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ABSTRACT

The Kalman filter computes the maximum a posteriori (MAP)
estimate of the states for linear state space models with Gaus-
sian noise. We interpret the Kalman filter as the solution to a
convex optimization problem, and show that we can gener-
alize the MAP state estimator to any noise with log-concave
density function and any combination of linear equality and
convex inequality constraints on the states.

We illustrate the principle on a hidden Markov model,
where the state vector contains probabilities that are positive
and sum to one.

1. INTRODUCTION

State estimation in stochastic linear models is an important
problem in many model-based approaches in signal process-
ing and automatic control applications, where the Kalman
filter is the standard method. However, if we have prior in-
formation of some kind it is often impossible to incorporate
this in the Kalman filter framework. We will in this paper
show how we can use prior information by considering the
optimization problem that the Kalman filter solves. A sim-
ilar treatment can be found in [1], however they only con-
sider quadratic problems, whereas we will consider a larger
class of convex problems.

2. CONVEX OPTIMIZATION

In this section we will give a very brief introduction to con-
vex optimization (see also [2]).

The main message in convex optimization is that one
should not differ between linear and non-linear optimiza-
tion problems, but instead between convex and non-convex
problems. This is due to the fact that the class of convex
problems is much larger than that covered by linear prob-
lems, and we know that for a convex problem any local op-
timum is also a global optimum. Moreover, there exist effi-
cient algorithms for solving convex optimization problems.
A convex optimization problem is defined as
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min
x

f0(x)

s.t. fi(x) ≤ 0, i = 0, . . . ,m
aT

i x = bi, i = 0, . . . , n

(1)

where the functions f0, . . . , fm are convex and the equal-
ity constraints are linear. We will in the following sections
try to identify some estimation problems that can be cast as
convex optimization problems.

3. NOTATION AND BACKGROUND

Maximum a posteriori (MAP) estimation [3] is about find-
ing an estimator of a stochastic variable z that maximizes
the conditional density p(z|y), given the observation y (y ∈
R

ny and z ∈ R
nz ). Thus, the MAP problem is

max
z

log p(z|y) (2)

In the sequel, the measurements vectors yi from time 1 to
time k will be denoted y1:k, and similarly z0:k denotes all
unknowns including the initial values. The operator z

(j)
i

extracts the jth element from the vector zi.
The assumptions commonly used in the literature are

that the elements in the z vectors are spatially and tempo-
rally independent (’white noise’) and Gaussian distributed.
We will insist on the independence assumption, but not on
the assumption of Gaussian densities, giving us the follow-
ing form of log p(z) (supressing the dependence on y)

log p(z0:k) = log
k

∏

i=0

pzi
(zi) =

k
∑

i=0

log pzi
(zi). (3)

Depending on the distribution, the objective function in (1)
can be explicitely written as in Table 1, see also [2].

4. CONVEX OPTIMIZATION ESTIMATION

In this section we will discuss the estimation problem in the
presence of constraints. In Table 1 the objective functions
are given for several log-concave 1 densities. Constraints

1A function function f : R
n
→ R is log-concave if f(x) > 0 for all x

in the domain of f , and log f is a concave function [2].



PDF Objective function Extra constraints
Gaussian

∑k

i=0 ‖zi‖2

Exponential
∑k

i=0

∑nz

j=1 z
(j)
i − 1 z ≥ 0

Laplacian
∑k

i=0

∑nz

j=1 |z
(j)
i |

Uniform constant −
√

3 ≤ z ≤
√

3

Table 1. Objective functions in (1) for different normalized
(zero mean and unit variance) probability density functions.

arise in the derivation of some of these probability density
functions (PDF), but constraints also arise from prior infor-
mation of some kind, e.g., a model assumption. This will be
discussed in the Section 6.

Assume we want to estimate (x, z), where z has a cer-
tain known distribution, and that x and z are related through
the constraints

A

[

x
z

]

= b, (4)

If we now want to use (2) we are faced with the problem of
finding the joint distribution of x and z, which can be quite
tedious.

