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ABSTRACT

This work is concerned with the problem of multi-sensor multi-
target tracking of stationary road side objects, i.e. guard rails and
parked vehicles, in the context of automotive active safety systems.
Advanced active safety applications, such as collision avoidance by
steering, rely on obtaining a detailed map of the surrounding infras-
tructure to accurately assess the situation. Here, this map consists of
the position of objects, represented by a random finite set (RFS) of
multi-target states and we propose to describe the map as the spatial
stationary object intensity. This intensity is the first order moment
of a multi-target RFS representing the position of stationary objects
and it is calculated using a Gaussian mixture probability hypothesis
density (GM-PHD) filter.

1. INTRODUCTION

For an advanced automotive safety application it is important to
keep track on stationary object along the road to be able to detect
dangerous situations and decide on appropriate actions. The system
may warn the driver or intervene by braking or steering to avoid col-
lisions or mitigate its consequences. Information about the current
traffic situation is typically obtained from on board radar sensors,
as they are robust against different whether conditions and offer ac-
curate measurements of range, angle and range rate to objects.

There exist many algorithms to track or describe stationary ob-
jects along the road, see e.g., [1]. Occupancy grid mapping [5]
was primarily developed to be used with laser scanners to gener-
ate consistent maps. This method was very popular at the DARPA
urban challenge, see the special issues [2]. However, it is unadapted
for radar sensors and the resulting map may be imprecise as shown
in [15].

Road edge and obstacle detection has been tackled using raw
radar images, see e.g., [8, 12, 16, 19]. There have been several ap-
proaches making use of reflections from the road edges, such as
guard rails and reflection posts, to compute information about the
free space, see e.g. [10, 11, 21] for some examples using laser scan-
ners. Radar reflections were used to track the road edges as ex-
tended targets in [13]. This methods is promising but a drawback is
the large data association problem, which arises since it is hard to
create a general model for the various types of objects.

The development of finite-set statistics (FISST) by Mahler, see
e.g., [6, 17], provides a way to extend the single-sensor single-
target Bayes statistics to multi-sensor multi-target Bayes statistics.
Mahler developed an algorithm for multi-sensor multi-target track-
ing, based on FISST, called the Probability Hypothesis Density
(PHD) filter, which is a full tracking algorithm in the sense that
it both include filtering and data association, see e.g., [18].

Radar reports from stationary objects can be handled within a
multi-target framework. In contrast to a single-target system, where
uncertainty is characterized by modeling the state and the measure-
ment as random vectors, uncertainty in a multi-target system can be
characterized by modeling the multi-target state and multi-sensor
measurement as RFS. The PHD filter propagates the posterior in-
tensity, a first order statistical moment of the posterior multi-target
state, instead of propagating the posterior density in time.

A Gaussian mixture approximation of the PHD was proposed
by Vo and Ma [22]. The mixture is represented by a sum of
weighted Gaussian components and in particular the mean and co-
variance of those components are propagated by the Kalman fil-
ter [9]. The GM-PHD filter implementation is used in this contri-
bution since it is computational more efficient and noise is assumed
Gaussian for the system at hand.

In this work we propose to use the PHD filter framework to
calculate the spatial intensity of stationary radar reflectors. The re-
sulting spatial intensity can be viewed as a general map over where
there are large concentrations of stationary radar reflectors, i.e. the
position of guard rails and parked vehicles. In contrast to traditional
multi-target tracking algorithms, we are not interested in keeping a
separate track for each radar reflector with a separate unique identi-
fier. Instead, we have the freedom to find a more efficient represen-
tation of the information in the radar observations, e.g., by merging
closely spaced object.

This contribution is outlined as follows. Beginning with a prob-
lem formulation in Section 2, which includes a description of the
FISST, the system model and the automotive radar sensors. The
PHD filter recursion for the road mapping example is described in
Section 3. The resulting posterior intensity can be used as a map
describing the surroundings of the vehicle as shown in Section 4.
The conclusions are in Section 5.

2. PROBLEM FORMULATION

The aim of this paper is to position stationary radar reflectors, i.e.
reflection points on road side objects, such as, guard rails or lamp-
posts, using noisy radar measurements. The ultimate goal being to
construct a map over the surrounding infrastructure.

