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Abstract

We present a novel method for Wiener system identification. The method relies on a semiparametric, i.e. a mixed paramet-
ric/nonparametric, model of a Wiener system. We use a state-space model for the linear dynamical system and a nonparametric
Gaussian process model for the static nonlinearity. We avoid making strong assumptions, such as monotonicity, on the nonlin-
ear mapping. Stochastic disturbances, entering both as measurement noise and as process noise, are handled in a systematic
manner. The nonparametric nature of the Gaussian process allows us to handle a wide range of nonlinearities without making
problem-specific parameterizations. We also consider sparsity-promoting priors, based on generalized hyperbolic distributions,
to automatically infer the order of the underlying dynamical system. We derive an inference algorithm based on an efficient
particle Markov chain Monte Carlo method, referred to as particle Gibbs with ancestor sampling. The method is profiled on
two challenging identification problems with good results. Blind Wiener system identification is handled as a special case.

Key words: System identification, Wiener, block-oriented models, Gaussian process, semiparametric, particle filter, ancestor
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1 Introduction

Block-oriented systems are a useful and general class
of nonlinear dynamical systems. These systems consist
of interconnected linear dynamics and static nonlinear-
ities. The most well-known members of this family are
the Hammerstein (static nonlinearity followed by a lin-
ear dynamical system) and the Wiener (linear dynam-
ical system followed by a static nonlinearity) systems,
introduced by [22] and [54], respectively. In this work,
we are concerned with identification of the latter class.
Based on observed inputs u1:T , {ut}Tt=1 and outputs
y1:T , we wish to infer the linear dynamical system G and
the static nonlinearity h of the Wiener system depicted
in Figure 1.

Wiener systems have attracted significant attention
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Fig. 1. A Wiener system, consisting of a linear dynamical
system G followed by a static nonlinearity h(·). The system
noise wt and the measurement noise et are both unobserved.

in the system identification community, as is evi-
dent from the vast literature on the topic. See e.g.
[57,17,35,19,39,18,24,51] and the references therein.
However, the approach presented here differs from the
existing literature on several accounts.

We consider a semiparametric (i.e., a mixed paramet-
ric/nonparametric) model of a Wiener system, in which a
parametric state-space model is used for the linear block
G and a nonparametric model is used for the nonlinear
block h(·). Let θ = {G, h(·)} denote the unknowns of the
system, i.e. θ contains both the parameters of G and the
nonparametric representation of h(·) (the precise defi-
nition of θ will be made clear in Section 3). We take
a Bayesian approach, modelling the parameters as ran-
dom variables and the nonparametric function h(·) as a
stochastic process. In particular, we use a Gaussian pro-
cess (GP) model for h(·). We then provide a method for
computing p(θ | y1:T ), the posterior probability density
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function (PDF) of θ given the measurements y1:T (and,
implicitly, the inputs u1:T ). To the best of our knowl-
edge, this is the first time the posterior PDF p(θ | y1:T )
is computed for the Wiener identification problem.

In this probabilistic framework, we can handle stochas-
tic disturbances in a systematic manner. Most notably,
we are able to deal with process noise entering internally
to the linear dynamical system, which can be critical in
obtaining an accurate model [57]. The inclusion of such
process noise in the model significantly complicates the
estimation problem, and is therefore often neglected in
the existing literature. Furthermore, due to the nonpara-
metric nature of the GP, the proposed method is flexi-
ble. It can be used for a wide range of nonlinear map-
pings, without making any problem-specific parameter-
izations. We do not impose strong assumptions such as
invertibility or monotonicity of the nonlinearity.

The posterior PDF p(θ | y1:T ) does not allow for a
closed-form solution. To cope with this, we make use of
a Markov Chain Monte Carlo (MCMC) method (see e.g.
[41] for a general introduction) to compute an approxi-
mation of p(θ | y1:T ). More specifically, we employ the re-
cently proposed particle MCMC (PMCMC) framework
[2]. The basic idea underlying PMCMC is to use a par-
ticle filter (PF) as a component of an MCMC sampler.
This is done in a manner such that, for any fixed (and
finite) number of particles, no systematic error is intro-
duced. Here, we use a state-of-the-art PMCMC method
denoted particle Gibbs with ancestor sampling (PG-AS),
which has been found to be efficient even when using few
particles in the underlying PF [26].

Finally, we note that the proposed method can be ap-
plied also in the absence of any (measured) exogenous
input ut. This problem, refereed to as blind Wiener sys-
tem identification, has received considerable attention
on its own [56,49,4,1], and it can be treated as a special
case of the proposed method. We have published a pre-
liminary version of the current work (specifically target-
ing the blind identification problem) in [28].

2 A Bayesian semiparametric model

We consider a semiparametric model of a Wiener sys-
tem. The linear dynamical system is modeled using a
(parametric) state-space representation, and a nonpara-
metric GP model is used for the static nonlinearity. The
model can be described in state-space form as

xt+1 = Axt +But + wt, wt ∼ N (0, Q), (1a)

zt = Cxt, (1b)

yt = h(zt) + et, et ∼ N (0, r). (1c)

Here, xt ∈ Rnx is the state of the dynamical system,
wt ∈ Rnx is the process noise, ut ∈ Rnu is the in-
put signal, zt ∈ R is the output from the linear block

and yt ∈ R is the output from the static nonlinear-
ity h(zt) with measurement noise et added. For clarity,

we will write X , Rnx and Y , R for the state-space
and measurement space, respectively. For simplicity, we
have restricted our attention to multiple-input single-
output systems, since we then only have to consider one-
dimensional GPs. However, the proposed method can be
extended to multiple outputs via the use of a multidi-
mensional GP.

The linear system is assumed to be observable. Hence,
we can, without loss of generality, fix the matrix C ac-
cording to C = (1 0 · · · 0). Let Γ = [A B]. Then, the
unknown quantities of the model are the system param-
eters Γ, Q and r as well as the nonlinear mapping h(·).
We take a Bayesian approach and model the parameters
as random variables. In the two subsequent sections we
describe two different models that will be employed for
the linear dynamics and in Section 2.3 the GP model for
the nonlinearity is introduced.

