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Extended Target Tracking using
a Gaussian-Mixture PHD filter
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Abstract—This paper presents a Gaussian-mixture implemen-
tation of the PHD filter for tracking extended targets. The
exact filter requires processing of all possible measurement set
partitions, which is generally infeasible to implement. A method
is proposed for limiting the number of considered partitions and
possible alternatives are discussed. The implementation is used
on simulated data and in experiments with real laser data, and
the advantage of the filter is illustrated. Suitable remedies are
given to handle spatially close targets and target occlusion.

Index Terms—Target tracking, extended target, PHD filter,
random set, Gaussian-mixture, laser sensor.

I. INTRODUCTION

In most multi-target tracking applications it is assumed that
each target produces at most one measurement per time step.
This is true for the cases when the distance between the
target and the sensor is large in comparison to the target’s
size. In other cases however, the target size may be such
that multiple resolution cells of the sensor are occupied by
the target. Targets that potentially give rise to more than
one measurement per time step are categorized as extended.
Examples include the cases when vehicles use radar sensors
to track other road-users, when ground radar stations track
airplanes which are sufficiently close to the sensor, or in
mobile robotics when pedestrians are tracked using laser range
sensors.

Gilholm and Salmond [1] have presented an approach for
tracking extended targets under the assumption that the number
of received target measurements in each time step is Poisson
distributed. Their algorithm was illustrated with two examples
where point targets which may generate more than one mea-
surement and objects that have a 1-D extension (infinitely thin
stick of length l) are tracked. In [2] a measurement model was
suggested which is an inhomogeneous Poisson point process.
At each time step, a Poisson distributed random number of
measurements are generated, distributed around the target.
This measurement model can be understood to imply that the
extended target is sufficiently far away from the sensor for
its measurements to resemble a cluster of points, rather than
a geometrically structured ensemble. A similar approach is
taken in [3] where track-before-detect theory is used to track
a point target with a 1-D extent.
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Baum et al have presented the random hypersurface model
[4], an extended target model which has been used to track
elliptic targets [5], as well as more general shapes [6]. A
different approach to elliptic target modeling is the random
matrix framework by Koch [7]. The target kinematical states
are modeled using a Gaussian distribution, while the ellip-
soidal target extension is modeled using an inverse Wishart
distribution. Using random matrices to track group targets
under kinematical constraints is discussed in [8]. Modifications
and improvements to the Gaussian-inverse Wishart model of
[7] have been suggested in [9], and the model [7] has been inte-
grated into a Probabilistic Multi-Hypothesis Tracking (PMHT)
framework in [10]. A comparison of random matrices and the
random hypersurface model under single target assumption
is given in [11]. Measurements of target down-range extent
are used to aid track retention in [12]. Other approaches to
estimating the target extensions are given in [13]–[15].

Using the rigorous finite set statistics (FISST), Mahler has
pioneered the recent advances in the field of multiple target
tracking with a set theoretic approach where the targets and
measurements are treated as random finite sets (RFS). This
type of approach allows the problem of estimating multiple
targets in clutter and uncertain associations to be cast in a
Bayesian filtering framework [16], which in turn results in an
optimal multi-target Bayesian filter. As is the case in many
nonlinear Bayesian estimation problems, the optimal multi-
target Bayesian filter is infeasible to implement except for
simple examples and an important contribution of FISST is to
provide structured tools in the form of the statistical moments
of a RFS. The first order moment of a RFS is called probability
hypothesis density (PHD), and it is an intensity function defined
over the state space of the targets. The so called PHD filter [16],
[17] propagates in time PHDs corresponding to the set of target
states as an approximation of the optimal multi-target Bayesian
filter. A practical implementation of the PHD filter is provided
by approximating the PHDs with Gaussian-mixtures (GM) [18]
which results in the Gaussian-mixture PHD (GM-PHD) filter.
In the recent work [19], Mahler presented an extension of the
PHD filter to also handle extended targets of the type presented
in [2].

In this paper, we present a Gaussian-mixture implementa-
tion of the PHD-filter for extended targets [19], which we call
the extended target GM-PHD-filter (ET-GM-PHD). In this way,
we, to some extent, give a practical extension of the series
of work in [2], [18], [19]. An earlier version of this work
was presented in [20] and the current, significantly improved,
version includes not only much more details and extensive
investigations of the methodology but also practical examples
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with real data. For space considerations, we do not repeat the
derivation of the PHD-filter equations for extended targets and
instead refer the reader to [19].

The document is outlined as follows. The multiple extended
target tracking problem is defined in Section II. The details of
the Gaussian-mixture implementation are given in Section III.
For the measurement update step of the ET-GM-PHD-filter, dif-
ferent partitions of the set of measurements have to be consid-
ered. A measurement clustering algorithm used to reduce the
combinatorially exploding number of possible measurement
partitions is described in Section IV. The proposed approaches
are evaluated using both simulations and experiments. The
target tracking setups for these evaluations are described in
Section V, the simulation results are presented in Section VI
and results using data from a laser sensor are presented in
Section VII. Finally, Sections VIII and IX contain conclusions
and thoughts on future work.

