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Abstract

We present a novel method in the family of particle MCMC methods that we refer
to as particle Gibbs with ancestor sampling (PG-AS). Similarly to the existing
PG with backward simulation (PG-BS) procedure, we use backward sampling
to (considerably) improve the mixing of the PG kernel. Instead of using sepa-
rate forward and backward sweeps as in PG-BS, however, we achieve the same
effect in a single forward sweep. We apply the PG-AS framework to the challeng-
ing class of non-Markovian state-space models. We develop a truncation strategy
of these models that is applicable in principle to any backward-simulation-based
method, but which is particularly well suited to the PG-AS framework. In partic-
ular, as we show in a simulation study, PG-AS can yield an order-of-magnitude
improved accuracy relative to PG-BS due to its robustness to the truncation error.
Several application examples are discussed, including Rao-Blackwellized particle
smoothing and inference in degenerate state-space models.

1 Introduction

State-space models (SSMs) are widely used to model time series and dynamical systems. The
strong assumptions of linearity and Gaussianity that were originally invoked in state-space inference
have been weakened by two decades of research on sequential Monte Carlo (SMC) and Markov
chain Monte Carlo (MCMC). These Monte Carlo methods have not, however, led to substantial
weakening of a further strong assumption, that of Markovianity. It remains a major challenge to
develop inference algorithms for non-Markovian SSMs:

xt+1 ∼ f(xt+1 | θ, x1:t), yt ∼ g(yt | θ, x1:t), (1)

where θ ∈ Θ is a static parameter with prior density p(θ), xt is the latent state and yt is the ob-
servation at time t, respectively. Models of this form arise in many different application scenarios,
either from direct modeling or via a transformation or marginalization of a larger model. We provide
several examples in Section 5.

To tackle the challenging problem of inference for non-Markovian SSMs, we work within the frame-
work of particle MCMC (PMCMC), a family of inferential methods introduced in [1]. The basic idea
in PMCMC is to use SMC to construct a proposal kernel for an MCMC sampler. Assume that we
observe a sequence of measurements y1:T . We are interested in finding the density p(x1:T , θ | y1:T ),
i.e., the joint posterior density of the state sequence and the parameter. In an idealized Gibbs sam-
pler we would target this density by sampling as follows: (i) Draw θ? | x1:T ∼ p(θ | x1:T , y1:T );
(ii) Draw x?1:T | θ? ∼ p(x1:T | θ?, y1:T ). The first step of this procedure can be carried out
exactly if conjugate priors are used. For non-conjugate models, one option is to replace Step (i)
with a Metropolis-Hastings step. However, Step (ii)—sampling from the joint smoothing density
p(x1:T | θ, y1:T )—is in most cases very difficult. In PMCMC, this is addressed by instead sampling
a particle trajectory x?1:T based on an SMC approximation of the joint smoothing density. More
precisely, we run an SMC sampler targeting p(x1:T | θ?, y1:T ). We then sample one of the particles
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at the final time T , according to their importance weights, and trace the ancestral lineage of this
particle to obtain the trajectory x?1:T . This overall procedure is referred to as particle Gibbs (PG).

The flexibility provided by the use of SMC as a proposal mechanism for MCMC seems promising for
tackling inference in non-Markovian models. To exploit this flexibility we must address a drawback
of PG in the high-dimensional setting, which is that the mixing of the PG kernel can be very poor
when there is path degeneracy in the SMC sampler [2, 3]. This problem has been addressed in the
generic setting of SSMs by adding a backward simulation step to the PG sampler, yielding a method
denoted PG with backward simulation (PG-BS). It has been found that this considerably improves
mixing, making the method much more robust to a small number of particles as well as larger data
records [2, 3].

