se
1 Performance Evaluation
2 Track-to-Track Fusion
3 Track Before Detect
4 Extended Target Tracking
5 Group Tracking
6 Summary of the course
Summary: lecture 6–7

- RFS: The Bayesian integrals defined for sets.
- PHD: First moment approx, *i.e.*, number of targets over a region can be calculated
- Labeled and un-labeled
- Labeled Multi-Bernoulli (LMB)
- Veoneer: radar, vision sensor fusion, machine learning, data association, cpu vs performance
Selected Topics

Today’s lecture will focus on several different topics.

- Purpose is to highlight some problems/applications
- The ambition is an overview with references
- Examples: TrBD, T2T fusion, group tracking, and ETT

However, for some topics like ETT and group tracking there might be similarities.
References on Multiple Target Tracking Topics (1/2)

• Performance Evaluation

• Track-to-Track Fusion
References on Multiple Target Tracking Topics (2/2)

- **Track Before Detect**

- **Extended Target Tracking**

Performance Evaluation

Sensor

Detection → Gating → Association → STT → Track/Hypothesis logic

Presentation
Single Target Tracking: root mean square error (RMSE)

- A common performance measure for estimation is the \textit{(root) mean square error} ((R)MSE). Given M estimates $\hat{x}_{1:T}^{(i)}$ of the matching ground truth $x_{1:T}^{0(i)}$,

$$\text{MSE}(\hat{x}_t) = \frac{1}{M} \sum_{i=1}^{M} \| \hat{x}_t^{(i)} - x_t^{0(i)} \|^2.$$

- The MSE combines the variance and bias of the estimate, $\text{MSE}(\hat{x}_t) = \text{var} \hat{x}_t + b_t^2$.
Single Target Tracking: RMSE performance bound

Cramér-Rao lower bound (CRLB)

The CRLB offers a fundamental performance bound for unbiased estimators and can be found as

$$\text{cov}(x_t - \hat{x}_{t|t}) \geq P_{t|t}^{\text{CRLB}},$$

where $P_{t|t}^{\text{CRLB}}$ is the CRLB, given by the EKF around the true state (parametric CRLB) and inverse intrinsic accuracy replacing all noise covariances.

It is also possible to construct a posterior CRLB.

Note: The CRLB can be used when setting sensor requirements and in system design.
Normalized Estimation Error Squared (NEES)

• NEES provides a consistency estimate of an estimator,

\[\text{NEES}(\hat{x}_t) = \frac{1}{M} \sum_{i=1}^{M} (\hat{x}_t^{(i)} - x_t^{0(i)})^T (P_t^{(i)})^{-1} (\hat{x}_t^{(i)} - x_t^{0(i)}). \]

• Given a Gaussian assumption and correct tuning, \(\text{NEES}(\hat{x}_t) \sim \chi^2(n_x) \)

 \(< n_x \) conservative estimate, i.e., the estimate is better than indicated with the \(P \).

 \(\approx n_x \) the estimated covariance matches what is observed.

 \(> n_x \) optimistic estimate, i.e., the estimate is worse than indicated with the \(P \).
Multi-Target Tracking: performance

Multi-target tracking performance is a problem of relating elements of two different sets:

\[\{X^{(1)}, \ldots, X^{(N)}\} \xleftarrow{\varphi:n \leftrightarrow m} \{\hat{X}^{(1)}, \ldots, \hat{X}^{(M)}\} \]

How to handle:

- Inconsistent number of targets? \(N \neq M \)
- Match estimated track to ground truth track? \(\varphi \)
- Label switches? \(\varphi \) changes over time
Multi-Target Tracking: performance criteria

Important properties:

- RMSE/NEES per target; how accurate are estimated tracks?
- Time to start track; how long does it take to confirm a new track?
- Track consistency; are the tracks kept together over time?
Multi-Target Tracking: OSPA (1/2)