The radar measurements are obtained from Ns radar sen-
sors mounted on the ego vehicle with the measurement spaces
Z (1), . . . ,Z (Ns). Each sensor j = 1, . . . ,Ns collects a random finite
set (RFS) Z( j)

k of individual observations m = 1, . . . ,Nz,k of range
r(m), range rate ṙ(m) and azimuth angle δ (m) to strong radar reflec-
tors according to{

z
(m)
k =

[
r(m) ṙ(m) δ (m)

]T
k

}Nz,k

m=1
∈ Zk, (1)

for discrete time instants k = 1, . . . ,K. All sensors collect together
a RFS of observations according to

Zk = Z
(1)
k ∪·· ·∪Z

(Ns)
k . (2)

Hence, the single observation spaces can be bundled together into
one measurement space, so that any observation must be some finite
subset Zk of Z . Put in other words, the multi observations set Zk
consists of all measurements collected from all targets by all sensors
at time step k. The measurement history RFS is denoted Z1:k, and
contains the set of all measurements from time 1 to time k.

For the given application measurements from a prototype pas-
senger car equipped with three radars (Ns = 3) are used. More
specifically, the ego vehicle is equipped with one standard ACC



forward looking 77 GHz mechanically scanned FMCW radar and
two medium distance 24 GHz radar mounted at the corners of the
vehicle, see Figure 1. Hence, this constitutes a multi-sensor sys-
tem, measuring at different ranges and in different directions, but
with an overlap of observation spaces. Put in other words, the inter-
section as well as the complement of the single observation spaces
Z (1), . . . ,Z (3) are non empty. A coordinate frame E is attached
to the moving ego vehicle and its position, orientation and velocity
relative the world coordinate frame W is tracked in a sensor fusion
framework, but fore the sake of simplicity, assumed to be known in
this work.

The sought positions of radar reflectors are represented by their
Cartesian position in the world coordinate frame W and stored in
the point reflector state vector

x
(i)
k =

[
x(i) y(i)

]T
. (3)

The stationary reflectors along the road are tracked as a RFS of point
reflector given by

Xk =
{
x
(1)
k , . . . ,x

(Nx,k)
k

}
, (4)

where Nx,k is the number of targets at time k.
The state space model of the stationary objects is given by

xk+1 = Fxk +wk, wk ∼N (0,Q), (5a)
zk = h(xk)+ek, ek ∼N (0,R) (5b)

where F is the identity matrix, since the objects are not moving. The
nonlinear measurement model h(xk) describes how a measurement
(1) i.e., the range r and the azimuth angle δ relates to the state vector
xk (3). The Doppler of an object ṙ is also measured and is primarily
used in the gating to determine if the object is stationary or moving.
The nonlinear sensor model is given by

h(x(i)
k ) =


√(

x(i)−xW
E(m)

s W

)2
+
(
y(i)−yW

E(m)
s W

)2

−vcos
(

arctan y(i)

x(i)
−ψ

E(m)
s

)
arctan y(i)

x(i)
−ψ

E(m)
s

 , (6)

where dddW
E(m)

s W
=
[
xW

E(m)
s W

yW
E(m)

s W

]T
is the position and ψ

E(m)
s

the
orientation of the radar sensor m = 1, . . . ,Ns in the world coordinate
frame W .

The first order moment of the RFS Xk is called the intensity or
the Probability Hypothesis Density (PHD) and it is denoted vk. One

Z(2)

Z(3)

Z(1)

Figure 1: The observation spaces of the front looking radar is de-
noted Z (1) and the observation spaces of the side radars are Z (2)

and Z (3).

important property of the multi-target posterior PHD is that the inte-
gral of the PHD over any given volume of the state space yields the
expected number of targets present in that volume. However, in our
case the interpretation is slightly different. Here, an object, such as
guard rails, are likely to be made up of multiple strong radar reflec-
tors. For this reason, the integral over the PHD is not the number
of targets, but rather the number of strong radar reflectors and the
PHD represent the concentration of these in our two dimensional
state space.

