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Abstract – Situation awareness for vehicular safety
and autonomy functions includes knowledge of the
drivable area. This area is normally constrained be-
tween stationary road-side objects as guard-rails, curbs,
ditches and vegetation. We consider these as extended
objects modeled by polynomials along the road, and pro-
pose an algorithm to track each polynomial based on
noisy range and bearing detections, typically from a
radar. A straightforward Kalman filter formulation of
the problem suffers from the errors-in-variables (EIV)
problem in that the noise enters the system model. We
propose an EIV modification of the Kalman filter and
demonstrates its usefulness using radar data from pub-
lic roads.

Keywords: extended object, extended target track-
ing, polynomial, errors in output, errors in variables,
automotive radar, road map.

1 Introduction
In classical target tracking problems the objects are
modeled as point objects and it is assumed that only
one measurement is received from each target at each
time step. A target is denoted extended whenever the
target extent is larger than the sensor resolution, and
it is large enough to occupy multiple resolution cells of
the sensor. Put in other words, if a target should be
classified as extended does not only depend on its phys-
ical size, but rather on the physical size relative to the
sensor resolution.

Common methods used to track extended objects are
very similar to the ones used for tracking a group of
targets moving in formation. Extended object track-
ing and group tracking are thoroughly described in
e.g., [16]. The bibliography in [20] provides a compre-
hensive overview of existing literature in the area of
group and cluster tracking. One conventional method
is to model the target as a set of point features in a
target reference frame, each of which may contribute
at most one sensor measurement. The exact location

of a feature in the target reference frame is often as-
sumed uncertain. The motion of an extended target
is modeled through the process model in terms of the
translation and rotation of the target reference frame
relative to a world coordinate frame, see e.g., [5]. As
is the case most of the time, some measurements arise
from features belonging to targets and some are due to
false detections (clutter). The association hypotheses
are derived through some data association algorithm.

Instead of modeling the target as a number of point
features, the target may be represented by a spatial
probability distribution. It is more likely that a mea-
surement comes from a region of high spatial density
than from a sparse region. In [10, 9] it is assumed
that the number of received target and clutter mea-
surements are Poisson distributed, hence several mea-
surements may originate from the same target. Each
target related measurement is an independent sample
from the spatial distribution. The spatial distribution
is preferable where the point source models are poor
representations of reality, that is, in the cases where
the measurement generation is diffuse. In [2], a similar
approach is presented, but since raw data is considered,
no data association hypotheses are needed.

Objects which are line shaped and curved can often
be modeled using polynomials, and tracked as extended
targets. Examples of such objects are roads, coast lines,
ships and surface topography and these may be tracked
from water, ground and aerial vehicles. Typical sen-
sors are radar, laser, sonar and camera. In this paper
we consider extended target tracking using polynomi-
als based on radar data, and we apply our ideas to a
road mapping scenario using automotive radar sensor
reports. In this context, extended targets in the scene
can represent guardrails along the road.

This paper is outlined as follows. A basic problem
formulation of extended target tracking using polyno-
mials as extended objects is formulated in Section 2.
The state space representation that we are going to use
in extended target tracking is introduced in Section 3



and simulation results are presented in Section 4. We
apply the ideas presented in earlier sections to the road
map estimation problem utilizing the automotive radar
reports. The experiments done and the results obtained
are presented in Section 5. The paper is concluded in
Section 6.

2 Problem Formulation
In this paper, we consider target tracking with ex-

tended objects that are modeled using nth order poly-
nomials to describe curved lines given as

y = a0 + a1x + a2x
2 + . . .+ anx

n, (1)

where a0, a1, · · · , an are the polynomial coefficients.
The state estimates, represented by the coefficients of
the polynomial,

x ,
[
a0 a1 · · · an

]T
, (2)

are updated by point measurements from a sensor us-
ing standard filters, such as the well known Kalman
filter. Suppose we are given the 2-dimensional noisy
sensor measurements in batches of Cartesian x and y
coordinates as follows.{

z(i)
k ,

[
x(i) y(i)

]T
k

}Nzk

i=1
, (3)

for discrete time instants k = 1, . . . ,K. At many cases
in reality (e.g., radar, laser and stereo vision) and in
the practical application considered in this work, the
sensor provides range r and azimuth angle δ given as{

z̄(i)
k ,

[
r(i) δ(i)

]T
k

}Nzk

i=1
. (4)

In such a case we assume that some suitable standard
polar to Cartesian conversion algorithm is used to con-
vert these measurements into the form (3).