II. TARGET TRACKING PROBLEM FORMULATION

In previous work, extended targets have often been modeled
as targets having a spatial extension or shape that would
lead to multiple measurements, as opposed to at most a
single measurement. On the other hand, the extended target
tracking problem can be simplified by the assumption that
the measurements originating from a target are distributed
approximately around a target reference point [1] which can be
e.g. the centroid or any other point depending on the extent (or
the shape) of the target. Though all targets obviously have a
spatial extension and shape, in the latter type of modeling, only
the target reference point is important and the target extent
does not need to be estimated.

The relevant target characteristics that are to be estimated
form the target’s state vector x. Generally, beside the kine-
matic variables as position, velocity and orientation, the state
vector may also contain information about the target’s spatial
extension. As mentioned above, when the target’s state does
not contain any variables related to the target extent, though
the estimation is done as if the target was a point (i.e. the
target reference point), the algorithms should still take care of
the multiple measurements that originate from a target. Hence,
in this study, we use a generalized definition of an extended
target, given below, which does not depend on whether the
target extent is estimated or not.

Definition 1 (Extended Target). A target which potentially
gives rise to more than one measurement per time step. �

In this work, to simplify the presentation, no information
about the size and shape of the target is kept in the state
vector x, i.e. the target extent is not explicitly estimated.
Nevertheless, it must be emphasized that this causes no loss
of generality as shown by the recent work [13] where the
resulting ET-GM-PHD filter is used to handle the joint estima-
tion of size, shape and kinematic variables for rectangular and
elliptical extended targets. We model both the target states
to be estimated, and the measurements collected, as RFSs.
The motivation behind this selection is two-fold. First, in
many practical systems, although the sensor reports come

with a specific measurement order, the results of the target
tracking algorithms are invariant under permutations of this
order. Hence, modeling the measurements as elements of a set
in which the order of the elements is irrelevant makes sense.
Second, this work unavoidably depends on the previous line
of work [19], which is based on such a selection.

The initial GM-PHD work [18] does not provide tools
for ensuring track continuity, for which some remedies are
described in the literature, see e.g. [21]. However it has been
shown that labels for the Gaussian components can be included
into the filter in order to obtain individual target tracks, see
e.g. [22]. In this work, for the sake of simplicity, labels are not
used, however they can be incorporated as in [22] to provide
track continuity.

We denote the unknown number of targets Nx,k, and the set
of target states to be estimated at time k is Xk = {x(i)

k }
Nx,k

i=1 .
The measurement set obtained at time k is Zk = {z(i)k }

Nz,k

i=1

where Nz,k is the number of measurements.
The dynamic evolution of each target state x

(i)
k in the RFS

Xk is modeled using a linear Gaussian dynamical model,

x
(i)
k+1 = Fkx

(i)
k +Gkw

(i)
k , (1)

for i = 1, . . . , Nx,k, where w
(i)
k is Gaussian white noise with

covariance Q(i)
k . Note that each target state evolves according

to the same dynamic model independent of the other targets.
The number of measurements generated by the ith target

at each time step is a Poisson distributed random variable
with rate γ

(
x
(i)
k

)
measurements per scan, where γ( · ) is

a known non-negative function defined over the target state
space. The probability of the ith target generating at least one
measurement is then given as

1− e−γ
(
x
(i)
k

)
. (2)

The ith target is detected with probability pD

(
x
(i)
k

)
where

pD( · ) is a known non-negative function defined over the target
state space. This gives the effective probability of detection(

1− e−γ
(
x
(i)
k

))
pD

(
x
(i)
k

)
. (3)

The measurements originating from the ith target are as-
sumed to be related to the target state according to a linear
Gaussian model

z
(j)
k = Hkx

(i)
k + e

(j)
k , (4)

where e
(j)
k is white Gaussian noise with covariance Rk. Each

target is assumed to give rise to measurements independently
of the other targets. We emphasize here, that in an RFS
framework both the set of measurements Zk and the set of
target states Xk are unlabeled, and hence no assumptions are
made regarding which target gives rise to which measurement.

The number of clutter measurements generated at each time
step is a Poisson distributed random variable with rate βFA,k
clutter measurements per surveillance volume per scan. Thus,
if the surveillance volume is Vs, the mean number of clutter
measurements is βFA,kVs clutter measurements per scan. The
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spatial distribution of the clutter measurements is assumed
uniform over the surveillance volume.

The aim is now to obtain an estimate of the sets of the
target states XK = {Xk}Kk=1 given the sets of measurements
ZK = {Zk}Kk=1. We achieve this by propagating the predicted
and updated PHDs of the set of target states Xk, denoted
Dk|k−1( · ) and Dk|k( · ), respectively, using the PHD filter
presented in [19].

III. GAUSSIAN-MIXTURE IMPLEMENTATION

In this section, following the derivation of the GM-PHD-
filter for standard single measurement targets in [18], a PHD
recursion for the extended target case is described. Since the
prediction update equations of the extended target PHD filter
are the same as those of the standard PHD filter [19], the
Gaussian mixture prediction update equations of the ET-GM-
PHD filter are the same as those of the standard GM-PHD
filter in [18]. For this reason, here we only consider the
measurement update formulas for the ET-GM-PHD filter.