2.1 Alt. I – Conjugate priors

If the order of the dynamical system nx is assumed to be
known, we can place conjugate priors on the matrices de-
scribing the linear dynamics. Conjugate priors are com-
monly used in Bayesian statistics, since they result in
closed-form expressions for the posterior distributions.
A conjugate prior for the linear Gaussian model (1a) is
the matrix normal, inverse Wishart (MNIW) distribu-
tion. Hence, we place an MNIW prior on the pair {Γ, Q},
p(Γ, Q) = p(Γ | Q)p(Q) where,

p(Γ | Q) =MN (Γ;M,Q,L), (2a)

p(Q) = IW(Q;n0, S0). (2b)

HereMN (Γ;M,V,L) is a matrix normal density 1 with
mean matrix M and left and right covariances L−1 and
V , respectively; IW(Σ;n, S) is an inverse Wishart (IW)
density with n degrees of freedom and scale matrix S. As
pointed out above, the MNIW prior is a standard choice
for a linear Gaussian model as in (1a) (see e.g. [50]). Fur-
thermore, for suitably chosen hyperparameters (i.e. M ,
L, n0 and S0), the effects of this prior on the posterior
density will be minor. For a discussion on how to choose
the hyperparameters, see Appendix A. Similarly, we put
a conjugate IW prior on r (the univariate IW distribu-
tion is also known as inverse Gamma), according to,

p(r) = IW(r;m0, R0). (3)

2.2 Alt. II – Sparsity-promoting prior

It is also possible to do automatic order selection via
the use of an over-parameterized model, which is then

1 If Γ ∼MN (M,V,L), then vec(Γ) ∼ N (vec(M), L−1⊗V ).
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regulated by some sparsity-promoting mechanism. For
optimization-based methods, it is common to use `1-
regularization to control sparsity. This gives rise to
well known methodologies such as the lasso [44] and
compressed sensing [11]. In the Bayesian setting, the
analogue of sparsity regularization is to use sparsity-
promoting priors. As an example, lasso can be inter-
preted as the Bayes posterior mode under the Laplace
prior [34].

A general class of sparsity-promoting priors are the gen-
eralized hyperbolic (GH) distributions [5]. This class
contains many distributions that have been successfully
used to control sparsity in different settings; examples
include the Laplace [34], normal inverse-Gaussian [8]
and Student’s t [46]. Automatic relevance determination
(ARD) [31,33], which is a popular Bayesian approach to
automatic order selection, is also based on a special type
of GH prior. The class of GH distributions has recently
been extended to a dynamic setting [7].

We use a hierarchical representation of the GH distri-
bution. If x ∼ N (0, τ) with τ ∼ GIG(ν, a, b), then it
holds that x is distributed according to the (zero-mean)
GH distribution with parameters ν, a and b. Here, GIG
is the generalized inverse-Gaussian (GIG) distribution
with density,

(a/b)ν/2

2Kν(
√
ab)

τν−1 exp

(
−1

2

(
aτ + bτ−1

))
, (4)

where Kν is a modified Bessel function of the second
kind. The distribution is defined for a ≥ 0, b ≥ 0 and
ν ∈ R. For a = 0 or b = 0, the normalization constant
must be interpreted in a limiting sense.

To make use of sparsity-promoting GH priors for au-
tomatic order selection in state-space models, we use a
multivariate generalization of the GH distribution. The
prior is defined by placing independent, zero-mean Gaus-
sian priors on the columns {γj}nx+nu

j=1 of the matrix Γ,

p(Γ | τ̄) =

nx+nu∏
j=1

N (γj ; 0, τjInx), (5)

where Id is a d×d identity matrix and τ̄ = {τj}nx+nu
j=1 are

hyperparameters governing the variances of each of the
columns. These are assigned independent GIG priors,

p(τj) = GIG(τj ; ν, a, b), (6)

for j = 1, . . . , nx +nu. A similar construction has previ-
ously been used by [16], for the special case of ARD, to
automatically identify the order of a state-space model.

The resulting marginal distributions of the columns of Γ
will have distinct peaks at the origin. Hence, if there is

not enough evidence for the jth state/input component
to be non-zero, the corresponding variance parameter
τj will decrease toward zero. This will in turn drive the
jth column of Γ to zero. Contrary to the MNIW prior,
which in general will lead to a full Γ-matrix, the GH
prior will thus result in a Γ-matrix with a sparse column-
pattern. As a result, the corresponding state components
will be unobservable and they can be discarded from the
model. We emphasize that these unobservable modes are
inherent to the model and they should not be thought of
as representing unobservable modes of the true system
(which is assumed to be observable).

In summary, if a suitable model order is not known be-
forehand, the GH prior can thus be used for automatic
order determination (as well as input selection). This is
done by over-parameterizing the model and letting the
GH prior switch irrelevant model components off.

The process noise and measurement noise variances are
given the same IW priors as in the MNIW case, i.e. p(Q)
is defined according to (2b) and p(r) according to (3).

2.3 Gaussian process prior

For the nonlinear mapping we develop a nonparametric
model by placing a GP prior on h,

h(·) ∼ GP(m(z), kη(z, z′)). (7)

See [40] for a thorough introduction to GPs. The GP
is governed by a mean function m(z) and a covariance
function (also referred to as a kernel) kη(z, z′). We use a
linear mean function m(z) = z, i.e. the prior is that no
nonlinearity is present. However, any alternative mean
function can be used if desired.

The covariance function can be taken as any positive def-
inite kernel. Standard choices in the GP regression lit-
erature are the squared exponential kernel, the Matérn
class of kernels and the rational quadratic kernel. See
[40, Chapter 4] for further details and additional exam-
ples. The covariance function is (typically) parameter-
ized by some hyperparameter η, determining for instance
its amplitude and length-scale. The hyperparameter is
inferred from data alongside the system parameters. To
complete the model we place a prior p(η) on the hyper-
parameter, depending on the choice of kernel.

Note that, due to the nonparametric nature of the GP,
the proposed model is flexible and can describe a wide
range of nonlinear mappings. We do not assume any spe-
cific form of h. However, since we are dealing with data
affected by stochastic disturbances, we will in general
favor smooth regression functions to avoid over-fitting.
Still, as we shall see in Section 6, the proposed method
can perform well even when the true nonlinearity is non-
differentiable.
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3 Inference via particle Gibbs sampling

Assume that we have observed a batch of input/output

data. Let Π , {Γ, Q, r} (for the MNIW prior), or Π ,
{Γ, Q, r, τ̄} (for the GH prior) denote the system parame-
ters. The task at hand is to identify the unknown quanti-
ties of the model, i.e. the parameters Π, the hyperparam-
eter η and the nonlinear mapping h(·). Let us introduce

the augmented parameter θ , {Π, η, h(·)} ∈ Θ , S ×F,
where S is a finite-dimensional space (containing Π and
η) and F is an appropriate function space. Note that we
use the term “parameter” to refer to θ, which includes
also the nonparametric part of the model, h. We then
seek the posterior density of θ given the observations
y1:T . More generally, we compute the joint posterior den-
sity of the parameter and the system states x1:T , i.e.

p(θ, x1:T | y1:T ) = p(x1:T | θ, y1:T )p(θ | y1:T ). (8)

The density p(θ | y1:T ) is obtained by straightforward
marginalization of (8). Here, and throughout this paper,
conditioning on the inputs u1:T is implicit.

The posterior density (8) is analytically intractable and
we shall make use of an MCMC sampler to address the
inference problem. In Section 3.1 below we outline the
solution offered by a standard Gibbs sampler and point
out a fundamental problem with this approach. This
problem is then solved by introducing the particle Gibbs
sampler in Section 3.2.