Unfortunately, however, the application of backward simulation is problematic for non-Markovian
models. The reason is that we need to consider full state trajectories during the backward simulation
pass, leading to O(T 2) computational complexity (see Section 4 for details). To address this issue,
we develop a novel PMCMC method which we refer to as particle Gibbs with ancestor sampling
(PG-AS) that achieves the effect of backward sampling without an explicit backward pass. As part
of our development, we also develop a truncation method geared to non-Markovian models. This
method is a generic method that is also applicable to PG-BS, but, as we show in a simulation study in
Section 6, the effect of the truncation error is much less severe for PG-AS than for PG-BS. Indeed,
we obtain up to an order of magnitude increase in accuracy in using PG-AS when compared to
PG-BS in this study.

Since we assume that it is straightforward to sample the parameter θ of the idealized Gibbs sampler,
we will not explicitly include sampling of θ in the subsequent sections to simplify our presentation.

2 Sequential Monte Carlo

We first review the standard auxiliary SMC sampler, see e.g. [4,5]. Let γt(x1:t) for t = 1, . . . , T be
a sequence of unnormalized densities on Xt, which we assume can be evaluated pointwise in linear
time. Let γ̄t(x1:t) be the corresponding normalized probability densities. For an SSM we would typ-
ically have γ̄t(x1:t) = p(x1:t | y1:t) and γt(x1:t) = p(x1:t, y1:t). Assume that {xm1:t−1, wm

t−1}Nm=1
is a weighted particle system targeting γ̄t−1(x1:t−1). This particle system is propagated to time t by
sampling independently from a proposal kernel,

Mt(at, xt) =
wat

t−1ν
at
t−1∑

l w
l
t−1ν

l
t−1

Rt(xt | xat
1:t−1). (2)

In this formulation, the resampling step is implicit and corresponds to sampling the ancestor indices
at. Note that amt is the index of the ancestor particle of xmt . When we write xm1:t we refer to the
ancestral path of xmt . The factors νmt = νt(x

m
1:t), known as adjustment multiplier weights, are

used in the auxiliary SMC sampler to increase the probability of sampling ancestors that better can
describe the current observation [5]. The particles are then weighted according to wm

t = Wt(x
m
1:t),

where the weight function is given by

Wt(x1:t) =
γt(x1:t)

γt−1(x1:t−1)νt−1(x1:t−1)Rt(xt | x1:t−1)
, (3)

for t ≥ 2. The procedure is initiated by sampling from a proposal density xm1 ∼ R1(x1) and
assigning importance weights wm

1 = W1(xm1 ) with W1(x1) = γ1(x1)/R1(x1). In PMCMC it is
instructive to view this sampling procedure as a way of generating a single sample from the density

ψ(x1:T ,a2:T ) ,
N∏

m=1

R1(xm1 )

T∏
t=2

N∏
m=1

Mt(a
m
t , x

m
t ) (4)

on the space XNT × {1, . . . , N}N(T−1). Here we have introduced the boldface notation xt =
{x1t , . . . , xNt } and similarly for the ancestor indices.

3 Particle Gibbs with ancestor sampling

PMCMC methods is a class of MCMC samplers in which SMC is used to construct proposal ker-
nels [1]. The validity of these methods can be assessed by viewing them as MCMC samplers on an
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extended state space in which all the random variables generated by the SMC sampler are seen as
auxiliary variables. The target density on this extended space is given by

φ(x1:T ,a2:T , k) ,
γ̄T (xk1:T )

NT

ψ(x1:T ,a2:T )

R1(xb11 )
∏T

t=2Mt(a
bt
t , x

bt
t )
. (5)

By construction, this density admits γ̄T (xk1:T ) as a marginal, and can thus be used as a surrogate for
the original target density γ̄T [1]. Here k is a variable indexing one of the particles at the final time
point and b1:T corresponds to the ancestral path of this particle: xk1:T = xb1:T1:T = {xb11 , . . . , x

bT
T }.