Let vk|k and vk+1|k denote the posterior and predicted intensity,
respectively. In the present work it is assumed that the intensities of
the RFSs are Gaussian mixtures. The posterior intensity at time k is
written on the form

vk|k(x) =
Jk|k

∑
j=1

w( j)
k|kN

(
x;m( j)

k|k ,P
( j)
k|k

)
. (7)

In the next section it is described how the intensity is estimated in
the PHD-filter.

3. GM-PHD FILTER RECURSION

The GM-PHD filter recursion is well described in e.g. [22] and only
briefly summarized here together with additional details for the road
mapping example. The PHD recursion given by (8) in Section 3.1
and (17) in Section 3.2 below, constitutes the PHD filter. The merg-
ing of Gaussian components is described in Section 3.3.

3.1 Time Evolution
The time evolution of the intensity is given by

vk+1|k(x) = vS,k+1|k(x)+ vβ ,k+1|k(x)+ γk+1(x) (8)

where vS,k+1|k(x) is the predicted intensity of the RFS of previous
states, vβ ,k+1|k(x) is the intensity of the RFS spawned from a target
at time k+1 based on the previous states and γk+1(x) is the intensity
of the birth RFS at time k+1. The elements in the sum are described
below.

3.1.1 Prediction

The prediction for the existing targets is given by

vS,k+1|k(x) = pS,k+1

Jk|k

∑
j=1

w( j)
k+1|k N

(
x;m( j)

k+1|k,P
( j)
k+1|k

)
, (9)

where pS,k+1 is the probability of survival. The Gaussian com-

ponents N (m( j)
k+1|k,P

( j)
k+1|k) are derived using the linear process

model (5a) and the time update step of the Kalman according to

m( j)
k+1|k = Fm( j)

k|k , (10a)

P( j)
k+1|k = FP( j)

k|k FT +Qk. (10b)

3.1.2 Birth

The intensity of the birth RFS is assumed to be a Gaussian mixture
of the form

γk+1(x) =
Jγ,k+1

∑
j=1

w( j)
γ,k+1 N

(
x;m( j)

γ,k+1,P
( j)
γ,k+1

)
, (11)

where w( j)
γ,k+1, m( j)

γ,k+1 and P( j)
γ,k+1 for j = 1, . . . ,Jγ,k+1, are model

parameters that determine the shape of the birth intensity. The
birth RFS is modeled as a Poisson RFS, i.e. the cardinality is
Poisson distributed, i.e. Jγ,k+1 ∼ Pois(λ ), and the components

N (m( j)
γ,k+1,P

( j)
γ,k+1) are uniformly distributed over the state space.



3.1.3 Spawn

The intensity of the spawn RFS is a Gaussian mixture of the form

vβ ,k+1|k(x) =
Jβ ,k+1

∑
j=1

w( j)
β ,k+1|k N

(
x;m( j)

β ,k+1|k,P
( j)
β ,k+1|k

)
, (12)

where w( j)
β ,k+1|k, m( j)

β ,k+1|k and P( j)
β ,k+1|k for j = 1, . . . ,Jβ ,k+1, are

model parameters that determine the shape of the spawn intensity.
The Gaussian mixture components N (m( j)

β ,k+1|k,P
( j)
β ,k+1|k) are de-

rived using a model based process, which takes the existing Gaus-
sian components N (mk|k,Pk|k) at time step k as input.

It is assumed that new stationary objects are most likely to be
born at the road edges, and a simplified version of the model pre-
sented in [14] is utilized to estimate the road edges and create the
spawn intensity.

It is common to model a road in the vehicles Cartesian coordi-
nate frame using a third order polynomial, see e.g., [3,4]. We model
the road edges in the same manner according to

y = a0 +a1x+a2x
2 +a3x

3, (13)

where the x and y-coordinates are expressed in the vehicle’s co-
ordinate frame E. The parameters a0, . . . ,a3 are estimated using
the Gaussian components N (mk|k,Pk|k), from the time step k. The
components are clustered depending on if they belong to the left or
right side of the road, and the mean values m are used to solve for
the parameters in a least squares curve fitting problem. To simplify
the problem, in particular when there are only a few components
on one side of the road, it is assumed that the left and right edges
of the road are approximately parallel and only differ by the lateral
distances a0.