The state models considered in this contribution are
described, in general, by the state space equations

xk+1 = f(xk,uk) + wk, (5a)
yk = h(xk,uk) + ek, (5b)

where x, u and y denotes the state, the input sig-
nal, and the output signal, while w ∼ N (0, Q) and
e ∼ N (0, R) are the process and measurement noise,
respectively. The use of a input signal u is explained
in Section 3. For the sake of simplicity, the tracked ob-
jects are assumed stationary, resulting in very simple
motion models (5a). However, the motion or process
model may easily be substituted and chosen arbitrarily
to best fit its purpose.

A polynomial is generally difficult to handle in a fil-
ter, since the noisy measurements are distributed arbi-
trarily along the polynomial. In this respect, the mea-
surement models we consider contain parts of the actual
measurement vector as parameters. We approach this
problem in two ways:

1. In the first method, which we call “errors in out-
put” (EIO), we consider only the errors that are
caused by the measurement model output and ne-
glect the errors in the model parameters.

2. The second methodology takes into account also
the errors caused by using the actual noisy mea-
surements as model parameters. This scheme is an
example of the so called “errors in variables” (EIV)
methodology.

The aim is to obtain posterior estimates of the extended

source xk|k given all the measurements
{
{z(i)
` }

Nz`
i=1

}k
`=1

recursively in time. The former approach mentioned
above leads to a linear measurement equation and the
standard Kalman filter (KF) [12] applies. The second
approach, on the other hand, requires a correction in
the error statistics of the KF innovations.

As mentioned above, the use of “noisy” measure-
ments as model parameters in this work makes this
paper directly related to the errors-in-variables frame-
work, where some of the independent variables are con-
taminated by noise. Such a case is common in the field
of system identification [13] when not only the system
outputs, but also the inputs are measured imperfectly.
Examples of such EIV representations can be found in
[18] and a representative solution is proposed in [11, 7].
The Kalman filter cannot be directly applied to such
EIV processes as discussed in [11],[17]. Nevertheless, an
extension of the Kalman filter, where the state and the
output are optimally estimated in the presence of state
and output noise is proposed in [8]. The EIV problem
is also closely related to the total-least squares method-
ology, which is well described in the papers [19, 3, 4],
in the survey paper [15] and in the textbook [1].

3 Measurement Model for an
Extended Object

This section describes how a point measurement z re-
lates to the state x of an extended object. For this pur-
pose, we derive a measurement model in the form (5b),
which describes the relation between the state variables
x, defined in (2), and output signals y and input sig-
nals u. Notice that, for the sake of simplicity, we also
drop the subscripts k specifying the time stamps of the
quantities.

The general convention in modeling is to make the
definitions

y , z, u , ∅, (6)

where ∅ denotes the empty set meaning that there is no
input. In this setting, it is extremely difficult, if not im-
possible, to find a measurement model connecting the
outputs y to the states x in the form of (5b). There-
fore, we are forced to use other selections for y and u.



Here, we make the selection

y , y, u , x. (7)

Although being quite a simple selection, this choice re-
sults in a rather convenient linear measurement model
in the state partition x,

y = H(u)x + e, (8)

where H(u) =
[
1 x x2 · · · xn

]T. It is the selec-
tion in (7) rather than (6) that allows us to use the
standard methods in target tracking with clever modi-
fications. Such a selection as (7) is also in accordance
with the errors-in-variables representations where mea-
surement noise are present in both the outputs and in-
puts, i.e., the observation z can be partitioned accord-
ing to

z =
[
u
y

]
. (9)

We express the measurement vector given in (3) in
terms of a noise free variable z0 which is corrupted by
additive measurement noise z̃ according to

z = z0 + z̃, z̃ ∼ N (0,Σc), (10)

where the covariance Σc can be decomposed as

Σc =
[

Σx Σxy

Σxy Σy

]
. (11)

Note that, in the case the sensor provides measurements
only in polar coordinates (4), one has to convert both
the measurement z̄ and the measurement noise covari-
ance

Σp = diag(σ2
d, σ

2
δ ) (12)

into Cartesian coordinates. This is a rather standard
procedure and one simple method is described in the
Appendix. Note that, in such a case, the resulting
Cartesian measurement covariance Σc is, in general,
not necessarily diagonal and hence Σxy of (11) might
be non-zero.

Since the model (8) is linear, the Kalman filter mea-
surement update formulas can be used to incorporate
the information in z into the extended source state x.
An important question in this regard is what would be
the measurement covariance of the measurement noise
term e in (8). This problem can be tackled in two ways,
which are described in the Section 3.1 and 3.2.

3.1 Errors in Output (EIO) Scheme

Although the input terms defined in (7) are mea-
sured quantities (and hence affected by the measure-
ment noise), and therefore the model parameters H(u)
are uncertain, in a range of practical applications where
parameters are obtained from measurements, such er-
rors are neglected. Thus, the first scheme we present

here neglects all the errors in H(u). In this case, it can
easily be seen that

e = ỹ (13)

and therefore the covariance Σ of e is

Σ = Σy. (14)

This type of approach was also used in our previous
work [14] which presented earlier versions of the findings
in this paper.