These indices are given recursively from the ancestor indices by bT = k and bt = a
bt+1

t+1 . The PG
sampler [1] is a Gibbs sampler targeting φ using the following sweep (note that b1:T = {ab2:T2:T , bT }),

1. Draw x?,−b1:T
1:T ,a?,−b2:T2:T ∼ φ(x−b1:T1:T ,a−b2:T2:T | xb1:T1:T , b1:T ).

2. Draw k? ∼ φ(k | x?,−b1:T
1:T ,a?,−b2:T2:T , xb1:T1:T , a

b2:T
2:T ).

Here we have introduced the notation x−mt = {x1t , . . . , xm−1t , xm+1
t , . . . , xNt }, x−b1:T1:T =

{x−b11 , . . . , x−bTT } and similarly for the ancestor indices. In [1], a sequential procedure for sampling
from the conditional density appearing in Step 1 is given. This method is known as conditional SMC
(CSMC). It takes the form of an SMC sampler in which we condition on the event that a prespecified
path xb1:T1:T = x′1:T , with indices b1:T , is maintained throughout the sampler (see Algorithm 1 for a
related procedure). Furthermore, the conditional distribution appearing in Step 2 of the PG sampler
is shown to be proportional to wk

T , and it can thus straightforwardly be sampled from.

Note that we never sample new values for the variables {xb1:T1:T , b1:T−1} in this sweep. Hence, the PG
sampler is an “incomplete” Gibbs sampler, since it does not loop over all the variables of the model.
It still holds that the PG sampler is ergodic, which intuitively can be explained by the fact that the
collection of variables that is left out is chosen randomly at each iteration. However, it has been
observed that the PG sampler can have very poor mixing, especially when N is small and/or T is
large [2, 3]. The reason for this poor mixing is that the SMC path degeneracy causes the collections
of variables that are left out at any two consecutive iterations to be strongly dependent.

We now turn to our new procedure, PG-AS, which aims to address this fundamental issue. Our
idea is to sample new values for the ancestor indices b1:T−1 as part of the CSMC procedure1. By
adding these variables to the Gibbs sweep, we can considerably improve the mixing of the PG
kernel. The CSMC method is a sequential procedure to sample from φ(x−b1:T1:T ,a−b2:T2:T | xb1:T1:T , b1:T )

by sampling according to {x?,−bt
t ,a?,−btt } ∼ φ(x−btt ,a−btt | x?,−b1:t−1

1:t−1 ,a
?,−b2:t−1

2:t−1 , xb1:T1:T , b1:T ), for
t = 1, . . . , T . After having sampled these variables at time t, we add a step in which we generate a
new value for bt−1(= abtt ), resulting in the following sweep:

1′. (CSMC with ancestor sampling) For t = 1, . . . , T , draw

x?,−bt
t ,a?,−btt ∼ φ(x−btt ,a−btt | x?,−b1:t−1

1:t−1 ,a?2:t−1, x
b1:T
1:T , bt−1:T ),

(a?,btt =) b?t−1 ∼ φ(bt−1 | x?,−b1:t−1

1:t−1 ,a?2:t−1, x
b1:T
1:T , bt:T ).

2′. Draw (k? =) b?T ∼ φ(bT | x?,−b1:T
1:T ,a?2:T , x

b1:T
1:T ).

It can be verified that this corresponds to a partially collapsed Gibbs sampler [6] and will thus leave
φ invariant. To determine the conditional densities from which the ancestor indices are drawn,
consider the following factorization, following directly from (3),

γt(x1:t) = Wt(x1:t)νt−1(x1:t−1)Rt(xt | x1:t−1)γt−1(x1:t−1)

⇒ γt(x
bt
1:t) = wbt

t

∑
l w

l
t−1ν

l
t−1

w
bt−1

t−1

w
bt−1

t−1 ν
bt−1

t−1∑
l w

l
t−1ν

l
t−1

Rt(x
bt
t | x

bt−1

1:t−1)γt−1(x
bt−1

1:t−1)