The predicted PHD has the following Gaussian-mixture
representation

Dk|k−1 (x) =

Jk|k−1∑
j=1

w
(j)
k|k−1N

(
x ; m

(j)
k|k−1, P

(j)
k|k−1

)
(5)

where
• Jk|k−1 is the predicted number of components;
• w

(j)
k|k−1 is the weight of the jth component;

• m
(j)
k|k−1 and P

(j)
k|k−1 are the predicted mean and covari-

ance of the jth component;
• N (x ; m,P ) denotes a Gaussian distribution defined

over the variable x with mean m and covariance P .
The PHD measurement update equation for the extended

target Poisson model of [2] was derived in [19]. The corrected
PHD-intensity is given by the multiplication of the predicted
PHD and a measurement pseudo-likelihood function [19] LZk

,

Dk|k (x|Z) = LZk
(x)Dk|k−1 (x|Z) . (6)

The measurement pseudo-likelihood function LZk
in (6) is

defined as

LZk
(x) ,1−

(
1− e−γ(x)

)
pD (x) + e−γ(x)pD (x)

×
∑
p∠Zk

ωp

∑
W∈p

γ (x)
|W |

dW
·
∏

zk∈W

φzk
(x)

λkck (zk)
. (7)

where
• λk , βFA,kVs is the mean number of clutter measure-

ments;
• ck (zk) = 1/Vs is the spatial distribution of the clutter

over the surveillance volume;
• the notation p∠Zk means that p partitions the measure-

ment set Zk into non-empty cells W ;
• the quantities ωp and dW are non-negative coefficients

defined for each partition p and cell W respectively.
• φzk

(x) = p(zk|x) is the likelihood function for a
single target generated measurement, which would be a
Gaussian density in this work.

The first summation on the right hand side of (7) is taken
over all partitions p of the measurement set Zk. The second
summation is taken over all cells W in the current partition
p.

In order to derive the measurement update of the GM-PHD-
filter, six assumptions were made in [18], which are repeated
here for the sake of completeness.

Assumption 1. All of the targets evolve and generate obser-
vations independently of one another. �

Assumption 2. Clutter is Poisson and independent of target-
originated measurements. �

Assumption 3. The predicted multi-target RFS is Poisson. �

Assumption 4. Each target follows a linear Gaussian dy-
namical model, cf. (1), and the sensor has a linear Gaussian
measurement model, cf. (4). �

Assumption 5. The survival and detection probabilities are
state independent, i.e. pS (x) = pS and pD (x) = pD. �

Assumption 6. The intensities of the birth and spawn RFS are
Gaussian-mixtures. �

In this paper we adopt all of the above assumptions except
that we relax the assumption on detection probability as
follows.

Assumption 7. The following approximation about the prob-
ability of detection function pD ( · ) holds,

pD (x)N
(
x ; m

(j)
k|k−1, P

(j)
k|k−1

)
≈ pD

(
m

(j)
k|k−1

)
N
(
x ; m

(j)
k|k−1, P

(j)
k|k−1

)
(8)

for all x and for j = 1, . . . , Jk|k−1. �

Assumption 7 is weaker than Assumption 5 in that (8)
is trivially satisfied when pD ( · ) = pD, i.e. when pD ( · ) is
constant. In general, Assumption 7 holds approximately when
the function pD ( · ) does not vary much in the uncertainty
zone of a target determined by the covariance P

(j)
k|k−1. This

is true either when pD ( · ) is a sufficiently smooth function
or when the signal to noise ratio (SNR) is high enough
such that P (j)

k|k−1 is sufficiently small. We still note here that
Assumption 7 is only for the sake of simplification rather than
approximation, since pD (x) can always be approximated as a
mixture of exponentials of quadratic functions (or equivalently
as Gaussians) without losing the Gaussian-mixture structure
of the corrected PHD, see [18]. This, however, would cause
a multiplicative increase in the number of components in the
corrected PHD, which would in turn make the algorithm need
more aggressive pruning and merging operations. A similar
approach to variable probability of detection has been taken
in order to model the clutter notch in ground moving target
indicator target tracking [23].

For the expected number of measurements from the targets,
represented by γ( · ), similar remarks apply and we use the
following assumption.
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Assumption 8. The following approximation about γ( · )
holds,

e−γ(x)γn(x)N
(
x ; m

(j)
k|k−1, P

(j)
k|k−1

)
≈ e−γ

(
m

(j)

k|k−1

)
γn
(
m

(j)
k|k−1

)
N
(
x ; m

(j)
k|k−1, P

(j)
k|k−1

)
(9)

for all x, n = 1, 2, . . . and j = 1, . . . , Jk|k−1. �

The trivial situation γ( · ) = γ, i.e. when γ( · ) is constant,
is again a special case where Assumption 8 is satisfied.
In general, satisfying Assumption 8 is more difficult than
Assumption 7 and a Gaussian mixture assumption for γ( · )
would not work due to the exponential function. Nevertheless
Assumption 8 is expected to hold approximately either when
γ ( · ) is a sufficiently smooth function or when the signal
to noise ratio (SNR) is high enough such that P (j)

k|k−1 is
sufficiently small.