3.1 Ideal Gibbs sampling

A Gibbs sampler is an MCMC method which targets
some joint density by alternately sampling from its con-
ditionals [41]. For the problem under study, we suggest
to use a multi-stage Gibbs sampler, targeting (8) by it-
erating the following steps,

Draw Π? | h, x1:T , y1:T ; (9a)

Draw η? | Π?, x1:T , y1:T ; (9b)

Draw h? | η?,Π?, x1:T , y1:T ; (9c)

Draw x?1:T | θ? = {Π?, η?, h?}, y1:T . (9d)

These four steps represent the basic splitting of the
variables used in the Gibbs sampler. For the conjugate
MNIW prior, the posterior distribution for the system
parameters in (9a) is available in closed form. For the
GH prior, we need to divide step (9a) into further sub-
steps. We return to this in Section 4.2. Note that the
system parameters Π are conditionally independent of
the hyperparameter η. Step (9b) is partially collapsed
(we do not condition on h when sampling η). When
possible, collapsing is beneficial since it allows larger
updates of the involved variables and it will thus im-
prove the mixing of the chain. For this reason, it is a

standard procedure, frequently used in Gibbs sampling,
see e.g. [14] and [29, Sec. 6.7].

Unfortunately, step (9d) of this Gibbs sweep is still prob-
lematic. Sampling from the exact posterior is not pos-
sible, since the joint smoothing density p(x1:T | θ, y1:T )
is not available in closed form. In other words, the state
inference problem is intractable, even if we fix the pa-
rameters of the model, due to the presence of the non-
linearity. Neither is it easy to construct a good proposal
kernel for a Metropolis-Hastings (MH) sampler, due to
the high dimension of x1:T (for large T ). However, it is
possible to address this problem by exploiting a power-
ful statistical inference tool, recently introduced in [2],
known as particle MCMC (PMCMC).

3.2 Particle Gibbs sampling

A thorough treatment of PMCMC is well beyond the
scope of this paper and we refer the interested reader
to [2,3,37,26,53,27]. However, in this section we briefly
introduce the particular PMCMC method that we have
employed in this work. It is a version of the particle Gibbs
(PG) sampler that we refer to as PG with ancestor sam-
pling (PG-AS) [26]. It is worth emphasizing that from a
practitioner’s point of view, it is not necessary to under-
stand all the technical details of PMCMC to be able to
use it as a component in a composite identification pro-
cedure. Whenever we are faced with the problem of sam-
pling from an intractable joint smoothing density, such
as p(x1:T | θ, y1:T ), PMCMC can be used as a substitute
for an exact sample, without introducing any systematic
error.

The basic idea underlying PMCMC is to use a particle
filter (PF) to construct a Markov kernel leaving the ex-
act joint smoothing distribution invariant. This Markov
kernel can then be used as a component of an MCMC
sampler, e.g. the multi-stage Gibbs sampler given by (9).
We thus seek a family of Markov kernels on XT ,

{Mθ : θ ∈ Θ}, (10)

such that, for each θ, Mθ(x1:T | x′1:T ) leaves the joint
smoothing density p(x1:T | θ, y1:T ) invariant. In PG-AS,
these kernels are constructed using a procedure referred
to as a conditional particle filter with ancestor sampling
(CPF-AS). Other options are available, e.g. to use the
original CPF by [2] or the CPF with backward simu-
lation [52,27]. However, we focus on CPF-AS since an-
cestor sampling has been found to considerably improve
the mixing over the basic CPF, it can be implemented
in a forward only recursion and its computational cost
is linear in the number of particles.

CPF-AS is a sequential Monte Carlo sampler, similar
to a standard PF, but with the important difference
that one particle at each time step is specified a priori.
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Let these particles be denoted x′1:T = {x′1, . . . , x′T }.
The method is most easily described as an auxiliary
PF; see [13,21,36] for an introduction. As in a standard
auxiliary PF, the sequence of joint smoothing densi-
ties p(x1:t | θ, y1:t), for t = 1, . . . , T , is approximated
sequentially by collections of weighted particles. Let
{xi1:t−1, w

i
t−1}Ni=1 be a collection of weighted particles

approximating p(x1:t−1 | θ, y1:t−1) by the empirical
distribution,

p̂(x1:t−1 | θ, y1:t−1) ,
N∑
i=1

wit−1δxi1:t−1
(x1:t−1). (11)

Here, δz(x) is a point mass located at z. To propagate
this sample to time t, we introduce the auxiliary vari-
ables {ait}Ni=1, referred to as ancestor indices. The vari-
able ait is the index of the ancestor particle at time t−1,
of particle xit. Hence, xit is generated by first sampling

the ancestor index with P (ait = j) = wjt−1. Then, xit is
drawn from some proposal kernel,

xit ∼ q(xt | θ, x
ait
t−1, yt). (12)

The particle trajectories are then augmented according

to xi1:t = {xa
i
t

1:t−1, x
i
t}. In the auxiliary PF formulation,

the resampling step is implicit and corresponds to sam-
pling the ancestor indices.

In a standard auxiliary PF, this procedure is repeated for
each i = 1, . . . , N , to generate N particles at time t. In
CPF-AS, however, we condition on the event that x′t is
contained in the collection {xit}Ni=1. To accomplish this,
we sample according to (12) only for i = 1, . . . , N − 1.
The Nth particle is then set deterministically: xNt = x′t.

To be able to construct the Nth particle trajectory, the
conditioned particle has to be associated with an ances-
tor at time t − 1. This is done by sampling a value for
the corresponding ancestor index aNt conditionally on
x′t. From Bayes’ theorem we have p(xt−1 | θ, x′t, y1:t) ∝
p(x′t | θ, xt−1)p(xt−1 | θ, y1:t−1). By plugging (11) into
this expression, we arrive at the approximation,

p̂(xt−1 | θ, x′t, y1:t) =

N∑
i=1

wit−1|tδxit−1
(xt−1) (13)

withwit−1|t ∝ wit−1p(x
′
t | θ, xit−1). To sample an ancestor

particle for x′t, we draw from this empirical distribution.

That is, we sample aNt with P (aNt = j) = wjt−1|t.

Finally, all the particles, for i = 1, . . . , N , are assigned
importance weights, analogously to a standard auxiliary
PF. The CPF-AS is summarized in Algorithm 1. The
transition and observation densities used to compute the

Algorithm 1. CPF-AS, conditioned on x′1:T
1. Initialize:
(a) Draw xi1 ∼ q(x1 | θ, y1) for i = 1, . . . , N − 1.
(b) Set xN1 = x′1.
(c) For i = 1, . . . , N , set

wi1 ∝
p(y1 | θ, xi1)p(xi1)

q(xi1 | θ, y1)
,

where the weights are normalized to sum to 1.
2. For t = 2, . . . , T do:
(a) Draw ait withP (ait = j) = wjt−1 for i = 1, . . . , N−1.

(b) Draw xit ∼ q(xt | θ, x
ait
t−1, yt) for i = 1, . . . , N − 1.