= . . . = wbt
t

(
t−1∏
s=1

∑
l

wl
sν

l
s

)
R1(xb11 )

t∏
s=2

Mt(a
bs
s , x

bs
s ). (6)

1Ideally, we would like to include the variables xb1:T
1:T as well, but this is in general not possible since it

would be similar to sampling from the original target density (which we assume is infeasible).
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Furthermore, we have

φ(bt | x1:t,a2:t, x
bt+1:T

t+1:T , bt+1:T ) ∝ φ(x1:t,a2:t, x
bt+1:T

t+1:T , bt:T )

∝ γT (xk1:T )ψ(x1:t,a2:t)

R1(xb11 )
∏t

s=2Ms(a
bs
s , x

bs
s )
∝ γt(x

bt
1:t)

γt(x
bt
1:t)

γT (xk1:T )

R1(xb11 )
∏t

s=2Ms(a
bs
s , x

bs
s )
. (7)

By plugging (6) into the numerator we get,

φ(bt | x1:t,a2:t, x
bt+1:T

t+1:T , bt+1:T ) ∝ wbt
t

γT (xk1:T )

γt(x
bt
1:t)

. (8)

Hence, to sample a new ancestor index for the conditioned path at time t+1, we proceed as follows.
Given x′t+1:T (= x

bt+1:T

t+1:T ) we compute the backward sampling weights,

wm
t|T = wm

t

γT ({xm1:t, x′t+1:T })
γt(xm1:t)

, (9)

for m = 1, . . . , N . We then set bt = m with probability proportional to wm
t|T .

It follows that the proposed CSMC with ancestor sampling (Step 1′), conditioned on {x′1:T , b1:T },
can be realized as in Algorithm 1. The difference between this algorithm and the CSMC sampler
derived in [1] lies in the ancestor sampling step 2(b) (where instead, they set abtt = bt−1). By
introducing the ancestor sampling, we break the strong dependence between the generated particle
trajectories and the path on which we condition. We call the resulting method, defined by Steps 1′

and 2′ above, PG with ancestor sampling (PG-AS).

Algorithm 1 CSMC with ancestor sampling, conditioned on {x′1:T , b1:T }
1. Initialize (t = 1):

(a) Draw xm1 ∼ R1(x1) for m 6= b1 and set xb11 = x′1.
(b) Set wm

1 = W1(xm1 ) for m = 1, . . . , N .
2. for t = 2, . . . , T :

(a) Draw {amt , xmt } ∼Mt(at, xt) for m 6= bt and set xbtt = x′t.
(b) Draw abtt with P (abtt = m) ∝ wm

t−1|T .

(c) Set xm1:t = {xa
m
t

1:t−1, x
m
t } and wm

t = Wt(x
m
1:t) for m = 1, . . . , N .

The idea of including the variables b1:T−1 in the PG sampler has previously been suggested by
Whiteley [7] and further explored in [2, 3]. This previous work, however, accomplishes this with
a explicit backward simulation pass, which, as we discuss in the following section, is problematic
for our applications to non-Markovian SSMs. In the PG-AS sampler, instead of requiring distinct
forward and backward sequences of Gibbs steps as in PG with backward simulation (PG-BS), we
obtain a similar effect via a single forward sweep.

4 Truncation for non-Markovian state-space models

We return to the problem of inference in non-Markovian SSMs of the form shown in (1). To employ
backward sampling, we need to evaluate the ratio

γT (x1:T )

γt(x1:t)
=
p(x1:T , y1:T )

p(x1:t, y1:t)
=

T∏
s=t+1

g(ys | x1:s)f(xs | x1:s−1). (10)

In general, the computational cost of computing the backward sampling weights will thus be O(T ).
This implies that the cost of generating a full backward trajectory is O(T 2). It is therefore compu-
tationally prohibitive to employ backward simulation type of particle smoothers, as well as the PG
samplers discussed above, for general non-Markovian models.
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Figure 1: Probability under P̃p as a function of the truncation level p for two different systems; one
5 dimensional (left) and one 20 dimensional (right). The N = 5 dotted lines correspond to P̃p(m)
for m ∈ {1, . . . , N}, respectively (N.B. two of the lines overlap in the left figure). The dashed
vertical lines show the value of the truncation level padpt., resulting from the adaption scheme with
γ = 0.1 and τ = 10−2. See Section 6.2 for details on the experiments.