With the assumptions presented above, the posterior inten-
sity at time k is a Gaussian-mixture given by

Dk|k (x) = DND
k|k (x) +

∑
p∠Zk

∑
W∈p

DD
k|k (x,W ). (10)

The Gaussian-mixture DND
k|k ( · ), handling the no detection

cases, is given by

DND
k|k (x) =

Jk|k−1∑
j=1

w
(j)
k|kN

(
x ; m

(j)
k|k, P

(j)
k|k

)
, (11a)

w
(j)
k|k =

(
1−

(
1− e−γ

(j)
)
p
(j)
D

)
w

(j)
k|k−1, (11b)

m
(j)
k|k = m

(j)
k|k−1, P

(j)
k|k = P

(j)
k|k−1. (11c)

where we used the short hand notations γ(j) and p
(j)
D for

γ
(
m

(j)
k|k−1

)
and pD

(
m

(j)
k|k−1

)
respectively.

The Gaussian-mixture DD
k|k (x,W ), handling the detected

target cases, is given by

DD
k|k (x,W ) =

Jk|k−1∑
j=1

w
(j)
k|kN

(
x ; m

(j)
k|k, P

(j)
k|k

)
, (12a)

w
(j)
k|k = ωp

Γ(j)p
(j)
D

dW
Φ

(j)
W w

(j)
k|k−1, (12b)

Γ(j) = e−γ
(j)
(
γ(j)

)|W |
, (12c)

Φ
(j)
W = φ

(j)
W

∏
zk∈W

1

λkck (zk)
, (12d)

where the product is over all measurements zk in the cell W
and |W | is the number of elements in W . The coefficient φ(j)W
is given by

φ
(j)
W = N

(
zW ; HWm

(j)
k|k−1,HWP

(j)
k|k−1H

T

W + RW

)
(12e)

and is calculated using

zW ,
⊕

zk∈W
zk, HW = [HT

k , H
T

k , · · · , HT

k︸ ︷︷ ︸
|W | times

]T,

RW =blkdiag(Rk, Rk, · · · , Rk︸ ︷︷ ︸
|W | times

).

The operation
⊕

denotes vertical vectorial concatenation. The
partition weights ωp can be interpreted as the probability of
the partition p being true and are calculated as

ωp =

∏
W∈p dW∑

p′∠Zk

∏
W ′∈p′ dW ′

, (12f)

dW = δ|W |,1 +

Jk|k−1∑
`=1

Γ(`)p
(`)
D Φ

(`)
W w

(`)
k|k−1, (12g)

where δi,j is the Kronecker delta. The mean and covariance
of the Gaussian components are updated using the standard
Kalman measurement update,

m
(j)
k|k = m

(j)
k|k−1 + K

(j)
k

(
zW −HWm

(j)
k|k−1

)
, (13a)

P
(j)
k|k =

(
I −K

(j)
k HW

)
P

(j)
k|k−1, (13b)

K
(j)
k = P

(j)
k|k−1H

T

W

(
HWP

(j)
k|k−1H

T

W + RW

)−1
. (13c)

In order to keep the number of Gaussian components at
a computationally tractable level, pruning and merging is
performed as in [18].

IV. PARTITIONING THE MEASUREMENT SET

As observed in the previous section, an integral part of
extended target tracking with the PHD filter is the partitioning
of the set of measurements [19]. The partitioning is important,
since more than one measurement can stem from the same
target. Let us exemplify1 the process of partitioning with a
measurement set containing three individual measurements,
Zk =

{
z
(1)
k , z

(2)
k , z

(3)
k

}
. This set can be partitioned in the

following different ways;

p1 : W 1
1 =

{
z
(1)
k , z

(2)
k , z

(3)
k

}
,

p2 : W 2
1 =

{
z
(1)
k , z

(2)
k

}
, W 2

2 =
{
z
(3)
k

}
,

p3 : W 3
1 =

{
z
(1)
k , z

(3)
k

}
, W 3

2 =
{
z
(2)
k

}
,

p4 : W 4
1 =

{
z
(2)
k , z

(3)
k

}
, W 4

2 =
{
z
(1)
k

}
,

p5 : W 5
1 =

{
z
(1)
k

}
, W 5

2 =
{
z
(2)
k

}
, W 5

3 =
{
z
(3)
k

}
.

Here, pi is the ith partition, and W i
j is the jth cell of partition

i. Let |pi| denote the number of cells in the partition, and
let |W i

j | denote the number of measurements in the cell.
It is quickly realized that as the size of the measurement
set increases, the number of possible partitions grows very
large. In order to have a computationally tractable target
tracking method, only a subset of all possible partitions can be
considered. In order to achieve good extended target tracking
results, this subset of partitions must represent the most likely
ones of all possible partitions.