A number Jβ ,k+1/2 of xE -coordinates, denoted
{
xE

j

}Jβ ,k+1

j=1
,

are chosen in the range from 0 to the maximum range of the

radar sensor. The corresponding yE -coordinates
{
yE

j
}Jβ ,k+1/2

j=1 and{
yE

j

}Jβ ,k+1

j=Jβ ,k+1/2+1
are derived by using the road border model (13)

and the estimated parameters a0, . . . ,a3. The coordinates form the
mean values of the position of the Gaussian components on the road
edges according to

mE,( j)
β ,k+1 =

[
xE

j yE
j

]T

. (14a)

The covariance of the Gaussian components is given by the diagonal
matrix

PE,( j)
β ,k+1 =

(σE
x

)2 0

0
(

σE
y (x

E
j )
)2

 , (14b)

where it is assumed that the variance of the y-coordinate increases
with the x-distance, i.e., σE

y (xE
j ) depends on xE

j .
So far the derivations are accomplished in the ego vehicles co-

ordinate frame E, but since the state variables (4) are expressed in
the world frame W , the components of the Gaussian mixture are
transformed into the world coordinate frame according to

m( j)
β ,k+1 = RWE mE,( j)

β ,k+1 +dddW
EW (15a)

P( j)
β ,k+1 = RWE PE,( j)

β ,k+1

(
RWE

)T

. (15b)

to be used in (12). The planar rotation matrix is given by

RWE =

[
cosψE −sinψE
sinψE cosψE

]
, (16)

where ψE is the angle of rotation from W to E. This angle is referred
to as the yaw angle of the vehicle. The position of the vehicle in the
world frame W is given by the displacement vector dddW

EW .
The weight w( j)

β ,k+1 represents the expected number of new tar-

gets originating from m( j)
β ,k+1.

3.2 Measurement Update
The measurement update is given by a sum of intensities according
to

vk|k(x) = (1− pD,k)vk|k−1 + ∑
z∈Zk

vD,k(x|z). (17)

where the probability of detection is adjusted according to

pD,k(x) =

pD,k η
(i)
k|k−1 ∈Z ,

0 η
(i)
k|k−1 /∈Z .

(18)

Gaussian components which are outside the sensor’s field of view
i.e., the measurement space Z , are not updated. The updated inten-
sity vD,k(x|z) is given by

vD,k(x|Zk) =

Jk|k−1

∑
j=1

∑
zk∈G j

w( j)
k (zk)N

(
x;m( j)

k|k(zk),P
( j)
k|k

)
, (19)

where the cardinality Jk|k−1 = Jk−1|k−1 + Jβ ,k + Jγ,k. The Gaussian

components N (m( j)
k|k(zk),P

( j)
k|k ) are derived by using the non-linear

measurement equation (5b), the measurement update step of the un-
scented Kalman filter and the information from each new measure-
ments zk according to

m( j)
k|k(zk) = m( j)

k|k−1 +K( j)
k

(
zk−η

( j)
k|k−1

)
, (20a)

P( j)
k|k = P( j)

k|k−1−K( j)S( j)
k|k−1

(
K( j)

)T
, (20b)

K( j) = G( j)
k|k−1

(
S( j)

k|k−1

)−1
, (20c)

where S( j)
k|k−1 ≈ Cov

(
h(x( j)

k )
∣∣Zk−1

)
and G( j)

k|k−1 ≈

Cov
(
x
( j)
k ,h(x( j)

k )
∣∣Zk−1

)
, are defined in (22). The gate G j is

given by

G j =

{
zk

∣∣∣∣(zk−η
( j)
k|k−1

)T (
S( j)

k|k−1

)−1(
zk−η

( j)
k|k−1

)
< δG

}
,

(21)
for the gate threshold δG .