3.2 Errors in Variables (EIV) Scheme

Neglecting the errors in the model parameters H(u)
can cause overconfidence in the estimates of recursive
filters and can actually make data association difficult
in tracking applications (by causing too small gates).
We, in this second scheme, use a simple methodology to
take the uncertainties in H(u) into account in line with
the EIV framework. Assuming that the elements of the
noise free quantity z0 satisfy the polynomial equation
exactly, we get

y − ỹ = H(u− ũ)x, (15a)

y − ỹ =
[
1 x− x̃ (x− x̃)2 · · · (x− x̃)n

]
x, (15b)

which can be approximated using a first order Taylor
expansion resulting in

y ≈ H(u)x− H̃(u)x̃x + ỹ (16a)

= H(u)x + h̃(x,u)
[
x̃
ỹ

]
, (16b)

with

H(u) =
[
1 x x2 · · · xn

]
, (16c)

H̃(u) =
[
0 1 2x · · · nxn−1

]
, (16d)

h̃(x,u) =
[
−a1 − 2a2x− · · · − nanxn−1 1

]
. (16e)

Hence, the noise term e of (8) is given by

e = ỹ − H̃ x̃x = h̃(x,u)
[
x̃
ỹ

]
(17)

and its covariance is given by

Σ = E(eeT) = Σy + xTH̃TΣxH̃x− 2H̃Σxy

= h̃(x,u)Σch̃(x,u). (18)

Note that the EIV covariance Σ depends on the state
variable x, which is substituted by its last estimate in
recursive estimation.
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Figure 1: The true polynomial and the extracted mea-
surements are shown. Covariance ellipses are drawn for
a few measurements to show the direction of the uncer-
tainties.

4 Simulation Example
A simulation example is used to compare the perfor-

mances of the EIO and the EIV schemes. The Matlab
code used to produce the simulations and figures in this
paper is available online1. A second order polynomial
with the true states

x =
[
a0 a1 a2

]T =
[
−20 −0.5 0.008

]T (19)

is used and 100 uniformly distributed measurements are
extracted in the range x = [0, 200]. The measurements
are given on polar form as in (4) and zero mean Gaus-
sian measurement noise with covariance as in (12) is
added using the parameters

Sensor 1: σd1 = 0.5, σδ1 = 0.05, (20a)
Sensor 2: σd2 = 10, σδ2 = 0.05, (20b)
Sensor 3: σd3 = 10, σδ3 = 0.005, (20c)

to simulate different type of sensors. Sensor 1 repre-
sents a sensor with better range than bearing accuracy,
whereas the opposite holds for sensor 3. Sensor 2 has
about the same range and bearing accuracies. The true
polynomial and the measurements are shown in Fig-
ure 1. The measurements are transformed into Carte-
sian coordinates as described in the Appendix. The
following batch methods (Nzk

= 100, K = 1) are ap-
plied to estimate the states

• Least squares (LS EIO) estimator,

• Weighted least squares (WLS EIO) with EIO co-
variance,

• Weighted least squares (WLS EIV) with EIV co-
variance. The state x used in (18) is estimated
through a least squares solution in advance.

1www.control.isy.liu.se/publications/doc?id=2300

Furthermore, the states are estimated recursively
(Nzk

= 1, K = 100) using

• Kalman filter (KF EIO) with EIO covariance,

• Kalman filter (KF EIV) with EIV covariance. The
predicted state estimate x̂k|k−1 is used in (18) to
derive Rk.

• Unscented Kalman filter (UKF EIV) with sigma
points derived by augmenting the state vector with
the noise terms

z̃ =
[
ũ ỹ

]T
, z̃ ∼ N (0,Σc), (21)

to consider the error in all directions (as in the
EIV case), and to deal with the nonlinear trans-
formations of the noise terms. The sigma points
are propagated through the nonlinear polynomial
equation (15), i.e.,

y = H(u− ũ)x + ỹ. (22)

The covariance of the process noise is set to zero, i.e.,
Q = 0, since the target is not moving. The initial
conditions of the state estimate are selected as

x̂0 =
[
0 0 0

]T
, (23a)

P0 =
(
σ2

κ
diag(x)

)2

, (23b)

where κ = 3 and σ2 = 8. Note that every estimate’s
initial uncertainty is set to be a scaled version of its
true value in (23b).

The RMSE values for 1000 Monte Carlo simulations
are given in Table 1. The RMSE of the EIV schemes
is clearly lower than the other methods, especially for
sensor 1 and 3 with non-symmetric measurement noise.
This result justifies the extra computations required for
calculating the EIV covariance. There is only a small
difference in the performance between the KF EIV and
the UKF EIV for the second order polynomial. This
is a clear indication of that the simple Taylor series
approximation used in deriving the EIV covariance is
accurate enough.