(c) Draw aNt with P (aNt = j) ∝ wjt−1p(x
′
t | θ, xjt−1).

(d) Set xNt = x′t.
(e) For i = 1, . . . , N , set

wit ∝
p(yt | θ, xit)p(xit | θ, x

ait
t−1)

q(xit | θ, x
ait
t−1, yt)

,

where the weights are normalized to sum to 1.

importance weights are, for the model (1), given by,

p(xt+1 | θ, xt) = N (xt+1;Axt +But, Q), (14a)

p(yt | θ, xt) = N (yt;h(Cxt), r). (14b)

The conditioning on a prespecified collection of particles
implies an invariance property of the CPF-AS, which is
key to its applicability in an MCMC sampler. To state
this more formally, we first make a standard assumption
on the support of the proposal kernels used in the PF.

(A1) For any θ ∈ Θ and t = 1, . . . , T , Pθt ⊂ Qθt where,

Pθt = {x1:t : p(x1:t | θ, y1:t) > 0},
Qθt = {x1:t : q(xt | θ, xt−1, yt)p(x1:t−1 | θ, y1:t−1) > 0}.

The key property of CPF-AS can now be stated as fol-
lows.

Proposition 1 Assume (A1). Then, for any θ ∈ Θ and
any N ≥ 2, the procedure

(i) Run Algorithm 1 conditionally on x′1:T ;
(ii) Sample x?1:T with P (x?1:T = xi1:T ) = wiT ;

defines an irreducible and aperiodic Markov kernel MN
θ

on XT , with invariant distribution p(x1:T | θ, y1:T ).

PROOF. The invariance property follows by the con-
struction of the CPF-AS in [26], and the fact that the
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law of x?1:T is independent of permutations of the par-
ticle indices. This allows us to always place the condi-
tioned particles at the Nth position. Irreducibility and
aperiodicity follows from [2, Theorem 5].

Consequently, if x′1:T ∼ p(x1:T | θ, y1:T ) and we sam-
ple x?1:T according to the procedure given in Proposi-
tion 1, then, for any number of particles N , it holds that
x?1:T ∼ p(x1:T | θ, y1:T ). For N = 1 we get, by construc-
tion, x?1:T = x′1:T , i.e. the trajectories are perfectly cor-
related (this is why we need N ≥ 2 to get an irreducible
kernel). As N →∞, on the other hand, the conditioning
will have a negligible effect on the CPF-AS and x?1:T will
be effectively independent of x′1:T . Hence, the number of
particles N will affect the mixing of the Markov kernel
MN
θ . The invariance property of the kernel holds for any

N , but the larger we take N , the smaller the correlation
will be between x?1:T and x′1:T . However, it has been ex-
perienced in practice that the correlation drops off very
quickly as N increases [26,27], and for many models a
moderate N (e.g. in the range 5–20) is enough to obtain
a rapidly mixing kernel.

4 Posterior parameter distributions

We now turn our attention to steps (9a)–(9c) of the
Gibbs sampler. That is, we assume that a fixed state tra-
jectory x1:T is given and consider the problem of sam-
pling from the posterior parameter distributions. Condi-
tioned on x1:T , the variables {Γ, Q, τ̄} are independent
of {h(·), η, r}. Furthermore, {Γ, Q, τ̄} are conditionally
independent of y1:T . Hence, the densities of the condi-
tional variables appearing in (9a)–(9c) can be written as

p(Π | h, x1:T , y1:T ) = p(Γ, Q, τ̄ | x1:T )

× p(r | h, x1:T , y1:T ), (15a)

p(η | Π, x1:T , y1:T ) = p(η | r, x1:T , y1:T ), (15b)

p(h | η,Π, x1:T , y1:T ) = p(h | η, r, x1:T , y1:T ). (15c)

For the MNIW prior, the variable τ̄ is not present. The
factorization of the posterior in (15a) suggests that sam-
pling from this distribution can be done in two decoupled
steps. In the subsequent sections, we derive expressions
for the PDFs appearing on the right hand sides of (15).

4.1 MNIW prior – Posterior of Γ and Q

For the MNIW prior, the posterior density of {Γ, Q} is
available in closed form and is given as follows. Let,

X =
[
x2 . . . xT

]
, W =

[
w1 . . . wT−1

]
,

X̄ =

[
x1 . . . xT−1

u1 . . . uT−1

]
.

It follows from (1a) that p(x1:T | Γ, Q) can be described
in terms of the relation

X = ΓX̄ +W. (16)

The prior (2) is conjugate to this likelihood model and
it follows [50] that the posterior parameter distribution
is MNIW and given by

p(Γ, Q | x1:T ) =MN (Γ;SXX̄S
−1
X̄X̄

, Q, SX̄X̄)

× IW(Q;T − 1 + n0, SX|X̄ + S0), (17a)

with

SX̄X̄ = X̄X̄T + L, (17b)

SXX̄ = XX̄T +ML, (17c)

SXX = XXT +MLMT, (17d)

SX|X̄ = SXX − SXX̄S−1
X̄X̄

ST
XX̄ . (17e)

4.2 GH prior – Posterior of Γ, Q and τ̄

If we instead use the GH prior for the system matrix
Γ, there is no closed-form expression for the posterior
density of {Γ, Q, τ̄}. To get around this, we split the
sampling of these variables (in step (9a)) into sub-steps
according to,

Γ? ∼ p(Γ | Q, τ̄ , x1:T ), (18a)

Q? ∼ p(Q | Γ?, x1:T ), (18b)

τ̄? ∼ p(τ̄ | Γ?). (18c)

To find the posterior of Γ, we note that (1a) can be
written

xt+1 =
[
x̄t,1Inx . . . x̄t,nx+nuInx

]
vec(Γ) + wt, (19)

where x̄t = [xTt u
T
t ]T and vec(·) is the vectorization oper-

ator, which stacks the columns of a matrix into a vector.
Hence, we may write (16) as,

vec(X) = (X̄T⊗Inx)︸ ︷︷ ︸
,Ψ

vec(Γ) + vec(W ), (20)

where ⊗ is the Kronecker product. Together with the
prior (5) this yields the posterior of Γ as,

p(Γ | Q, τ̄ , x1:T ) = N (vec(Γ);µΓ,ΣΓ), (21a)

with

µΓ = ΣΓ(X̄⊗Q−1)vec(X), (21b)

ΣΓ =
(
diag(τ̄)−1⊗Inx + (X̄⊗Q−1)Ψ

)−1
, (21c)
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where diag(v) is a diagonal matrix with the elements of
the vector v on the diagonal.

For the posterior of Q, the IW prior (2b) is conjugate
to the likelihood defined by (16) (now with Γ considered
fixed). Hence, the posterior is given by an IW distribu-
tion according to

p(Q | Γ, x1:T ) = IW(Q;T − 1 + n0, SGH + S0), (22)

with SGH = (X − ΓX̄)(X − ΓX̄)T (cf. with (17a)).