- **Optimal subpattern assignment** (OSPA) is an extension of RMSE to the multi-target setting.
- Two sets of tracks $X = \{x^{(i)}\}_{i=1}^{N}$ (ground truth) and $\hat{X} = \{\hat{x}^{(i)}\}_{i=1}^{M}$ (estimated tracks).
- Is local, in the sense that it does not take label switches into consideration.
- Cardinality mismatch is penalized.
Multi-Target Tracking: OSPA (2/2)

OSPA metric

Given two sets of tracks \(\hat{X} \) and \(X \), a metric \(d(x, \hat{x}) \), and a cost for incorrect targets \(c \),

\[
\tilde{d}_p^{(c)}(X, \hat{X}) = \left(\frac{1}{N} \min_\theta \sum_i d^{(c)}(x^{(i)}, \hat{x}^{(\theta(i))})^p + c^p |M - N| \right)^{\frac{1}{p}},
\]

where \(d^{(c)}(x, \hat{x}) = \min(d(x, \hat{x}), c) \) is a version of the chosen norm that saturates at \(c \).
Track-to-Track Fusion

- Detection
- Gating
- Association
- STT
- Track/Hypothesis logic
- Sensor
- Presentation
Track-to-Track (T2T) Fusion

- Consider a network of stand alone nodes performing target tracking.
- Estimates are passed around, which can lead to double use of data.
- How to efficiently combine measurements in a sound way?
Track-to-Track Fusion: independent estimates

Sensor Fusion Formula

Independent estimates \{\((\hat{x}^{(i)}, P^{(i)})\)\}_i we can combine these using the fusion formula:

\[
\hat{x} = P \sum_i (P^{(i)})^{-1} \hat{x}^{(i)}
\]

\[
P^{-1} = \sum_i (P^{(i)})^{-1}.
\]

This will give an over-confident estimate in case the estimates are not independent. In case of dependent estimates, more elaborate methods are needed.
Track-to-Track Fusion: dependent measurements (1/3)

Covariance Intersection (CI)

A conservative estimate of combined estimate of several estimates \(\{(\hat{x}^{(i)}, P^{(i)})\}_i \) with unknown correlations:

\[
\hat{x} = P \sum_i \omega^{(i)} (P^{(i)})^{-1} \hat{x}^{(i)}
\]

\[
P^{-1} = \sum_i \omega^{(i)} (P^{(i)})^{-1},
\]

where \(\sum_i \omega^{(i)} = 1 \) are chosen as to minimize \(P \) under some norm, usually \(\text{tr}(P) \) or \(\det(P) \).
• The covariance of the fused estimate will be within the intersection between the two covariances.

• Covariance intersection will choose the “smallest” P, covering the intersection.
Track-to-Track Fusion: dependent measurements (2/3)

Safe Fusion

An easy to compute, but not completely conservative method to fuse two estimates with unknown dependencies.

1. SVD: \(P^{(1)} = U_1 D_1 U_1^T \).
2. SVD: \(D_1^{-1/2} U_1^T P^{(2)} U_1 D_1^{-1/2} = U_2 D_2 U_2^T \).
3. Transformation matrix: \(T = U_2^T D_1^{-1/2} U_1^T \).
4. State transformation: \(\hat{x}_1 = T \hat{x}^{(1)} \) and \(\hat{x}_2 = T \hat{x}^{(2)} \).
 The covariances of these are \(\text{cov}(\hat{x}_1) = I \) and \(\text{cov}(\hat{x}_2) = D_2 \).
5. For each component \(i = 1, 2, \ldots, n_x \), let
 \[
 [\hat{x}]_i = [\hat{x}_1]_i, \quad [D]_{ii} = 1 \quad \text{if} \quad [D_2]_{ii} \geq 1, \\
 [\hat{x}]_i = [\hat{x}_2]_i, \quad [D]_{ii} = [D_2]_{ii} \quad \text{if} \quad [D_2]_{ii} < 1.
 \]
6. Inverse state transformation:
 \[
 \hat{x} = T^{-1} \hat{x}, \quad P = T^{-1} D^{-1} T^{-T}
 \]
Track-to-Track Fusion: safe fusion illustration