Problem 4.1 (Convex optimization estimation) Assume
that p(z) is a known log-concave PDF. The MAP-estimate
for x, z, where x and z are related via (4) is given by

max
x,z

log pz(z)

s.t. A

[

x
z

]

= b
(5)

Remark: Any linear equalities and convex inequalities may
be added to this formulation, and standard software applies.

This approach to estimation is presented in [2]. The
standard estimation problem is to interpret x as the param-
eters conditioned on the measurements x|y, and then z is
just a nuisance parameter. The standard approach, not often
written explicitely, is to marginalize the nuisance parame-
ters to get p(x|y) =

∫

p(x|y, z)p(z|y)dz where the con-
straints are used explicitely. This works fine in a range of
applications, and the solution most often has a quite simple
form. In the general case, we can formulate the problem
below.

5. LINEAR REGRESSION EXAMPLE

As an example of estimation, consider a linear regression
problem in matrix form

Y = ΦT θ + E. (6)

Interpret E ↔ z as a Gaussian nuisance parameter with
variance σ2, the regression parameter θ ↔ x as the param-
eter and Y,Φ ↔ y as the observations. The well-known

result from marginalization is that

θ ∈ N((ΦΦT )−1ΦY, σ2(ΦΦT )−1). (7)

Alternatively, we can pose the problem as

max
x, z

log pE(E)

s.t. [ΦT , 1]

[

θ
E

]

= Y
(8)

If this regression model happens to be an ARX model of a
transfer function

G(eiω) =

∑

l b
(l)e−iωl

1 +
∑

l a
(l)e−iωl

, (9)

in system identification, we use θ = (aT , bT )T . Now, we
can simply add constraints such as bounded DC gain L ≤
G(0) ≤ U , or more generally, any lower and upper bound
on the transfer function

L(ω) ≤
∑

l b
(l)e−iωl

1 +
∑

l a
(l)e−iωl

≤ U(ω), (10)

which is easily rewritten in the standard form. Similarly,
any other interval for any other frequency of the transfer
function can be bounded.

6. CONVEX OPTIMIZATION FILTERING

In the previous section we talked about constraints in gen-
eral. We will in this section discuss a special type of con-
straints, namely the ones that appear in describing the dy-
namic behaviour of a model. In order to obtain convex
problems we will use linear models of the dynamics. The
following model

Exk+1 = Axk + Bwk + Kek, (11a)

yk = Cxk + Dek, (11b)

together with a density for the initial state, px0
, and pe, pw

will constitute our model. With E = I , K = 0 we have
the standard state space model, and with E = I , B = 0,
D = I we have the so called innovation form. If the E-
matrix in (11a) is invertible we can rewrite the equation in
a state space model. Otherwise we have what is commonly
refered to as a descriptor model. [4].

To put state filtering in the general estimation form as in
Problem 4.1, let

z =
[

xT
0 , wT

0:k−1, eT
0:k

]T
, (12)

and interpret x as x1:k|y1:k. To rewrite the conditional den-
sity more explicitly, use the independence assumption and
(3), which gives

log p(x0,w0:k−1, e0:k) = log px0
(x0)

+
k−1
∑

i=0

log pwi
(wi) +

k
∑

i=0

log pei
(ei). (13)



Using Bayes’ rule, p(z|y) = p(y|z)p(z)/p(y) and the fact
that

p(xk) = px0
(x0)

k−1
∏

i=0

pwi
(wi), (14)

p(yk|xk) =

k
∏

i=0

pei
(ei), (15)

we obtain the following goal function

p(x0, w0:k−1, e0:k) =

k
∏

i=0

pei
(ei)px0

(x0)

k−1
∏

i=0

pwi
(wi).

Conditioned on z in (12), the states in (11a) are uniquely de-
fined by a deterministic mapping x = f(z), which implies
that p(x|z) = f(z) contains nothing stochastic. That is, the
MAP estimate of x and z are simply related by x̂MAP =
f(ẑMAP ). Similarly, the joint MAP estimate x, z in the
convex optimization formulation is given by maximizing
p(z), since p(z, x) = p(x|z)p(z) = f(z)p(z) by Bayes’
rule. Hence we have now justified the following general
convex estimation problem.