To make progress, we consider non-Markovian models in which there is a decay in the influence
of the past on the present, akin to that in Markovian models but without the strong Markovian
assumption. Hence, it is possible to obtain a useful approximation when the product in (10) is
truncated to a smaller number of factors, say p. We then replace (9) with the approximation,

w̃p,m
t|T = wm

t

γt+p({xm1:t, x′t+1:t+p})
γt(xm1:t)

. (11)

The following proposition formalizes our assumption.

Proposition 1. Let P and P̃p be the probability distributions on {1, . . . , N}, defined by
the backward sampling weight (9) and the truncated backward sampling weights (11), re-
spectively. Let hs(k) = g(yt+s | xk1:t, x′t+1:t+s)f(x′t+s | xk1:t, x′t+1:t−s) and assume that
maxk,l (hs(k)/hs(l)− 1) ≤ A exp(−cs), for some constants A and c > 0. Then, DKLD(P‖P̃p) ≤
C exp(−cp) for some constant C, where DKLD is the Kullback-Leibler divergence (KLD).

Proof. Provided in the supplemental material.

From (11), we see that we can compute the backward weights in constant time under the truncation
within the PG-AS framework. The resulting approximation can be quite useful; indeed, in our
experiments we have seen that even p = 1 can lead to very accurate inferential results. In general,
however, it will not be known a priori how to set the truncation level p for any given problem. To
address this problem, we propose to use an adaption of the truncation level. Since the approximative
weights (11) can be evaluated sequentially, the idea is to start with p = 1 and then increase p until
the weights have, in some sense, converged. In particular, in our experimental work, we have used
the following simple approach.

Let P̃p be the discrete probability measure defined by (11). Let εp = DTV(P̃p, P̃p−1) be the total
variation (TV) distance between the distributions for two consecutive truncation levels. We then
compute the exponentially decaying moving average of the sequence εp, with forgetting factor γ ∈
[0, 1], and stop when this falls below some threshold τ ∈ [0, 1]. This adaption scheme removes the
requirement to specify p directly, but instead introduces the design parameters γ and τ . However,
these parameters are much easier to reason about – a small value for γ gives a rapid response to
changes in εp whereas a large value gives a more conservative stopping rule, improving the accuracy
of the approximation at the cost of higher computational complexity. A similar trade off holds for
the threshold τ as well. Most importantly, we have found that the same values for γ and τ can be
used for a wide range of models, with very different mixing properties.

To illustrate the effect of the adaption rule, and how the distribution P̃p typically evolves as we
increase p, we provide two examples in Figure 1. These examples are taken from the simulation
study provided in Section 6.2. Note that the untruncated distribution P is given for the maximal
value of p, i.e., furthest to the right in the figures. By using the adaptive truncation, we can stop the
evaluation of the weights at a much earlier stage, and still obtain an accurate approximation of P .
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5 Application areas

In this section we present examples of problem classes involving non-Markovian SSMs for which
the proposed PG-AS sampler can be applied. Numerical illustrations are provided in Section 6.