1This example was also utilized in [19].
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In Section IV-A, we propose a simple heuristic for finding
this subset of partitions, which is based on the distances
between the measurements. Note that our proposed method
is only one instance of a vast number of other clustering
algorithms found in the literature, and that other methods could
have been used. Some well-known alternatives are pointed
out, and compared to the proposed partitioning method, in
Section IV-B. An addition to the partitioning approach to
better handle targets which are spatially close is described in
Section IV-C.

A. Distance Partitioning

Consider a set of measurements Z = {z(i)}Nz
i=1. Our

partitioning algorithm relies on the following theorem.

Theorem 1. Let d( · , · ) be a distance measure and d` ≥ 0
be an arbitrary distance threshold. Then there is one and only
one partition in which any pair of measurements z(i), z(j) ∈ Z
that satisfy

d
(
z(i), z(j)

)
≤ d` (15)

are in the same cell. �

Proof: The proof is given in Appendix A for the sake of
clarity. �

Given a distance measure d( · , · ), the distances between
each pair of measurements can be calculated as

∆ij , d(z(i), z(j)), for 1 ≤ i 6= j ≤ Nz. (16)

Theorem 1 says that there is a unique partition that leaves all
pairs (i, j) of measurements satisfying ∆ij ≤ d` in the same
cell. An example algorithm that can be used to obtain this
unique partition is given in Table I. This algorithm is used to
generate Nd alternative partitions of the measurement set Z,
by selecting Nd different thresholds

{d`}Nd

`=1 , d` < d`+1, for ` = 1, . . . , Nd − 1. (17)

The alternative partitions contain fewer cells as the d`’s are
increasing, and the cells typically contain more measurements.

The thresholds {d`}Nd

`=1 are selected from the set

D , {0} ∪ {∆ij |1 ≤ i < j ≤ Nz} (18)

where the elements of D are sorted in ascending order. If one
uses all of the elements in D to form alternative partitions,
|D| = Nz(Nz − 1)/2 + 1 partitions are obtained. Some
partitions resulting from this selection might still turn out to be
identical, and must hence be discarded so that each partition
at the end is unique. Among these unique partitions, the first
(corresponding to the threshold d1 = 0) would contain Nz
cells with one measurement each. The last partition would
have just one cell containing all Nz measurements. Notice
that this partitioning methodology already reduces the number
of partitions tremendously.

In order to further reduce the computational load, partitions
in this work are computed only for a subset of thresholds in
the set D. This subset is determined based on the statistical
properties of the distances between the measurements belong-
ing to the same target.

TABLE I
DISTANCE PARTITIONING

Require: d`, ∆i,j , 1 ≤ i 6= j ≤ Nz .
1: CellNumber(i) = 0, 1 ≤ i ≤ Nz {Set cells of all measurements to null}
2: CellId = 1 {Set the current cell id to 1}

%Find all cell numbers
3: for i = 1 : Nz do
4: if CellNumbers(i) = 0 then
5: CellNumbers(i) = CellId
6: CellNumbers = FindNeighbors(i,CellNumbers,CellId)
7: CellId = CellId+1
8: end if
9: end for

The recursive function FindNeighbors( · , · , · ) is given as
1: function CellNumbers = FindNeighbors(i,CellNumbers,CellId)
2: for j = 1 : Nz do
3: if j 6= i & ∆ij ≤ d` & CellNumbers(j) = 0 then
4: CellNumbers(j) = CellId
5: CellNumbers = FindNeigbors(j,CellNumbers,CellId)
6: end if
7: end for

Suppose we select the distance measure d( · , · ) as the
Mahalanobis distance, given by

dM

(
z(i), z(j)

)
=

√(
z(i) − z(j)

)T
R−1

(
z(i) − z(j)

)
. (19)

Then, for two target-originated measurements z(i) and z(j)

belonging to the same target, dM
(
z(i), z(j)

)
is χ2 distributed

with degrees of freedom equal to the measurement vector
dimension. Using the inverse cumulative χ2 distribution func-
tion, denoted invchi2( · ), a unitless distance threshold,

δPG
= invchi2(PG), (20)

can be computed for a given probability PG. Simulations have
shown that good target tracking results are achieved with
partitions computed using the subset of distance thresholds
in D satisfying the condition δPL

< d` < δPU
, for lower

probabilities PL ≤ 0.3 and upper probabilities PU ≥ 0.8.
As a simple example, if there are four targets present,

each with expected number of measurements 20, and clutter
measurements are generated with βFAVs = 50, then the mean
number of measurements collected each time step would be
130. For 130 measurements, the number of all possible parti-
tions is given by the Bell number B130 ∝ 10161 [24]. Using all
of the thresholds in the set D, 130 different partitions would be
computed on average. Using the upper and lower probabilities
PL = 0.3 and PU = 0.8, Monte Carlo simulations show
that on average only 27 partitions are computed, representing
a reduction of computational complexity several orders of
magnitude.