The unscented transform is used to propagate the state variables
through the measurement equation, see e.g., [7]. A set of L sigma

points and weights, denoted by
{

χ
(`)
k ,u(`)

}L

`=0
are generated us-

ing the method described in [7]. The sigma points are transformed
to the measurement space using (6) to obtain the propagated sigma
point ẑ(`)k|k−1 and the first and second order moments of the measure-
ment density is approximated as

η
( j)
k|k−1 =

L

∑
`=0

u(`)ẑ(`)k|k−1, (22a)

S( j)
k|k−1 =

L

∑
`=0

u(`)
(
ẑ
(`)
k|k−1−η

( j)
k|k−1

)(
ẑ
(`)
k|k−1−η

( j)
k|k−1

)T
+Rk,

(22b)

G( j)
k|k−1 =

L

∑
`=0

u(`)
(

χ
(`)
k|k−1−m( j)

k|k−1

)(
ẑ
(`)
k|k−1−η

( j)
k|k−1

)T
. (22c)



Furthermore, the weights are updated according to

w( j)
k (zk) =

pD,kw( j)
k|k−1q( j)

k (zk)

κ + pD,k ∑
Jk|k−1
`=1 w(`)

k|k−1q(`)k (zk)
, (23a)

q( j)(zk) = N
(
zk;η

( j)
k|k−1,S

( j)
k|k−1

)
, (23b)

where η
( j)
k|k−1 is the predicted measurement and S( j)

k|k−1 is the inno-
vation covariance. The clutter intensity of the clutter RFS at time k
is denoted κk.

3.3 Pruning and Merging
The PHD filter suffers from the computational problem that the
number of Gaussian components J representing the Gaussian mix-
ture increases as time progresses. To ensure that the complexity
of the algorithm is under control, Gaussians with low weights are
eliminated trough pruning and Gaussians with similar means are
combined through merging. However, the loss of information must
be as small as possible in these stages.

The clustering algorithm, proposed by Salmond [20], merges
Gaussian components in groups. A cluster center (centroid) is cho-
sen as the component with the largest weight and the algorithm then
merges all surrounding components to the centroid. This process is
repeated with the remaining components until all have been clus-
tered. The clustering algorithm is used in the original Gaussian
mixture PHD filter [22].

4. EXPERIMENTS AND RESULTS

The experiments were conducted with a prototype passenger car,
equipped with the radar sensor configuration as shown in Figure 1.
Only radar reflections from moving objects are used to update the
estimates in this work, hence, the moving objects are not presented
here. No reference data of the road borders exist, so one example
of the resulting estimated bird’s eye view of a freeway traffic sce-
nario in Figure 2b-2c, can only be compared with the correspond-
ing driver’s view in Figure 2a. The intensity map vk|k in Figure 2b
indicates the probability of occupancy. The map may be used by
other automotive safety functions, for instance path planning which
aims at minimizing the cumulative PHD along the path. A low in-
tensity indicates a low probability to hit an object. The Gaussian
mixture map, in Figure 2c, shows the single Gaussian components{

m(i)
k ,P(i)

k

}
illustrated by their mean (black stars) and covariance

ellipses, after merge and prune are accomplished. Note that the
weights are included in Figure 2b but not in Figure 2c. Figure 2c
also shows the radar detections illustrated by red marks. The stars
are measurements collected by the front looking radar, the diamonds
are from the left radar and the triangles are from the right radar.

The past and future path of the ego vehicle is shown by black
dots in the figure and can be used as a good reference of the road
edges being correctly estimated. The illustrated road is estimated
from image data from the camera, and can also be used as a refer-
ence. From the camera view in Figure 2a it can be seen that the road
seems to bend slightly to the right. The Gaussians and the intensity,
which are based on radar data from the guardrails, have picked up
the right bend quite well. The range (field of view) of the radar is
approximately 200 m.

5. CONCLUSION

In this work it is shown how stationary objects, measured by stan-
dard automotive radar sensors, can be used with a PHD filter to
obtain an intensity map of the area surrounding the vehicle. This
intensity map describes the density of stationary objects, such as
guardrails and lampposts, and may be used by other active safety
functions to derive drivable trajectories with low probability of oc-
cupancy.

In future work, we plan on investigating a more accurate
method to cluster the Gaussian components and model the road
edges for the spawning intensity. We also plan to analyze the ef-
fects of pruning and merging based on prior knowledge of the road
model.
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Figure 2: The image in Figure (a) shows the driver’s view. The
intensity map vk|k is shown in Figure (b). The Gaussian mixture
(mean and covariance ellipse) as well as the measurements from
the radars are shown in Figure (c). The red stars are obtained by the
front radar (Z ∈Z (1)), the diamonds by the left radar (Z ∈Z (2))
and the triangles are by the right radar (Z ∈Z (3)).