- The two estimates are transformed to become as independent as possible.
- Extract the best information in each direction.
Track-to-Track Fusion: dependent measurements \((3/3)\)

Inverse Covariance Intersection (ICI)

Conservative fusion method of two estimates under unknown dependencies given some (not completely known) structure.

\[
\hat{x} = P(((P^{(1)})^{-1} - \omega P_c^{-1})\hat{x}^{(1)} + ((P^{(2)})^{-1} - (1-\omega)P_c^{-1})\hat{x}^{(2)})
\]

\[
P^{-1} = (P^{(1)})^{-1} + (P^{(2)})^{-1} - P_c^{-1}
\]

\[
P_c = \omega P^{(1)} + (1 - \omega) P^{(2)}
\]

Where \(\omega\) is chosen to minimize some norm of \(P\), e.g., \(\text{tr}(P)\) or \(\det(P)\).

- The worst case common information, \(P_c\), is estimated (mild structural assumptions).
- Fuse the estimates, taking the estimated common information into consideration.
Track Before Detect (TrBD)
Track Before Detect: SNR motivation

General TrBD concept: simultaneous detection and tracking

- High SNR: traditional detection works
- Low SNR: traditional detections will not work
- Note: do not want to lower the threshold too much!
- CFAR
Track Before Detect: idea

- Radar example (but also applies for images).
- Assume one target.
- Consistent motion model.
- Threshold detector vs simultaneous detection and tracking
- Stealthy targets
Track Before Detect: assumptions and methods

Basically we assume that we can use:

- Data over several scans
- Prohibit or penalize deviations from straight line motion
- Assume one target (or sufficiently separated)

There are many ways to achieve TrBD:

- Batch-algorithms
- Hough transform
- Dynamic Programming
- Bayesian filtering

Solution for tracking of stealthy targets:
Unthresholded info via simultaneous detection and tracking.
Track Before Detect: Bayesian concept (1/2)

First study a 2D image, with position, velocity and intensity as states

\[x_t = (X_t \ Y_t \ \dot{X}_t \ \dot{Y}_t \ I_t \ m_t)^T \]

We also need to consider the mode of existence \((m)\) of a target, with birth/death according to:

\[P_b = P(m_t = 1|m_{t-1} = 0) \]
\[P_d = P(m_t = 0|m_{t-1} = 1), \]

which will give a Markov transition matrix.
Track Before Detect: Bayesian concept (2/2)

Dynamics:
CV-model or similar.

Observation model:

\[
y_{t}^{(i,j)} = \begin{cases}
 h^{(i,j)}(x_{t}) + e_{t}^{(i,j)}, & \text{if target present} \\
 e_{t}^{(i,j)}, & \text{if target absent}
\end{cases}
\]

where \(h^{(i,j)}(x_{t}) \) is the target intensity contribution in resolution cell \((i, j)\).
For a 2D point target we consider a Gaussian for describing this:

\[
h^{(i,j)}(x_{t}) \propto I_{t} \cdot e^{- \frac{(i \Delta x - x_{t})^2 + (j \Delta y - y_{t})^2}{2 \sigma^2}}
\]

Basically, we now have all that is needed to write down this as a **Bayesian formulation**, which can be solved with for instance a **PF**.
Track Before Detect: radar modeling (1/2)

Now consider a radar tracking stealthy targets:

- Instead of thresholding, the entire radar video signal is used, i.e. the received power, $P\left(r(j), d(k), b(l) \right)$, $\forall j, k, l$.

- The measurements consist of the power levels in $N_r \times N_d \times N_b$ sensor cells, where N_r, N_d, and N_b are the number of range, Doppler, and bearing cells.