Finally, for the variance parameters of the GH prior,
the (independent) Gaussian likelihoods given by (5) are
conjugate to the GIG priors (6). We have,

p(τj | γj) ∝ p(γj | τj)p(τj)

∝ τ−
nx
2

j exp

(
− 1

2τj
γTj γj

)
τν−1
j exp

(
−1

2

(
aτ + bτ−1

j

))
.

(23)

It follows that,

p(τ̄ | Γ) =

nx+nu∏
j=1

GIG
(
τj ; ν −

nx
2
, a, b+ γTj γj

)
, (24)

where we recall that {γj}nx+nu
j=1 are the columns of the

matrix Γ.

4.3 Posterior of r

For fixed x1:T and h(·), let h = (h(Cx1) · · · h(CxT ))T

and y = (y1 · · · yT )T be the vectors of function out-
puts and observations, respectively. Furthermore, let e =
(e1 · · · eT )T. It then follows from (1c) that the like-
lihood p(y1:T | r, h, x1:T ) can be described in terms of
the relation y = h + e. The prior p(r | h, x1:T ) = p(r)
given in (3) is conjugate to this likelihood model and it
follows that the posterior parameter distribution is IW
and given by,

p(r | h, x1:T , y1:T ) = IW(r;T +m0, Sr +R0), (25)

with Sr = (y − h)T(y − h).

4.4 Posterior of h(·)

The GP prior (7) is conjugate to the likelihood model
given by (1c). Hence, the posterior distribution of h(·)
given r, x1:T and y1:T is a GP. Sampling from this pos-
terior distribution thus involves drawing a sample path
from the posterior stochastic process. When it comes
to implementing a Gibbs sampler containing such a GP
posterior, a problem that we need to address is how to
represent this sample path.

Here, we present two alternative approaches. The first,
and most proper, solution is to sample from the GP
whenever an evaluation of the function h is needed in the
algorithm. This will be done for N query points for each
time t = 1, . . . , T , where N is the number of particles
used in the PG-AS sampler (see Section 3.2). The second
alternative is a simpler approach, namely to evaluate
the GP on a fixed grid of points. This is done once for
each iteration of the MCMC sampler. When evaluating
the function h in the PF, we do a linear interpolation
between the grid points. This approximate solution is
the approach that we have employed in the numerical
examples presented in Section 6.

In either approach, let z? = (z(1) . . . z(M))T be the
points for which we wish to evaluate the GP (these can
either be random points generated in the PF or fixed grid
points). Furthermore, let h? = (h(z(1)) . . . h(z(M)))T.
It then follows (see [40, Section 2.2]) that the posterior
distribution of h? is given by

p(h? | η, r, x1:T , y1:T ) = N (h?;µ?,Σ?) , (26a)

where

µ? = m? + PT
? (P + rIT )−1(y −m), (26b)

Σ? = P?? − PT
? (P + rIT )−1P?. (26c)

Here, we have introduced the notation

m? =
(
m(z(1)) · · · m(z(M))

)T
, (27a)

m =
(
m(z1) · · · m(zT )

)T
, (27b)

and the matrices P , P? and P?? are given by,

[P ]ij = kη(zi, zj), i, j = 1, . . . , T, (27c)

[P?]ij = kη(zi, z
(j)), i = 1, . . . , T, j = 1, . . . ,M,

(27d)

[P??]ij = kη(z(i), z(j)), i, j = 1, . . . ,M. (27e)

Using the expressions above, we can generate a sample
of h? from the posterior distribution (26).

It should be noted that the computational complexity
of evaluating and sampling from a posterior GP is cubic
in the number of query points as well as in the number
of data points, i.e. of order O(M3 + T 3). Hence, the
cost of sampling from the GP can be prohibitive when
T is large. However, there exist several methods in the
literature, dedicated to enabling GP regression for large
data sets, e.g. based on low-rank approximations; see
[40, Chapter 8] and the references therein. In this work
we have not resorted to such techniques.
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Algorithm 2. Wiener system identification using PG-AS
1. Initialize:
(a) SetA[0] = M ,Q[0] = S0, r[0] = R0 and h?[0] = z?.
(b) Set x1:T [0] and (for GH prior) τ̄ [0] arbitrarily.
2. For k ≥ 1, iterate:
(a) Run Algorithm 3 (for MNIW prior) or Algorithm 4

(for GH prior) to sample Π[k].
(b) Sample η[k] given r[k], x1:T [k − 1] and y1:T using

an MH step as described in Section 4.5.
(c) Sample h?[k] ∼ p(h? | η[k], r[k], x1:T [k − 1], y1:T )

according to (26).
(d) Set θ[k] = {Π[k], η[k],h?[k]}.
(e) Run Algorithm 1, targeting p(x1:T | θ[k], y1:T ), con-

ditioned on x1:T [k − 1].
(f) Sample J with P (J = i) = wiT . Set x1:T [k] = xJ1:T .

4.5 Posterior of η

Finally, we need to sample from the posterior of the hy-
perparameters of the GP kernel in (9b). Due to the often
intricate dependence of the covariance kernel on η, it is
in general not possible to find a closed-form expression
for this posterior. Instead, we apply an MH accept/reject
step to sample η. That is, we sample a value from some
proposal kernel η′ ∼ υ(η′ | η) (in this work we use a
Gaussian random walk). The proposed sample is then
accepted with probability

1 ∧ p(y1:T | η′, r, x1:T )

p(y1:T | η, r, x1:T )

p(η′)
p(η)

υ(η | η′)
υ(η′ | η)

, (28)

otherwise the previous value is kept. Let Pη be given as
in (27c), but where we now emphasize the dependence
on η in the notation. We then have

p(y1:T | η, r, x1:T ) = N (y;m, Pη + rIT ). (29)

To compute the acceptance probability in (28) in a nu-
merically robust way, we make a Cholesky factorization
of the covariance Pη + rIT = RT

ηRη. By straightforward
manipulations it then follows that

p(y1:T | η′, r, x1:T )

p(y1:T | η, r, x1:T )
=

det(Rη)

det(Rη′)
e

(
1
2 s

T
ηsη− 1

2 s
T
η′sη′

)
, (30)

where sη = R−Tη (y −m), which can be computed effi-
ciently due to the triangularity of Rη.

5 Convergence analysis

The proposed identification procedure is summarized in
Algorithms 2–4. In this section we study the convergence
properties of the method. Let πT be the target distribu-
tion for the MCMC sampler, i.e. the distribution with
density p(θ, x1:T | y1:T ). First, we provide a result stat-
ing that, for a fixed data record of length T , the empirical
distribution of the generated Markov chain approaches

Algorithm 3. Sampling system parameters for MNIW prior
1. Using (17) and (25), respectiveley,
(a) Sample {Γ[k], Q[k]} ∼ p(Γ, Q | x1:T [k − 1]).
(b) Sample r[k] ∼ p(r | h?[k − 1], x1:T [k − 1], y1:T ).

