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Contribution

We present an algorithm using a combination of Lya-

punov equations and analytical solutions for discretiz-

ing continuous-time stochastic dynamical equations.

Motivation
Stochastic dynamical systems are important in state estima-

tion, system identification and control. System models are

often provided in continuous time, while a major part of the

applied theory is developed for discrete-time systems. Dis-

cretization of continuous-time models is hence fundamental.

Problem Formulation
Continuous-time model

ẋ(t) = Ax(t) + Bw(t)

E[w(t)w(τ )T] = Sδ(t− τ )

Discrete-time model

xk+1 = FTxk + wk
E[wkw

T
l ] = QTδkl

This gives the relations

FT = eAT , QT =

∫ T

0
eAτBSBTeA

Tτdτ (1)

Problem: How do we solve the integral (1) in a numeri-

cally good manner for arbitrary A, B, S and T ?

Analytical solution

If A is nilpotent the integral (1) has an analytical solution.

Example (constant velocity model)

The system given by A =

[
0 1

0 0

]
, B =

[
0

1

]
, S = 1

results in FT =

[
1 T

0 1

]
, QT =

[
T 3

3
T 2

2
T 2

2 T

]
.

Solution using Lyapunov Equation

Theorem The solution to the integral (1) satisfies the

Lyapunov equation

AQT + QTA
T = −BSBT + eATBSBTeA

TT︸ ︷︷ ︸
−VT

(2)

Idea: Solve the Lyapunov equation (2) to find solution

for the integral (1)!

Lemma Eq. (2) has a unique solution if and only if

λi(A) + λj(A) 6= 0 ∀i, j
Note: This is not fulfilled if the system has integrators!

System with Integrators

Consider a system on the following block triangular form

A =

[
A11 A12

0 A22

]
,

λi(A11) 6= 0 ∀i
λj(A22) = 0 ∀j

where all integrators are collected in A22. The corresponding

Lyapunov equation for this system reads[
A11 A12

0 A22

][
Q11 Q12

QT
12 Q22

]
+

[
Q11 Q12

QT
12 Q22

][
AT

11 0

AT
12 A

T
22

]
=−

[
V11 V12

V T
12 V22

]
which gives

A11Q11 + Q11A
T
11 = −V11 − A12Q12

T −Q12A
T
12

A11Q12 + Q12A
T
22 = −V12 − A12Q22

A22Q
T
12 + QT

12A
T
11= −V T

12 −Q22A
T
12

A22Q22 + Q22A
T
22 = −V22

Last equation has no unique solution since λi(A22) = 0 ∀i.
But since A22 is nilpotent Q22 can be solved analytically!

Solution:

1.Find Q22 by using the analytical solution.

2.Find Q12 by solving a Sylvester equation.

3.Find Q11 by solving a Lyapunov equation.

Van Loan’s Method
The proposed method is compared with a standard method

in the literature based on a matrix exponential of an aug-

mented matrix

FT = M11,

QT = M12M
T
11,

eHT =

[
M11 M12

0 M22

]
, H =

[
A S

0 −AT

]
.

Numerical Evaluations
•Marginally stable systems with 4 stable poles and 2 inte-

grators are considered.

•Each dimension in the 2D region Tλmax, Tλmin ∈
[10−1, 101] is divided into 25 bins, where

λmax = max
i

(|Re(λi)|) and λmin = min
i

(|Re(λi)|)

are the fastest and slowest stable pole, respectively.
• In total 100 systems are randomly generated for each bin.
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According to the results, the proposed method performs

better if the slowest pole is fast and/or the sampling is slow,

whereas Van Loan’s method performs better if the fastest

pole is slow and/or the sampling is fast. Along the green line

both methods perform equally well.

Conclusion
Numerical evaluations show that the proposed algorithm has

advantageous numerical properties for slow sampling and fast

dynamics in comparison with Van Loan’s method.
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