B. Alternative Partitioning Methods

An alternative to using the proposed algorithm is to use a
method which takes as input the final desired number of cells,
denoted K, and then divides the set of measurements into
K cells. The most well-known example of such a method is
perhaps K-means clustering, see e.g. the textbooks [25], [26].
In the ET-GM-PHD-filter, one needs to generate alternative
partitions, corresponding to different values of K between a
lower and an upper threshold, denoted KL and KU. While the
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Fig. 1. Set of Nz,k = 13 measurements. Left: The measurements partitioned
using the suggested distance partitioning method with a distance threshold of
25 m. Right: The measurements partitioned using K-means clustering with
K = 4.

values for the partitioning parameters δPL
and δPU

in Distance
Partitioning can be chosen using some intuitive arguments as
above, it is less clear how KL and KU should be selected. One
idea is to set KL = 1 and KU = |Zk|, which corresponds
to δPU = ∞ and δPL = 0 in Distance Partitioning. Doing
so would significantly increase the computational complexity
compared to Distance Partitioning, since a considerably higher
number of partitions must be considered.

Another major difference between the suggested distance
partitioning and K-means clustering is highlighted in Fig. 1,
which shows a measurement set that consists of Nz,k = 13
measurements, 10 of which are clustered in the northeast of
the surveillance region and the other three are scattered indi-
vidually. The intuitive way to cluster this set of measurements
is into 4 clusters, which is achieved by Distance Partitioning
using a distance threshold of about 25 m, as shown in the left
plot of Fig. 1. When there is a large number of measurements
concentrated in one part of the surveillance area, as is the
case in this example, K-means clustering tends to split those
measurements into smaller cells, and merge remaining but far
away measurements into large cells. This is illustrated in the
right plot of Fig. 1.

One reason behind this shortcoming of K-means is the
initialization of the algorithm, where the initial cluster centers
are chosen by uniform sampling. In order to overcome this
problem, modifications to the standard K-means algorithm
have been suggested, where initial clusters are chosen as
separated as possible, see [27], [28]. This improved version
of K-means is called K-means++.

In simulations, Distance Partitioning was compared to K-
means++ (using an implementation available online [29]).
The results, see Section VI-B, show that K-means++ fails
to compute informative partitions much too often, except in
scenarios with very low βFA,k. This can be attributed to the
existence of counter-intuitive local optima for the implicit cost
function involved with K-means++ (or K-means). Distance
Partitioning on the other hand can handle both high and low
βFA,k, and always gives an intuitive and unique partitioning
for a given d`.

Therefore, we argue that a hierarchical method, such as
the suggested Distance Partitioning, should be preferred over
methods such as K-means. However, it is important to note
here again, that regarding partitioning of the measurement set,
the contribution of the current work lies mainly not in the

specific method that is suggested, but rather in showing that
all possible partitions can efficiently be approximated using a
subset of partitions.

C. Sub-Partitioning

Initial results using ET-GM-PHD showed problems with
underestimation of target set cardinality in situations where
two or more extended targets are spatially close [20]. The
reason for this is that when targets are spatially close, so are
their resulting measurements. Thus, using Distance Partition-
ing, measurements from more than one measurement source
will be included in the same cell W in all partitions p, and
subsequently the ET-GM-PHD filter will interpret measure-
ments from multiple targets as having originated from just
one target. In an ideal situation, where one could consider
all possible partitions of the measurement set, there would
be alternative partitions which would contain the subsets of
a wrongly merged cell. Such alternative partitions would
dominate the output of the ET-GM-PHD filter towards the
correct estimated number of targets. Since we eliminate such
partitions completely using Distance Partitioning, the ET-GM-
PHD filter lacks the means to correct its estimated number of
targets.

One remedy for this problem is to form additional partitions
after performing Distance Partitioning, and to add them to
the list of partitions that ET-GM-PHD filter considers at the
current time step. Obviously, this should be done only when
there is a risk of having merged the measurements belonging
to more than one target, which can be decided based on the
expected number of measurements originating from a target.
We propose the following procedure for the addition of more
partitions.

Suppose that we have computed a set of partitions using
Distance Partitioning, e.g. with the algorithm in Table I. Then,
for each generated partition pi, we calculate the maximum
likelihood (ML) estimates N̂ j

x of the number of targets for
each cell W i

j . If this estimate is larger than one, we split the
cell W i

j into N̂ j
x smaller cells, denoted{

W+
s

}N̂j
x

s=1
. (21)

We then add a new partition, consisting of the new cells along
with the other cells in pi, to the list of partitions obtained by
Distance Partitioning.