5.1 Rao-Blackwellized particle smoothing

One popular approach to increase the efficiency of SMC samplers for SSMs is to marginalize over
one component of the state, and apply an SMC sampler in the lower-dimensional marginal space.
This leads to what is known as the Rao-Blackwellized particle filter (RBPF) [8–10]. The same
approach has also been applied to state smoothing [11,12], but it turns out that Rao-Blackwellization
is less straightforward in this case, since the marginal state-process will be non-Markovian. As an
example, a mixed linear/nonlinear Gaussian SSM (see, e.g., [10]) with “nonlinear state” xt and
“linear state” zt, can be reduced to xt ∼ p(xt | x1:t−1, y1:t−1) and yt ∼ p(yt | x1:t, y1:t−1). These
conditional densities are Gaussian and can be evaluated for any fixed marginal state trajectory x1:t−1
by running a conditional Kalman filter to marginalize the zt-process.

In order to apply a backward-simulation-based method (e.g., a particle smoother) for this model, we
need to evaluate the backward sampling weights (9). In a straightforward implementation2, we thus
need to run N Kalman filters for T − t time steps, for each t = 1, . . . , T − 1. The computational
complexity of this calculation can be reduced by employing the truncation proposed in Section 4.

5.2 Particle smoothing for degenerate state-space models

Many dynamical systems are most naturally modelled as degenerate in the sense that the transi-
tion kernel of the state process does not admit any dominating measure. For instance, consider a
nonlinear system with additive noise of the form,

ξt = f(ξt−1) +Gωt−1, yt = g(ξt) + et, (12)

whereG is a tall matrix, and consequently rank(G) < dim(ξt). That is, the process noise covariance
matrix is singular. SMC samplers can straightforwardly be applied to this type of models, but it is
more problematic to address the smoothing problem using particle methods. The reason is that the
backward kernel also will be degenerate and it cannot be approximated in a natural way by the
forward filter particles, as is normally done in backward-simulation-based particle smoothers.

A possible remedy for this issue is to recast the degenerate SSM as a non-Markovian model in
a lower-dimensional space. Let G = U [Σ 0]

T
V T with unitary U and V be a singular value

decomposition of G and let,[
xt
zt

]
, UTξt = UTf(UUTξt−1) +

[
ΣV Tωt−1

0

]
. (13)

For simplicity we assume that z1 is known. If this is not the case, it can be included in the system
state or seen as a static parameter of the model. Hence, the sequence z1:t is σ(x1:t−1)-measurable
and we can write zt = zt(x1:t−1). With vt , ΣV Tωt and by appropriate definitions of the functions
fx and h, the model (12) can thus be rewritten as, xt = fx(x1:t−1) + vt−1 and yt = h(x1:t) + et,
which is a non-degenerate, non-Markovian SSM. By exploiting the truncation proposed in Section 4
we can thus apply PG-AS to do inference in this model.

5.3 Additional problem classes

There are many more problem classes in which non-Markovian models arise and in which backward-
simulation-based methods can be of interest. For instance, the Dirichlet process mixture model
(DPMM, see, e.g., [13]) is a popular nonparametric Bayesian model for mixtures with an unknown
number of components. Using a Polya urn representation, the mixture labels are given by a non-
Markovian stochastic process, and the DPMM can thus be seen as a non-Markovian SSM. SMC has

2For the specific problem of Rao-Blackwellized smoothing in conditionally Gaussian models, a backward
simulator which can be implemented in O(T ) computational complexity has recently been proposed in [11].
This is based on the idea of propagating information backward in time as the backward samples are generated.

6



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
−2

10
−1

 

 

PG w. ancestral sampling
PG w. backward simulation

Figure 2: Rao-Blackwellized state smoothing using PG. Running RMSEs for five independent runs
of PG-AS (•) and PG-BS (◦), respectively. The truncation level is set to p = 1. The solid line
corresponds to a run of an untruncated FF-BS.

previously been used for inference in DPMMs [14, 15]. An interesting venue for future work is to
use the PG-AS sampler for these models. A second example in Bayesian nonparametrics is Gaussian
process (GP) regression and classification (see, e.g., [16]). The sample path of the GP can be seen as
the state-process in a non-Markovian SSM. We can thus employ PMCMC, and in particular PG-AS,
to address these inference problems.