Problem 6.1 (Convex optimization filtering) Assume that
the densities px0

,pwi
, and pei

are log-concave. In the pres-
ence of constraints in terms of a dynamic model (11a) –
(11b) the MAP-estimate is the solution x̂k = xk to the fol-
lowing problem

max
x1:k,z

log px0
(x0) +

k−1
∑

i=0

log pwi
(wi) +

k
∑

i=0

log pei
(ei)

s.t. Exk+1 = Axk + Bwk + Kek

yk = Cxk + Dek

Remark: Any linear equalities and convex inequalities may
be added to this formulation, and standard software applies.

As is evident from Problem 6.1 we see that we are free to
use different densities for the different disturbances px0

, pwi
,

and pvi
. It is here also worth noting that the recursive solu-

tion to Problem 6.1 under the assumptions of Gaussian den-
sities and a non-singular E-matrix is the celebrated Kalman
filter. This has been known for a long time, see e.g., [5],
and [6] for nice historical accounts of this fact, and for a
proof see e.g., [7]. It is also worthwhile noting that Prob-
lem 6.1 under the assumption of Gaussian disturbances is
a weighted least-squares problem. To see this combine 6.1
and the Gaussian case in Table 1, where the weights are the
inverse of the covariance matrices. This provides a deter-
ministic interpretation of the problem that the Kalman filter
solves. For more on the similarities and differences between
deterministic and stochastic filtering see e.g., [8]. We also
see that if we solve Problem 6.1 we will not only obtain the
filtered estimate x̂k|k, but also all the smoothed estimates,
x̂i|k, i = 0, . . . , k − 1.

So why should we solve the estimation problem via 6.1,
which demands more computations, instead of via the Kalman

filter? There are two reasons. The first reason is that we
can handle all log-concave density functions, not just the
Gaussian. The second reason is that we can add any prior
information, in convex form, to problem 6.1. That is we can
add linear equality constraints and convex inequality con-
straints, and still find the optimal estimate. We will see an
illustration of this in the example in the subsequent section.

7. HMM EXAMPLE

There are mainly two filtering problems, where there exist
finite-dimensional recursive optimal filters, and in particu-
lar a finite-dimensional MAP estimator. One is, as already
mentioned, linear state space models with Gaussian noise.
Here the Kalman filter is optimal in ML, MAP and mini-
mum variance senses. For non-Gaussian noises, the Kalman
filter computes the linear state estimate with minimum vari-
ance, but it is no longer the MAP or ML estimator.

The other case is hidden Markov models (HMM). Inter-
estingly, it has been pointed out [9] that the HMM can be
written in a state space model. That is, the Kalman filter
computes the best possible linear estimate of the Markov
state. This fact makes it possible to compare conceptually
different approaches on the same example!

A hidden Markov model is defined by a discrete vari-
able ξ ∈ (1, 2, . . . , n) with a known transition probability
matrix A, where A(i,j) = P (ξk = i|ξk−1 = j), that is,
given that ξ = j at time k − 1, the probability that ξ = i
at time k is A(i,j). We will assume an observation process
ν ∈ (1, 2, . . . ,m), where P (ν = i|ξ = j) = C(i,j). The
filter for computing the a posteriori probabilities can be ex-
pressed as the recursion

π
(i)
k = p(ξk = i) (16a)

=

∑n

j=1

∑

π
(j)
k−1A

(i,j)C(νk,j)

∑n
j=1

∑

π
(j)
k−1C

(νk,j)
. (16b)

The MAP estimate is ξ̂k = arg maxi π
(i)
k . Now, the HMM

can be written as the state space model

xk+1 = Axk + wk, (17a)

yk = Cxk + ek, (17b)

where x
(i)
k = p(ξk = i) and y

(i)
k = p(νk = i). This is the

state-space form (11a)–(11b) (B = D = E = I,K = 0)
where the disturbances are zero-mean white noises, and the
stationary covariance matrices can be shown to be

Q = Cov wk = diag(π) − Adiag(π)AT , (18a)

R = Cov ek = diag(Cπ) − C diag(π)CT , (18b)

where π is the stationary solution to (in vector form)