2. Return Π[k] = {Γ[k], Q[k], r[k]}.

Algorithm 4. Sampling system parameters for GH prior
1. Using (21), (22), (24) and (25), respectiveley,
(a) Sample Γ[k] ∼ p(Γ | Q[k− 1], τ̄ [k− 1], x1:T [k− 1]).
(b) Sample Q[k] ∼ p(Q | Γ[k], x1:T [k − 1]).
(c) Sample τ̄ [k] ∼ p(τ̄ | Γ[k]).
(d) Sample r[k] ∼ p(r | h?[k − 1], x1:T [k − 1], y1:T ).

2. Return Π[k] = {Γ[k], Q[k], r[k], τ̄ [k]}.

πT as the number of iterations k →∞. Second, we study
the consistency of the Bayes estimator as the number of
data points tend to infinity. We assess that the Bayes es-
timator is almost surely (a.s.) consistent w.r.t. the prior,
for any identifiable functional.

5.1 Convergence of the Markov chain

Due to the invariance property of Proposition 1, the
PG-AS sampler can be treated as a regular MCMC
sampler, and standard convergence analysis applies (see
e.g. [45,41,32]). We start by analyzing the ideal Gibbs
sampler, defined by running Algorithm 2 but replacing
Steps 2(e)–(f) by a draw from the exact joint smoothing
density; x1:T [k] ∼ p(x1:T | θ[k], y1:T ). This procedure
cannot be implemented in practice, but it is useful to
consider it as an intermediate step in the analysis of the
PG-AS sampler.

Lemma 1 The ideal Gibbs sampler has invariant distri-
bution πT .

PROOF. The ideal Gibbs sampler is a cyclic MCMC
sampler according to (9). Steps (9a), (9c) and (9d) are
implemented as standard Gibbs steps. Step (9b) is im-
plemented as an MH step. This hybrid scheme does not
invalidate the MCMC kernel [45]. Collapsing is done over
h in step (9b). Since this is done prior to sampling h in
step (9c), the Gibbs sampler is properly collapsed [14].
Consequently, each step of the sampler leaves πT invari-
ant. �

We thus know that πT is a possible equilibrium distribu-
tion of the ideal Gibbs sampler. To assess convergence,
i.e. to show that a Markov chain generated by the sam-
pler indeed will approach πT , we need to show that it
is irreducible and aperiodic. For simplicity, we make the
following assumption on the proposal kernel that is used
in the inherent MH step for the hyperparameter η.

(A2) υ(η | η′) > 0 for any (η, η′) with p(η) > 0.
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The assumption is trivially satisfied if the proposal ker-
nel is taken as, for instance, a Gaussian random walk.

Lemma 2 Assume (A2). Then, the ideal Gibbs sampler
is irreducible and aperiodic.

PROOF. For a probability density p(x), let supp[p(x)] =
{x : p(x) > 0} be its support. The target density can be
expressed as

p(θ, x1:T | y1:T ) ∝ p(y1:T | θ, x1:T )p(x1:T | θ)p(θ).

The first two factors are Gaussian and thus everywhere
positive, i.e.

supp[p(θ, x1:T | y1:T )] = supp[p(θ)]× XT .

From the definition of the model in Section 2,

supp[p(θ)] = supp[p(Π)]× supp[p(η)]× supp[p(h)].

That is, by construction, the support of the target den-
sity is the Cartesian product of the supports of the
marginals. Hence, the target density satisfies a positivity
condition [41, Definition 9.4]. Let K be the Markovian
transition kernel of the ideal Gibbs sampler. From the
positivity condition and assumption (A2) it follows that
K(A | {θ′, x′1:T }) > 0 for any A with πT (A) > 0. That
is, any set with positive posterior probability is acces-
sible in one step. Irreducibility and aperiodicity of the
ideal Gibbs sampler follows. �

Due to Proposition 1, the properties of the ideal Gibbs
sampler carries over directly to the PG-AS sampler. We
can thus provide the following convergence result for the
proposed identification algorithm.

Theorem 1 Assume (A1) and (A2). For any N ≥ 2,
the PG-AS sampler defined by Algorithm 2 gener-
ates a sequence {θ[k], x1:T [k]} whose distribution
LN ({θ[k], x1:T [k]} ∈ ·) satisfies

‖LN ({θ[k], x1:T [k]} ∈ ·)− πT ‖TV → 0

as k → ∞ for almost all (πT ) starting points, where
‖ · ‖TV is the total variation norm.

PROOF. From Proposition 1 and Lemma 1, πT is an
invariant distribution of the PG-AS sampler. Due to
the fact that the family of Markov kernels defined in
Proposition 1 are irreducible and aperiodic, the results
of Lemma 2 carry over to the PG-AS sampler. Conver-
gence in total variation follows from [45, Theorem 1].

5.2 Consistency of the Bayes estimator

We now turn to consistency of estimators constructed
from the posterior distribution p(θ | y1:T ). We adapt
the general result of Doob [12] to our setting (see also
[25,42]). This classical result gives almost sure consis-
tency w.r.t. the prior. More recent developments have
improved upon the classical results, avoiding the excep-
tional null set on which consistency may fail, see e.g.
[10,6]. Other forms of posterior convergence have also
been studied extensively, see e.g. [9] for a Bernstein-von
Mises theorem in the semiparametric setting and [47] for
contraction rates under Gaussian process priors.

Let Y = Y×Y× . . . be the infinite product space, Y be
the smallest σ-algebra generated by all open subsets of
Y and let y = (y1, y2, . . . ) ∈ Y be the infinite sequence
of observations. Let λ be the prior distribution of θ (i.e.
the distribution with density p(θ)) and let {Pθ : θ ∈ Θ}
be a family of distributions governing the law of y for
each θ. We use the following identifiability criterion.

Condition 1 Let (Z,Z) be a measurable space. The
mapping ζ : Θ 7→ Z is said to satisfy Condition 1
if it is measurable, L1-integrable and if there exists a
Y/Z-measurable function f : Y 7→ Z with f(y) = ζ(θ)
a.s. (Pθ) for any θ ∈ Θ.

Theorem 2 Let ζ satisfy Condition 1, then the Bayes
estimator of ζ(θ) is strongly consistent a.s. (λ), i.e.

Pθ

(
lim
t→∞

βt = ζ(θ)
)

= 1, a.s. (λ),

with βt =
∫
ζ(θ)p(θ | y1:t)dθ.

PROOF. The proof follows [12,42]. Take Ω = Θ × Y
and let µ = Pθ × λ be the kernel product measure. Let
γ(θ, y) = ζ(θ) and βt(θ, y) = βt(y) = E[γ | y1:t]. By the
tower property of conditional expectation,

E[βt | y1:t−1] = βt−1.