An application in genetics, for which SMC has been been successfully applied, is reconstruction
of phylogenetic trees [17]. A phylogenetic tree is a binary tree with observation at the leaf nodes.
SMC is used to construct the tree in a bottom up fashion. A similar approach has also been used
for Bayesian agglomerative clustering, in which SMC is used to construct a binary clustering tree
based on Kingman’s coalescent [18]. The generative models for the trees used in [17,18] are in fact
Markovian, but the observations give rise to a conditional dependence which destroys the Markov
property. To employ backward simulation to these models, we are thus faced with problems of a
similar nature as those discussed in Section 4.

6 Numerical evaluation

This section contains a numerical evaluation of the proposed method. We consider linear Gaussian
systems, which is instructive since the exact smoothing density then is available, e.g., by running
a modified Bryson-Frazier (MBF) smoother [19]. For more details on the experiments, and for
additional (nonlinear) examples, see [20].

6.1 RBPS: Linear Gaussian state-space model

As a first example, we consider Rao-Blackwellized particle smoothing (RBPS) in a single-output
4th-order linear Gaussian SSM. We generate T = 100 samples from the system and run PG-AS and
PG-BS, marginalizing three out of the four states using an RBPF, i.e., dim(xt) = 1. Both methods
are run for R = 10000 iterations using N = 5 particles. The truncation level is set to p = 1, leading
to a coarse approximation. We discard the first 1000 iterations and then compute running means
of the state trajectory x1:T . From these, we then compute the running root mean squared errors
(RMSEs) εr relative to the true posterior means (computed with an MBF smoother). Hence, if no
approximation would have been made, we would expect εr → 0, so any static error can be seen as
the effect of the truncation. The results for five independent runs from both PG samplers are shown
in Figure 2. First, we note that both methods give accurate results. Still, the error for PG-AS is close
to an order of magnitude less than for PG-BS. Furthermore, it appears as if the error for PG-AS
would decrease further, given more iterations, suggesting that the bias caused by the truncation is
dominated by the Monte Carlo variance, even after R = 10000 iterations.

For further comparison, we also run an untruncated forward filter/backward simulator (FF-BS) par-
ticle smoother [21], using N = 5000 forward filter particles and M = 500 backward trajectories
(with a computational complexity of O(NMT 2)). The resulting RMSE value is shown as a solid
line in Figure 2. These results suggest that PMCMC samplers, such as the PG-AS, indeed can be
serious competitors to more “standard” particle smoothers. Even with p = 1, PG-AS outperforms

7



10
−3

10
−2

10
−1

p = 1 p = 2 p = 3 Adapt. (3.8)

d = 2

10
−3

10
−2

10
−1

p = 1 p = 5 p = 10 Adapt. (5.9)

d = 5

10
−3

10
−2

10
−1

p = 1 p = 5 p = 10 Adapt. (10.6)

d = 20

 

 

PG w. ancestral sampling
PG w. backward simulation

Figure 3: Box plots of the RMSE errors for PG-AS (black) and PG-BS (gray), for 150 random
systems of different dimensions d (left, d = 2; middle, d = 5; right, d = 20). Different values for
the truncation level p are considered. The rightmost boxes correspond to an adaptive threshold and
the values in parentheses are the average over all systems and MCMC iterations (the same for both
methods). The dots within the boxes show the median errors.

FF-BS in terms of accuracy and, due to the fact that the ancestor sampling allows us to use as few
as N = 5 particles at each iteration, at a lower computational cost.

