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Introduction

In identification, benchmarks are essential for comparing old
and new techniques to estimate models

It is now customary to rely on data sets from randomly
generated systems

Here we discuss the implications of this practice, in particular
when using data sets generated with the MATLABr command
drss
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Why do we use random systems?

Solid theoretical justification for a method not always available

I Existing bounds (Cramér-Rao / PAC) either asymptotic or too
conservative

I ... or ignore numerical/computational issues (initialization,
presence of local minima, ...)

Lack of good, large benchmarks of real systems

Cheap to generate random systems!
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Description of drss

The MATLABr command drss generates random discrete-time
linear systems in state-space form

xt+1 = Axt +But, ut ∈ Rm(input), xt ∈ Rn(state)
yt = Cxt +Dut, yt ∈ Rp(output)

Steps

1. Poles of the system are randomly selected
2. A is formed, based on the chosen poles and a random matrix

of orthogonal eigenvectors
3. B, C and D are generated
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Description of drss (cont.)

Generation of poles
p1, . . . , pn: poles of the generated system

With prob. 0.1, p1 ← 1 (integrator), while p2, . . . , pn ← 1
independently (decoupled integrators) with prob. 0.01
Among the non-integrator poles, grouped in pairs, each is a
repeated pair of real poles with prob. 0.05
The remaining poles, in pairs, are independently chosen as
conjugate pairs with prob. 0.5
Finally, the remaining poles are taken as distinct and real

Values of poles

Single (non-integrator) poles and repeated poles: U [−1, 1]
Magnitudes of each conjugate pair: U [0, 1]
Arguments of each conjugate pair: ±U [0, π]
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Description of drss (cont.)

Construction of the state matrix

A = UTEU

E ∈ Rn×n: block diagonal, formed by a 1× 1-block for each
real pole, and a 2× 2-block of the form[

Re(pi) Im(pi)
−Im(pi) Re(pi)

]
for each conjugate pair (pi, pi)
U ∈ Rn×n: orthogonalization of n× n U [0, 1] matrix

6



Description of drss (cont.)

Construction of the state matrix

A = UTEU

E ∈ Rn×n: block diagonal, formed by a 1× 1-block for each
real pole, and a 2× 2-block of the form[

Re(pi) Im(pi)
−Im(pi) Re(pi)

]
for each conjugate pair (pi, pi)

U ∈ Rn×n: orthogonalization of n× n U [0, 1] matrix

6



Description of drss (cont.)

Construction of the state matrix

A = UTEU

E ∈ Rn×n: block diagonal, formed by a 1× 1-block for each
real pole, and a 2× 2-block of the form[

Re(pi) Im(pi)
−Im(pi) Re(pi)

]
for each conjugate pair (pi, pi)
U ∈ Rn×n: orthogonalization of n× n U [0, 1] matrix

6



Description of drss (cont.)

Generation of B, C and D

B ∈ Rn×1, C ∈ R1×n and D ∈ R1×1: N (0, 1) random matrices

Remark In addition, drss zeroes some entries of B, C, D with
prescribed probability
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Properties of systems generated by drss

(i) Benchmarks of random systems induce a Bayesian comparison
of identification techniques

(ii) Poles of the systems generated by drss do not reflect
standard sampling rules-of-thumb

(iii) Effective order of systems generated by drss is typically much
smaller than required by the user
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A Bayesian prior on linear systems
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A Bayesian prior on linear systems (cont.)

Distribution of the model fit

pFIT(x) =

∫
pFIT|system(x|s)︸ ︷︷ ︸

estimator dependent

dPsystem(s)︸ ︷︷ ︸

given by drss!

where

pFIT: density function of FIT of an estimator
pFIT|system(x|s): same density conditioned on system being
estimated
Psystem: distribution over systems in benchmark

drss induces a Bayesian prior over systems!

Is it a natural (non-informative) or realistic prior?
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Properties of systems generated by drss

(i) Benchmarks of random systems induce a Bayesian comparison
of identification techniques
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Poles of generated systems

If a drss-generated system has n′ distinct poles, their maximum
magnitude is close to 1 with high probability for large n′

(the expected maximum magnitude is n′/(n′ + 1))
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Poles of generated systems (cont.)