Hence, {βt} is a martingale sequence and the martin-
gale convergence theorem (see e.g. [55, Theorem 14.2])
implies that βt → E[γ | y] a.s. (µ). By Condition 1, γ
is equivalent to a Y-measurable function a.s. (µ) and it
follows that E[γ | y] = γ a.s. (µ). Hence,

1 = µ ({(θ, y) : βt(θ, y)→ γ(θ, y)})

=

∫
Pθ ({y : βt(y)→ ζ(θ)})λ(dθ). �

Remark 1 Condition 1 is an identifiability condition.
Since the Wiener system is inherently unidentifiable (i.e.
different θ can give rise to the same input-output rela-
tion), we focus on a class of identifiable functionals ζ. If
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ζ is such that, given an infinite amount of data, it can be
uniquely determined (i.e. it is Y-measurable), then the
Bayes estimator of ζ is strongly consistent a.s. (λ). The
identity function ζ(θ) = θ is not contained in this class
for a Wiener system, but that is not necessarily an issue.
Indeed, for instance, the one-step predictor is generally
identifiable, even when θ is not. Hence, if the model is
to be used for making predictions, the predictor offered
by the Bayes estimator is consistent a.s. (λ).

6 Numerical illustrations

In this section we apply the proposed method to identify
two synthetic Wiener systems. In both cases, a bootstrap
CPF-AS with N = 15 particles is used in the PG-AS
sampler. We use a Matérn kernel for the GP, as recom-
mended by [43],

k(z, z′) = α
21−ν

Γ(ν)

(√
2ν∆z

`

)ν
Kν

(√
2ν∆z

`

)
, (31)

with ∆z = |z − z′|. In [40], it is recommended to set
ν = 3/2 or ν = 5/2. Here, we use the latter, which
gives a slightly smoother prior. The hyperparameters α
and ` govern the amplitude and the length-scale of the
kernel, respectively. We set η , {logα, log `} and place
an improper flat prior on the hyperparameter p(η) ∝ 1.

We compare the proposed algorithm with two standard
methods from the literature; the semiparametric aver-
age derivative method (ADM) [19] and a fully paramet-
ric prediction-error method (PEM) [30]. ADM estimates
a parametric FIR model of the linear block. We set the
order p of the FIR model based on the true impulse re-
sponses, so that any coefficient above p is smaller than
0.01 times the first coefficient. The FIR model is then
transformed into an LTI model of the same order as the
true system, using a balanced reduction. The nonlinear
block is given by a nonparametric Nadaraya-Watson es-
timate. For PEM, we use an output-error model for the
linear block, with the same order as the true system.
The nonlinearity is parameterized differently in the two
examples (see below).

We evaluate the estimates using H2 and `2 errors. Let

Ĝ and ĥ be the estimates of the transfer function G and
the nonlinearity h, respectively, for one of the methods.
The aforementioned errors are then given by

H2 :
( 1

2π

∫ π

−π
|G(iω)− Ĝ(iω)|2dω

)1/2

, (32a)

`2 :
( 1

z+ − z−

∫ z+

z−

|h(z)− ĥ(z)|2dz
)1/2

. (32b)

In the latter expression, we integrate over a finite interval
[z−, z+] since the nonparametric estimates only can be
computed over the range of the data.

6.1 6th-order system with saturation

Consider a 6th-order linear dynamical system accord-
ing to (1) where the system matrices (A, B, C) conform
with the transfer function

G(q) =
c1q
−1 + · · ·+ c6q

−6

1 + a1q−1 + · · ·+ a6q−6
, (33)

with ā = (a1, . . . , a6), c̄ = (c1, . . . , c6) and

ā = (−2.67, 2.96, −2.01, 0.914, −0.181, −0.0102),

c̄ = (−0.467, 1.12, −0.925, 0.308, −0.0364, 0.00110).

The system is excited by a known input signal ut, which
is taken as a realization of a white Gaussian noise with
variance 1. The process noise and measurement noise
(co)variances are given by Q = 0.52I6 and R = 0.12,
respectively. The nonlinear mapping h is given by a sat-
uration,

h(z) =


1 if z ≥ 0.5,

2z if −0.5 ≤ z < 0.5,

−1 if z < −0.5.

(34)

We generate T = 1 000 samples from the system and
apply the proposed method (Algorithm 2) for 20 000
MCMC iterations 2 (out of which 10 000 iterations are
considered as burnin). The model order is fixed to the
true value nx = 6 and we thus use the MNIW prior. The
hyperparameters are set as described in Appendix A.

We compare Algorithm 2 with ADM and PEM. For
ADM, the order of the FIR model is set as described
above, which gives p = 13. For PEM, we use a 6th order
output-error model for the linear block. For the nonlin-
earity, we exploit the knowledge that h is a saturation
and parameterize the function accordingly.

The results are given in Figures 2 and 3; the former show-
ing the Bode diagram of the linear system and the lat-
ter the static nonlinearity. For comparison, to account
for the inherent unidentifiability of the system, the es-
timates from all methods are rescaled so that the linear
systems have the same H2-norms. The shaded areas il-
lustrate the 99 % Bayesian credibility regions, computed
from the posterior PDFs. In the legends of the figure we
also report the H2 and the `2 errors, respectively, for
each method.

All methods capture the main resonance peak of G, but
are less accurate at low frequencies (likely due to a lack

2 For simplicity, we run the chain for a fixed number of
iterations, chosen based on visual inspection of the trace
plots. In practice, some convergence diagnostic could be used
instead, e.g. the Raftery-Lewis test [38].
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Fig. 2. Bode diagram of the 6th-order linear system and
estimates for ADM, PEM and the proposed method. The
red line is the posterior mean of the Bode diagram and the
shaded area is the 99 % Bayesian credibility interval.
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Fig. 3. Nonlinear mapping (saturation) and estimates for
ADM, PEM and the proposed method. The red line is the
posterior mean of the nonlinearity and the shaded area is the
99 % Bayesian credibility interval. The integration interval
for the `2 error is [z−, z+] = [−1.2, 1.2].

of excitation). ADM results in a larger error than the
other two methods, especially noticeable in the phase
and in the estimate of the nonlinearity. Also for PEM,
there is a quite large error in the estimate of h, despite
the fact that PEM uses a parametric function of the cor-
rect form. A possible reason for this is that PEM does
not take the process noise into account, which results in
biased estimates. The proposed method provides an ac-
curate nonparametric estimate of the nonlinearity, de-
spite the fact that h is non-differentiable and the GP is
a smoothness prior. The uncertainty about the nonlin-
earity gets larger for |z| & 1.5, reflecting the fact that
there are few samples (≈ 2 %) in these regions available
in the process underlying the observed data.

6.2 4th-order system with non-monotone nonlinearity

To highlight the flexibility of the GP model we consider
a model with a non-monotonic function h, shown in Fig-
ure 5. For this example, we use a 4th-order linear dy-
namical system with transfer function,

G(q) =
c1q
−1 + · · ·+ c4q

−4

1 + a1q−1 + · · ·+ a4q−4
, (35)

where ā = (a1, . . . , a4), c̄ = (c1, . . . , c4) and

ā = (1, 0.1, −0.49, 0.01),

c̄ = (0.368, 0.888, 0.524, 0.555).