π = lim
k→∞

Akπ0, where π0 > 0. (19)



Since the states x we are estimating in a HMM are probabil-
ities we have the following prior information on the states

2
∑

i=1

x(i) = 1, and x(i) ≥ 0, i = 1, 2. (20)

In the standard Kalman filter it is impossible to incorporate
this prior information about the states, however in Prob-
lem 6.1 it is straightforward. We will now examine four
different filters using an increasing amount of prior infor-
mation (In 1-3 we have approximated wt and et in (17) as
Gaussian with zero mean and covariances (18)):

1. The Kalman filter.

2. The convex optimization filter with constraint
∑

i x
(i)
k = 1. This case can alternatively be computed

by the Kalman filter using P0 = p0

(

1 1
1 1

)

and any
∑

i x
(i)
0 = 1, or by using the fictitious measurement

y0 = (1, 1, . . . , 1)x0 = 1 with zero measurement
noise. Note, however, that the Ricatti equation will
be singular here, which may imply certain numerical
difficulties. A more theoretically sound alternative is
given in [9].

3. The convex optimization filter with constraint (20).

4. The optimal filter (16).

The numerical example is taken from [9], where

A = C =

(

0.9 0.1
0.1 0.9

)

(21)

In Table 2, the root mean square error (RMSE) is given for
these four cases and in Fig. 1 the states are shown. From

1. Kalman filter 0.585
2. 6.1 with x1 + x2 = 1 0.573
3. 6.1 with x1 + x2 = 1 and x ≥ 0 0.566
4. Optimal filter 0.403

Table 2. RMSE values for the different filters.

this table it is obvious that we can obtain better estimates by
using more information in this case. Of course, the convex
optimization filters cannot compare to the performance of
the optimal filter. However, the point is to show the flexi-
bility of the approach, and the problem of consideration can
be generalized with more contraints or a more complicated
measurement relation, such that the optimal filter does no
longer exist.

8. CONCLUSIONS

We have formulated the state estimation problem in a con-
vex optimization framework. In this way, well-known nu-
merical efficient algorithms can be used to compute the MAP
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Fig. 1. The true state is marked by o, and the measured
states by x. The dashed/solid line is the estimate from filter
3, respective 4.

estimate of the state vector, without any problems with lo-
cal minima. Compared to the Kalman filter, the advantage is
that any log-concave noise distribution can be used and any
linear equality or convex inequality state contraint may be
included, while the main drawback is that no recursive con-
vex optimization algorithm is yet available, which makes
the approach computer intensive.

9. REFERENCES

[1] D.G. Robertson and J.H. Lee, “On the use of constraints in
least squares estimation and control,” Automatica, vol. 38, pp.
1113–1123, 2002.

[2] L. Vandenberghe and S. Boyd, “Convex optimization,” To be
published, December 2001.

[3] A.H. Jazwinski, Stochastic processes and filtering theory,
Mathematics in science and engineering. Academic press,
New York, 1970.

[4] D.G. Luenberger, “Dynamic equations in descriptor form,”
IEEE Transactions on Automatic Control, vol. AC-22, no. 3,
jun 1977.

[5] H.W. Sorenson, “Least-squares estimation: from gauss to
kalman,” IEEE Spectrum, vol. 7, pp. 63–68, July 1970.

[6] T. Kailath, “A view of three decades of linear filtering theory,”
IEEE Transactions on Information Theory, vol. IT-20, no. 2,
pp. 146–181, March 1974.

[7] C.V. Rao, Moving Horizon Strategies for the Constrained
Monitoring and Control of Nonlinear Discrete-Time Systems,
Ph.D. thesis, University of Wisconsin Madison, 2000.

[8] T. Kailath, A.H. Sayed, and B. Hassibi, Linear Estimation,
Information and System Sciences Series. Prentice Hall, Upper
Saddle River, New Jersey, 2000.

[9] S. Andersson, Hidden Markov Models - Traffic Modeling and
Subspace Methods, Ph.D. thesis, Centrum for Mathemati-
cal Sciences, Mathematical Statistics, Lund University, Lund,
Sweden, 2002.