We illustrate the Sub-Partition algorithm in Table II, where
the splitting operation on a cell is shown by a function

split
(
N̂ j
x,W

i
j

)
. (22)

We give the details for obtaining the ML estimate N̂ j
x and

choosing the function split ( · , · ) in the subsections below.
1) Computing N̂ j

x: For this operation, we assume that the
function γ( · ) determining the expected number measurements
generated by a target is constant, i.e. γ( · ) = γ. Each target
generates measurements independently of the other targets,
and the number of generated measurements by each target
is distributed with the Poisson distribution, Pois ( · , γ). The
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TABLE II
SUB-PARTITION

Require: Partitioned set of measurements Zp =
{

p1, . . . , pNp

}
, where Np

is the number of partitions.
1: Initialise: Counter for new partitions ` = Np.
2: for i = 1, . . . , Np do
3: for j = 1, . . . , |pi| do
4: N̂j

x = arg max
n

p
( ∣∣∣W i

j

∣∣∣∣∣∣Nj
x = n

)
5: if N̂j

x > 1 then
6: ` = `+ 1 {Increase the partition counter}
7: p` = pi\W i

j {Current partition except the current cell}

8:
{
W+
k

}N̂j
x

k=1
= split

(
N̂j
x,W

i
j

)
{Split the current cell}

9: p` = p` ∪
{
W+
k

}N̂j
x

k=1
{Augment the current partition}

10: end if
11: end for
12: end for

likelihood function for the number of targets corresponding to
a cell W i

j is

p
( ∣∣W i

j

∣∣∣∣N j
x = n

)
= Pois

(∣∣W i
j

∣∣ , γn) . (23)

Here, we assume that the volume covered by a cell is suffi-
ciently small such that the number of false alarms in the cell
is negligible, i.e. there are no false alarms in W i

j . The ML
estimate N̂ j

x can now be calculated as

N̂ j
x = arg max

n
p
( ∣∣W i

j

∣∣∣∣N j
x = n

)
. (24)

Note that other alternatives can be found for calculating
the estimates of N j

x , e.g. utilizing specific knowledge about
the target tracking setup, however both simulations and ex-
periments have shown that the above suggested method works
well.

2) The split ( · , · ) function: An important part of the Sub-
Partition function in Table II is the function split ( · , · ), which
is used to divide the measurements in a cell into smaller cells.
In both simulations and experiments, we have used K-means
clustering to split the measurements in the cell, results shows
that this works well. However note that other methods to split
the measurements are possible.

Remark 1 (Limitations of Sub-Partition). Notice that the Sub-
Partition algorithm given in this section can be interpreted
to be only a first-order remedy to the problem, and hence
have limited correction capabilities. This is because we do not
consider the combinations of the cells when we are adding new
partitions. In the case, for example, where there are two pairs
of close targets whose cells are merged wrongly by Distance
Partitioning, the sub-partitioning algorithm presented above
would add an additional partition for each of the target
pairs (i.e. for each of the wrongly merged cells), but not
an additional partition that contains the split versions of
both cells. Consideration of all combinations of (the wrongly
merged) cells seems to be prohibitive, due to the combinatorial
growth in the number of additional partitions. An idea for the
cases where there can be more than one wrongly merged cells
is to add a single additional partition, which contains split
versions of all such cells. �
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Fig. 2. Birth intensity used in experiments.

V. TARGET TRACKING SETUP

The presented tracking approach is exemplified with a laser
sensor tracking humans at short distance. In this section the
tracking setup is defined for both a pure simulation envi-
ronment and an experimental realisation with laser data. The
targets are modeled as points with state variables

xk =
[
xk yk vxk vyk

]T
, (25)

where xk and yk are the planar position coordinates of the
target, and vxk and vyk are the corresponding velocities. The
sensor measurements are given in batches of Cartesian x and
y coordinates as follows;

z
(j)
k ,

[
x
(j)
k y

(j)
k

]T
. (26)

A constant velocity model [30], with sampling time T is
used. In all simulations the probability of detection and
probability of survival are set to pD = 0.99 and pS = 0.99,
respectively. The algorithm parameters for the simulation and
experiment are given in Table III. The surveillance area is
[−1000, 1000](m) × [−1000, 1000](m) for the simulations,
and for the real data experiments the surveillance area is a
semi circle located at the origin with range 13 m. Unless
otherwise stated, in the simulations clutter was generated with
a Poisson rate of 10 clutter measurements per scan, and each
target generated measurements with a Poisson rate of 10
measurements per scan. The birth intensity in the simulations
is

Db (x) = 0.1N (x ; mb, Pb) + 0.1N (x ; −mb, Pb), (27a)
mb = [250, 250, 0, 0]T, Pb = diag ([100, 100, 25, 25]) .

(27b)

For the experiments, the birth intensity Gaussian components
are illustrated with their corresponding one standard deviation
ellipsoids in Fig. 2. Each birth intensity component has a
weight w(j)

b = 0.1
Jb

, where the number of components is
Jb = 7. The spawn intensity is

Dβ (x|y) = wβN (x ; ξ,Qβ), (28)

where ξ is the target from which the new target is spawned
and the values for wβ and Qβ are given in Table III.
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TABLE III
PARAMETER VALUES USED FOR SIMULATIONS (S) AND EXPERIMENTS (E).