The process noise and measurement noise (co)variances
are given by Q = 0.252I4 and R = 0.12, respectively. We
excite the system by a white Gaussian input signal with
variance 0.52 and generate T = 1 000 measurements.
We apply the proposed identification method for 20 000
MCMC iterations (again, discarding 10 000 iterations as
burnin). However, we now assume that the model order
is unknown and that we wish to infer it alongside the
parameters. Therefore, we employ the GH sparseness
prior by over-parameterizing the model and assuming a
model order of nx = 10. We use the specific choice a = 0
in (6). For this choice, the GIG distribution reduces to an
inverse-Gamma distribution, which means that the GH
prior corresponds to the so called automatic relevance
determination (ARD) prior [31,33].

Again, we compare the method with ADM and PEM.
The order of the FIR model in ADM is set based on the
true impulse response, as described above, resulting in
p = 97. The FIR model is then reduced to an LTI system
with the same order as the true system, nx = 4. PEM
uses a 4th order output-error model for the linear block
and a piecewise affine model (with 10 segments) for the
nonlinearity.

Figure 4 shows the Bode diagram of the linear system
and Figure 5 shows the static nonlinearity. The non-
monotonicity of h gives rise to an ambiguity of the value
of zt for a given observation yt. Basically, for any obser-
vation yt in the range [−0.3, 0.3] there are three possible
values for zt which describe the observation equally well
statically. Despite this, the proposed method accurately
captures the function h, whereas both ADM and PEM
fail in this respect. The linear system is also accurately
estimated. Interestingly, PEM also finds a good model
of G, despite the poor estimate of h.

To analyze the effect of the GH prior and the ability
to automatically determine the model order, we provide
box plots of the GH precisions τ−1

j for j = 1, . . . , nx+nu
over the 10 000 MCMC iterations (taken after burnin).
These are given in Figure 6. Recall from (5) that a large
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Fig. 4. Bode diagram of the 4th-order linear system and
estimates for ADM, PEM and the proposed method. The
red line is the posterior mean of the Bode diagram and the
shaded area is the 99 % Bayesian credibility interval.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z

h
(z
)

 

 
True
ADM (ℓ2 error = 3.01 ×10−1)
PEM (ℓ2 error = 3.29 ×10−1)
Proposed (ℓ2 error = 0.61 ×10−1)
Proposed, 99 % credibility

Fig. 5. Nonlinear mapping (non-monotonic) and estimates
for ADM, PEM and the proposed method. The red line is
the posterior mean of the nonlinearity and the shaded area
is the 99 % Bayesian credibility interval. The integration
interval for the `2 error is [z−, z+] = [−2, 2].

value of τ−1
j implies that the jth column of Γ is pushed

to zero, and that the corresponding state component in
effect is switched off. It is clear that the effective model
order is indeed 4, as 6 of the precision parameters take
on much larger values than the remaining ones. Note
that the last column of Γ, i.e. for j = 11, corresponds to
the input signal ut. These results indicate that sparsity-
promoting priors (such as ARD) can be useful for auto-
matic order determination of state-space models. Note,
however, that there is no guarantee that the correct
model order is found and further evaluation is needed in
order to assess the accuracy and the robustness of this
approach.
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Fig. 6. ARD precision parameters τ−1
j for j = 1, . . . , 11. The

rightmost box plot corresponds to the input signal.

6.3 Discussion

Compared to ADM and PEM, the new algorithm re-
sulted in more accurate estimates, in particular of the
nonlinearity h(·). We believe that ADM and PEM both
suffer from the facts that: (i) the data is affected by pro-
cess noise; (ii) only T = 1 000 samples were used in the
simulations. Our results suggest that the new method
handles these difficulties better than the alternatives. It
should be noted, however, that both ADM and PEM
are considerably faster than the proposed method in
terms of computation. For T � 1 000, the computational
complexity of the proposed method may be prohibitive.
Hence, we believe that the proposed method is of par-
ticular interest when data is scarce and/or noisy. How-
ever, it is also worth exploring parallel and distributed
implementations of our algorithms; note in particular
that particle filtering lends itself naturally to distribu-
tion across particles.

7 Conclusions and future work

We have presented a Bayesian semiparametric method
for Wiener system identification, using a state-space rep-
resentation of the linear dynamical system G and a GP
model for the static nonlinearity h(·). We considered two
alternative priors for G; first, a conjugate prior which
is applicable when the model order is fixed (which is
the case if, for instance, the order is found by cross-
validation); second, a sparsity-promoting prior which
can be used to automatically determine the model or-
der. This is done by over-parameterizing the model and
switching unnecessary state components off.

The new algorithm was profiled on two examples with
good results. Compared to existing methods, we believe
that the algorithm is of particular interest when data is
scarce and/or noisy. Indeed, a concern with the proposed
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method is that it does not scale well with the number of
measurements T , since the computational complexity of
evaluating the posterior GP is cubic in T . However, this
is a fairly well-studied problem in the GP literature and
existing approaches can be used to mitigate this issue.
Alternatively, a different type of nonparametric regres-
sion function can be used, e.g. based on the Dirichlet
process mixture of generalized linear models [23].

We have found that sparsity-promoting priors can be
useful for automatic order selection in state-space mod-
els. However, further evaluation is needed to determine
the performance and the robustness of this approach.
There are also alternative ways to do automatic order
selection. For instance, reversible jump MCMC [20] can
be used to infer parameters in spaces of varying dimen-
sions. We could thus use a reversible jump sampler to
include the model order nx as a parameter of the model,
and update the sizes of the system matrices accordingly
when the value of this parameter is changed. This re-
quires a way to incorporate reversible jump moves in
PMCMC, which is a topic for future work.

A different line of future work is to leave the class of
Wiener systems and use PMCMC for fully nonparamet-
ric identification of general nonlinear dynamical systems.
This can, for instance, be done by modeling both the
dynamical equation and the measurement equation of a
state-space model as Gaussian processes.

A Choosing the hyperparameters

We use an approach known as empirical Bayes, in which
the observed data is used to set the hyperparameters of
the priors. For the MNIW prior, the following heuristic
is used. First, we run a subspace identification algorithm
on the input/output data (see e.g. [48]). The resulting
model is transformed into observer canonical form. We
set the mean M of the MN prior (2a) to the resulting
[A B]-matrix. The covariance L−1 is set to identity. This
choice allows for a considerable variability around the
mean. For the IW priors (2b) and (3) we use the same
heuristic as [15, p. 156–160], based on the empirical co-
variance of the observations y1:T . For the ARD prior,
we instead need to set the hyperparameters ν and b for
the inverse-Gamma prior governing the variance vector
τ̄ . We follow [16] and set ν = nx and b = ν × 10−3. This
choice fixes the prior mean to 10−3, encouraging a sparse
solution, and aims to provide a prior which is equally
informative for different choices of nx.
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