5 Experiments using Radar
Measurements

Guardrails along the roads are shaped as curved lines,
and in the framework of this work, they can be tracked
as extended objects. To show this, we use noisy radar
reports from a passenger car, collected during driving
on a Swedish freeway. The measurements are collected
from a moving vehicle and are transformed from the
vehicle’s frame to the common world frame. The ex-
periment here is conducted in two steps; first a ground
truth (reference) value for the state x is found by man-
ually removing clutter and outliers, and thereafter the



Table 1: RMSE values for the extended object in Figure 1. The sensor configurations are defined in (20).

Sensor LS WLS WLS KF KF UKF
EIO EIO EIV EIO EIV EIV

1
a0 5.10 0.55 0.45 0.55 0.48 0.49
a1 0.18 0.034 0.024 0.034 0.029 0.029
a2 (10−3) 1.06 0.29 0.24 0.29 0.31 0.32

2
a0 4.90 3.54 3.35 2.90 2.44 2.36
a1 0.20 0.11 0.099 0.10 0.11 0.10
a2 (10−3) 1.21 0.77 0.66 0.78 0.83 0.80

3
a0 2.53 30.51 3.51 30.47 4.81 4.35
a1 0.068 0.45 0.072 0.45 0.12 0.12
a2 (10−3) 0.39 1.27 0.40 1.26 0.62 0.60

Table 2: The RMSE values are given as the error of the
filtered state estimates of the guardrail compared with
the smoothed and clutter-free reference.

KF KF UKF
EIO EIV EIV

a0 0.20 0.13 0.10
a1 (10−3) 4.44 3.60 3.31
a2 (10−6) 11.47 9.57 8.49

states are estimated using the complete set of measure-
ments.

We choose one guardrail from a sequence of measure-
ment, which is used to exemplify the methods. One
piece of this guardrail is shown on the left hand side
of the road in Figure 2a. All measurements in the
time sequence k = 1, . . . ,K = 147 stemming from
this guardrail are used to estimate the polynomial co-
efficients. Measurements were checked manually and
outliers are removed to obtain the ground truth for
comparing estimates. The ground truth line, shown as
the red line in Figure 2b, is given by the solution of a
least squares problem, taking the radar measurements,
shown as blue dots in Figure 2b, as input.

After having found the reference values of x, the state
estimates are estimated recursively for each time in-
stant k. That means that we compare the filtered values
for each time step k = 1, . . . , 147 with the smoothed es-
timate. All radar measurements, including clutter, are
used, as can be seen in Figure 2c, where the blue dots
illustrates the radar measurements. As in the previous
sections we compare the EIO KF, the EIV KF and the
EIV UKF. The results are very similar and the colored
lines in Figure 2c are not distinguishable. The result-
ing RMSE values are presented in Table 2, and these
results are basically in line with the results of the simu-
lation example in the previous section, i.e. the errors of
the EIV methods are lower than the errors of the EIO
method.
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Figure 2: A traffic situation is shown in Figure (a) and
the guardrail on the left side provides a line shaped
extended target in this example. A reference value is
obtained by using the clutter-free measurements in Fig-
ure (b) and the filtered results are given using all data
in Figure (c).



Roads can only be modeled locally using polynomials,
see e.g., [6]. In [14] we show how to estimate several
local polynomials including start and end points along
the road.

6 Conclusion
In this contribution we have considered the use of

polynomials in extended target tracking. Measure-
ment models that enables the use of Kalman filters
for the polynomial shaped extended objects are intro-
duced. Simulation examples show the advantage of uti-
lizing errors-in-variable methods for this type of prob-
lems. The approach has also been evaluated for track-
ing a guardrail, based on real radar data collected on a
Swedish freeway.
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Appendix
The measurement vector z expressed using polar co-

ordinates and the corresponding measurement covari-
ance Σp = diag(σd, σδ) are first transformed to Carte-
sian coordinates. The covariance is derived by differen-
tial analysis using small error terms denoted ∆, using
any nonlinear method, e.g. a first order Taylor expan-
sion according to[

xEs

yEs

]
=
[
(d∆d) cos (δ + ∆δ)
(d∆d) sin (δ + ∆δ)

]
(24a)

=
[
d cos δ
d sin δ

]
+
[
cos δ −d sin δ
sin δ d cos δ

]
︸ ︷︷ ︸

,A1

[
∆d
∆δ

]
. (24b)

The resulting Cartesian coordinates of the measure-
ments expressed in the sensors coordinate frame Es are

zEs =
[
xEs

yEs

]
=
[
d cos δ
d sin δ

]
, (25)

and the measurement covariance is Σc = A1ΣpA
T
1 .
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