For each range-Doppler-bearing cell, $(r(j), d(k), b(l))$, the received power in the measurement relation is given by

$$y_{P,t}^{jkl} = \left| y_{A,t}^{jkl} \right|^2 = |A_{t}^{jkl} \cdot h_{A}^{jkl}(x_t) + e_{t}^{jkl}|^2,$$

where $j = 1, \ldots, N_r$, $k = 1, \ldots, N_d$, $l = 1, \ldots, N_b$.
Track Before Detect: radar modeling (2/2)

\[h^{jkl}_A(x_t) = \exp \left(-\frac{(r^{(j)} - r_t)^2}{2R} \lambda_r - \frac{(d^{(k)} - d_t)^2}{2D} \lambda_d - \frac{(b^{(l)} - b_t)^2}{2B} \lambda_b \right). \]

The constants \(R, D, \) and \(B \) are related to the size of the range cell, the Doppler cell, and the bearing cell. Losses are represented by the constants \(\lambda_r, \lambda_d, \) and \(\lambda_b. \) The noise is defined by

\[e^{jkl}_t = e^{jkl}_{1,t} + i \cdot e^{jkl}_{Q,t}, \]

which is complex Gaussian, where \(e^{jkl}_{1,t} \) and \(e^{jkl}_{Q,t} \) are independent, zero-mean white Gaussian with variance \(\sigma^2_e \), for the in-phase and quadrature-phase, respectively.

It is possible to derive a rather complicated likelihood function.
Track Before Detect: tracking filter (1/2)

Estimation model

\[x_{t+1} = f(x_t, m_t, w_t) \]
\[y_t = h(x_t, m_t) + e_t, \]

where \(m_t \) is target presence or not. Typically, given by a Markov probability for birth/death events.

This has the impact on the measurement model:

\[y_t = \begin{cases}
 e_t, & \text{if } m_t = 0 \\
 h(x_t) + e_t, & \text{if } m_t = 1.
\end{cases} \]
Track Before Detect: tracking filter (2/2)

For the radar model we have

\[
y = h(x) + e = \begin{pmatrix} \phi \\ \theta \\ r \\ r' \end{pmatrix} + e = \begin{pmatrix} \text{atan2}(y/x) \\ \text{atan2}(z/\sqrt{x^2 + y^2}) \\ \sqrt{x^2 + y^2 + z^2} \\ \frac{xv^x + yv^y + zv^z}{\sqrt{x^2 + y^2 + y^2}} \end{pmatrix} + e
\]

Now possible to use a particle filter. For a specific problem, one has to calculate relevant likelihoods etc.
Track Before Detect: extended targets (1/2)

A spatial distribution model for extended objects is assumed, \(p(\tilde{x}_t|x_t) \), which can be interpreted as a generator of a point source \(\tilde{x}_t \) from an extended target with its center and orientation given by the state vector \(x_t \).

Receiving a measurement from a source \(\tilde{x}_t \) somewhere on the target leads to a likelihood conditioned on a specific source \(\Lambda(x_t) = p(y_t|\tilde{x}_t) \). Using this model the total likelihood is obtained as

\[
p(y_t|x_t) = \int p(y_t|\tilde{x}_t)p(\tilde{x}_t|x_t) \, d\tilde{x}_t.
\]
Track Before Detect: extended targets \(2/2\)

\[
p(y_t|x_t) = \int p(y_t|\tilde{x}_t) p(\tilde{x}_t|x_t) \, d\tilde{x}_t.
\]

- **Point Target:**
 \[
p(\tilde{x}_t|x_t) = \delta(\tilde{x}_t - x_t).
\]

- **Point Sources:**
 \[
p(\tilde{x}_t|x_t) = \sum_{i=1}^{M} \Lambda(x_t^{(i)}) \delta(\tilde{x}_t - x_t^{(i)}).
\]

- **Extended Target:**
 \[
p(y_t|x_t) \approx \frac{1}{\tilde{M}} \sum_{i=1}^{\tilde{M}} p(y_t|\tilde{x}_t^{(i)}),
\]

 with \(\tilde{x}^{(i)}\), independently drawn according to \(p(\tilde{x}_t|x_t)\) for \(i = 1, \ldots, \tilde{M}\).
Track Before Detect: summary