6.2 Random linear Gaussian systems with rank deficient process noise covariances

To see how the PG samplers are affected by the choice of truncation level p and by the mixing
properties of the system, we evaluate them on random linear Gaussian SSMs of different orders.
We generate 150 random systems, using the MATLAB function drss from the Control Systems
Toolbox, with model orders 2, 5 and 20 (50 systems for each model order). The number of outputs
are taken as 1, 2 and 4 for the different model orders, respectively. The systems are then simulated
for T = 200 time steps, driven by Gaussian process noise entering only on the first state component.
Hence, the rank of the process noise covariance is 1 for all systems.

We run the PG-AS and PG-BS samplers for 10000 iterations using N = 5 particles. We consider
different fixed truncation levels, as well as an adaptive level with γ = 0.1 and τ = 10−2. Again,
we compute running posterior means (discarding 1000 samples) and RMSE values relative the true
posterior mean. Box plots are shown in Figure 3. Since the process noise only enters on one of the
state components, the mixing tends to deteriorate as we increase the model order. Figure 1 shows
how the probability distributions on {1, . . . , N} change as we increase the truncation level, in two
representative cases for a 5th and a 20th order system, respectively. By using an adapted level,
we can obtain accurate results for systems of different dimensions, without having to change any
settings between the runs.

7 Discussion

PG-AS is a novel approach to PMCMC that makes use of backward simulation ideas without need-
ing an explicit backward pass. Compared to PG-BS, a conceptually similar method that does require
an explicit backward pass, PG-AS has advantages, most notably for inference in the non-Markovian
SSMs that have been our focus here. When using the proposed truncation of the backward weights,
we have found PG-AS to be more robust to the approximation error than PG-BS. Furthermore, for
non-Markovian models, PG-AS is easier to implement than PG-BS, since it requires less bookkeep-
ing. It can also be more memory efficient, since it does not require us to store intermediate quantities
that are needed for a separate backward simulation pass, as is done in PG-BS. Finally, we note that
PG-AS can be used as an alternative to PG-BS for other inference problems to which PMCMC can
be applied, and we believe that it will prove attractive in problems beyond the non-Markovian SSMs
that we have discussed here.

Acknowledgments

This work was supported by: the project Calibrating Nonlinear Dynamical Models (Contract num-
ber: 621-2010-5876) funded by the Swedish Research Council and CADICS, a Linneaus Center
also funded by the Swedish Research Council.

8



References

[1] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo methods,”
Journal of the Royal Statistical Society: Series B, vol. 72, no. 3, pp. 269–342, 2010.

[2] N. Whiteley, C. Andrieu, and A. Doucet, “Efficient Bayesian inference for switching state-
space models using discrete particle Markov chain Monte Carlo methods,” Bristol Statistics
Research Report 10:04, Tech. Rep., 2010.

[3] F. Lindsten and T. B. Schön, “On the use of backward simulation in the particle Gibbs sampler,”
in Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan, Mar. 2012.

[4] A. Doucet and A. Johansen, “A tutorial on particle filtering and smoothing: Fifteen years later,”
in The Oxford Handbook of Nonlinear Filtering, D. Crisan and B. Rozovsky, Eds. Oxford
University Press, 2011.

[5] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” Journal of the
American Statistical Association, vol. 94, no. 446, pp. 590–599, 1999.

[6] D. A. V. Dyk and T. Park, “Partially collapsed Gibbs samplers: Theory and methods,” Journal
of the American Statistical Association, vol. 103, no. 482, pp. 790–796, 2008.

[7] N. Whiteley, “Discussion on Particle Markov chain Monte Carlo methods,” Journal of the
Royal Statistical Society: Series B, 72(3), p 306–307, 2010.

[8] R. Chen and J. S. Liu, “Mixture Kalman filters,” Journal of the Royal Statistical Society: Series
B, vol. 62, no. 3, pp. 493–508, 2000.

[9] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for
Bayesian filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197–208, 2000.

[10] T. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle filters for mixed lin-
ear/nonlinear state-space models,” IEEE Transactions on Signal Processing, vol. 53, no. 7,
pp. 2279–2289, Jul. 2005.
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