On the other hand,

if real part of dominant pole of a continuous-time system is
−pc, the rise time is ≈ 1/pc, hence the sampling interval h
should satisfy

1

10pc
≤ h ≤ 1

4pc

Therefore, the magnitude of the sampled dominant pole, pmax,
should satisfy

e−
1
4 ≤ pmax = e−p

ch ≤ e−
1
10 ⇔ 0.78 ≤ pmax ≤ 0.9

⇒ drss can generate, for large n, the equivalents of severely
over-sampled systems
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Poles of generated systems (cont.)

Over-sampled systems can give rise to several numerical
problems. Special techniques have been developed for handling
these issues (e.g., delta operator), but

should these systems be used for comparing general-purpose
estimators?

Similarly, random systems with dominant poles of small
magnitude correspond to under-sampled systems, whose
estimation can be difficult (poor observability/identifiability)

In summary: poles of random systems should be carefully
placed to represent how sampled systems would look like
(assuming sampling and experiment design are properly done)
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Low order random systems

There are many ways to define the “effective order” of a
system G

Here we use

eff(G, a) := #{σi ≥ aσ1 : 1 ≤ i ≤ n}

where
σ1 ≥ σ2 ≥ · · · ≥ σn: Hankel singular values of G
a: threshold on number of significant Hankel singular values

17



Low order random systems

There are many ways to define the “effective order” of a
system G

Here we use

eff(G, a) := #{σi ≥ aσ1 : 1 ≤ i ≤ n}

where
σ1 ≥ σ2 ≥ · · · ≥ σn: Hankel singular values of G
a: threshold on number of significant Hankel singular values

17



Low order random systems

There are many ways to define the “effective order” of a
system G

Here we use

eff(G, a) := #{σi ≥ aσ1 : 1 ≤ i ≤ n}

where
σ1 ≥ σ2 ≥ · · · ≥ σn: Hankel singular values of G
a: threshold on number of significant Hankel singular values

17



Low order random systems (cont.)
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drss tends to generate systems with very low effective order!

is this good or bad?
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Some suggestions

Partition the benchmark systems into subsets

Plot the joint distribution of performance measures

Sample randomly generated continuous-time systems

Try “irreducible” systems
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Partition the benchmark into subsets

A prior prioritizes some classes of systems over others, not
necessarily in agreement with the real industrial practice

An alternative is to split the set of generated systems into
several subclasses (with similar dynamics, order, resonances,
etc.), and test the estimators on each subclass separately

This would allow to distinguish conditions under which an
estimator outperforms others
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Plot the joint distribution of the FIT/MSE

There is more information in the results of using benchmarks
than that contained in box plots (marginal FIT distributions)

Instead, consider presenting the joint FIT distribution:
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Sample random continuous-time systems

To generate systems whose poles follow sampling
rules-of-thumb, one can start with a random continuous-time
system and then sample it!
(as in the d(1/2)s(1/2) benchmark of Chen,Ohlsson&Ljung)

This procedure would not only lead to an improved choice of
poles, but also of the zeros of the generated system, because it
would introduce the right sampling zeros

Which prior to use in continuous-time?
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“Irreducible” systems

To test estimators on systems of high effective order, we need
systems most of whose Hankel singular values are significant

All-pass systems are hard to reduce, in the sense that

H(z) = K
(1− p1z) · · · (1− pnz)
(z − p1) · · · (z − pn)

have all their Hankel singular values equal!

These systems may not be realistic, but may serve to test
estimators on problem of real high order
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Conclusions

Designing a good benchmark of artificial systems is difficult

Some suggestions, but mostly more questions
As we rely more and more on benchmark comparisons, their
design and proper use should be seriously studied:

I Classes of systems to consider?
I What are we comparing: as benchmark tests depend on not

only statistical, but also numerical (conditioning) and
computational (initial condition, local minima) issues, they are
heavily implementation-dependent

I How should we present the results of Monte Carlo studies?
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Thank you!
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