- TrBD can be used for extended targets
- Position RMSE for point targets and two extended targets
- Computational intensive
- Motion model must correspond to true target
- Multiple targets will be complicated
- Possible to track for low SNR
Extended target Tracking (ETT)
Extended Target Tracking

When the sensor resolution becomes higher than the target size:

- Target cannot be modeled as points anymore.
- One measurement per target does not hold any more.
- Measurement could be correlated.
- Options to deal with this:
 - Cluster the measurements before applying a regular tracker.
 - Take the target extent into consideration (estimate it).

The simplest extension is a point target with an estimated geometric shape, like the length (see TrBD).
Extended Target Tracking: measurement clustering

• A standard MTT is a point target tracker.
• It assumes that every track can be detected at most once by a sensor in a scan.
• If detections are not clustered, the tracker generates multiple tracks per object.
• Clustering returns one detection per cluster, at the cost of having a larger uncertainty
Extended Target Tracking: extension modeling

- **Geometry**: Need to specify a model for the extended object: rectangular, ellipsoidal, star convex etc.

- **Dynamics**: Each extended object must have some motion model, for instance coordinated turn about its pivot.

- ETT handles multiple detections per object and sensor without the need to cluster detections, at the cost of more advanced association and a more complex model.
Group Tracking
Group Tracking

Standard tracking:
- A target is a “single point”
- We receive at most one measurement for each target

Group tracking:
- Tracking a group of targets that moves in a similar way
- An extended target could be seen as a similar problem

Note: extended target tracking and group tracking could be the same sometimes.
Group Tracking: dynamic model

Consider the bulk model \((B)\) and the individual targets \(x\), according to:

\[
B_{t+1} = f^B(B_t, w_t) \\
x^{(i)}_{t+1} = f(i)(x^{(i)}_t, w^{(i)}_t),
\]

where we assume \(i = 1, \ldots, N_{tg}\). Usually \(f^{(i)} = f\).

Note: The bulk is the center or the mean position, orientation etc. Everything can be implemented by extending the state vector.
Group Tracking: observation model

The observation cannot originate from multiple sources. Each measurement is from a target or clutter

\[y_{t}^{(j)} = h(\Psi(x_{t}^{(i)}, B_{t})) + e_{t}, \]

where Ψ be a nonlinear transformation.

Now proceed with association etc.
Summary Target Tracking Course
Summary Multi-Target Tracking Course: basis

Problem formulation:
Multi-target tracking is the problem of decide how many targets are present and how they move, given measurements with imperfections.

Components in classical multi-target tracking solutions.
Summary Multi-Target Tracking Course: single target tracking

Single target tracking

- Filters
 - (Extended/Unscented) Kalman type filter
 - Particle filter
 - Filter banks (IMM, GBP, RPEKF, ...)
- Motion models: \(x_{t+1} = f(x_t) + v_t \)
 - Constant velocity
 - Constant acceleration
 - Coordinated turn
 - Switched models for maneuvering targets
- Observation models: \(y_t = h(x_t) + e_t \)
- Clutter
- Missed detections
Summary Multi-Target Tracking Course: multi-target tracking

Multi-target tracking

- Classic methods (GNN, JPDA, MHT):
 - Differ in the association method used.
 - Track logic for initiation and termination.
- Random finite set (RFS) methods
 - Probability hypothesis filter (PHD)
 - Labeled Multi-Bernoulli (LMB)
Summary Multi-Target Tracking Course: extensions

• Track Before Detect: raw observations are used for simultaneous detection and tracking in **poor SNR**.

• Performance measures
 - Root mean square error (RMSE)
 - Normalized estimation error square (NEES)
 - Cramér-Rao lower bound (CRLB)
 - Optimal subpattern association (OSPA): multi-target

• Extended target and group tracking

• Various examples of tracking applications from research and industry
Gustaf Hendeby and Rickard Karlsson

www.liu.se