T Qk Rk γ(i) wβ Qβ
S 1 22I2 202I2 10 0.05 blkdiag(100I2, 400I2)
E 0.2 22I2 0.12I2 12 0.01 0.01I4

VI. SIMULATION RESULTS

This section presents results from simulations using the pre-
sented extended target tracking method. Section VI-A presents
three simulation scenarios that are used several times, and
Section VI-B presents a comparison of Distance Partitioning
and K-means++. In Section VI-C a comparison of Distance
Partitioning and Distance Partitioning with Sub-Partition is
presented, the results show the increased performance when
using Sub-Partition. A comparison between ET-GM-PHD and
GM-PHD is presented in Section VI-D, where it is shown that
ET-GM-PHD as expected outperforms GM-PHD for extended
targets. Section VI-E presents a comparison of ET-GM-PHD
and GM-PHD for targets that give rise to at most one measure-
ment per time step. Finally, detailed investigations are carried
out about the effects of the possibly unknown parameter γ in
Section VI-F.

A. True target tracks

Three different scenarios are used in several simulations.
The first two both have two targets. The true x, y positions
and the distance between the targets are shown in Fig. 3a
and Fig. 3b. At the closest points the targets are 60m and
50m apart, respectively. In the third scenario there are four
targets in total, the true x, y positions are shown in black
in Fig. 3c. Around time 50–52 two target tracks cross at a
distance of just over 50m, at time 67 a new target is spawned
20m from a previous one. Together the three scenarios present
challenges that are typical in multiple target applications. In
the simulations, the targets are modeled as points that generate
measurements with standard deviation 20m in both x and y
direction. Thus, a measure of target extent can be taken as
the two standard deviation measurement covariance ellipses,
in this case circles of radius 40m. In all three scenarios these
circles partly overlap when the targets are closest to each other.

B. Comparison of Distance Partitioning and K-means++

The scenario in Fig. 3b was used to compare Distance
Partitioning to K-means++. In order to make the comparison
as fair as possible, the upper and lower thresholds were set to
KL = 1, KU = |Zk|, δPU

= ∞ and δPL
= 0, respectively.

The scenario was simulated with a Poisson rate of 1 and
10 clutter measurements per scan. For each clutter rate, the
scenario was simulated 100 times, Fig. 4 shows the resulting
sum of weights. At the lower clutter rate, K-means++ yields
a small positive bias in estimated target number, but the perfor-
mance is otherwise good. However, at the higher clutter rate
the performance using K-means++ is far from acceptable.
Distance Partitioning, on the other hand, handles both clutter
rates equally well, except for when the targets are close around
time 50. Note also that using Distance Partitioning, the sum

(a) βFA,kVs = 1

(b) βFA,kVs = 10

Fig. 4. Results from the comparison of Distance Partitioning (black dash-
dotted line) and K-means++ (gray solid line), the shaded areas correspond
to ± one standard deviation. At the lower clutter rate, K-means++ performs
adequately, however at the higher clutter rate the performance is unacceptable.
Distance Partitioning on the other hand handles both the lower and higher
clutter rate, and has a much smaller uncertainty area.

of weights uncertainty area is considerably smaller. The case
of close targets is investigated further in the next subsection,
using the countermeasure introduced in Section IV-C.

C. Benefits of Sub-Partition

As was noted in Section IV-C, as well as in previous work
[20], using only Distance Partitioning to obtain a subset of all
possible partitions is insufficient when the extended targets are
spatially close. For this reason, Sub-Partition was introduced
to obtain more partitions. In this section, we present results
from simulations that compare the performance of ET-GM-
PHD tracking with partitions computed using only Distance
Partitioning and with partitions computed using Distance Parti-
tioning and Sub-Partition. The scenarios in Fig. 3a and Fig. 3b
are considered.

Each scenario was simulated 100 times with a constant
expected number of measurements per target (γ( · ) = γ) of
5, 10 and 20, respectively. Fig. 5 shows the resulting sum
of weights of the ET-GM-PHD algorithm. As can be seen,
using Sub-Partition the average sum of weights is closer to
the true number of targets. This is especially clear for targets
that generate more measurements per time step, i.e. when γ
is higher.

D. Comparison with GM-PHD

This section presents results from a simulation comparison
of ET-GM-PHD and GM-PHD. Note here that the GM-PHD filter
is applied naively to the simulated measurements, i.e. it is
applied under the (false) assumption that each target produces
at most one measurement per time step. The scenario in Fig. 3c
is considered.
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Fig. 3. (a) Two targets move closer to each other and then stand still at a distance of 60m apart. Note that the true y position was 300m for both targets
for the entire simulation. (b) Two targets cross paths, at the closest point they are 50m apart. (c) Four targets, with a target spawning event at time 67. The
x and y positions are shown as lines, the light gray shaded areas show the target extent, taken as two measurement noise standard deviations (40m). In (a)
and (b), the bottom row shows the distance between the two targets over time.
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Fig. 5. Simulation results for two of the scenarios in Fig. 3, comparing different partitioning methods for different values of the expected number of
measurements γ. The top row, (a), (b) and (c), is for the true tracks in Fig. 3a. The bottom row, (d), (e) and (f), is for the true tracks in Fig. 3b. Black shows
Distance Partitioning with Sub-Partition, gray is only Distance Partitioning. It is clear from the plots that using Sub-Partition gives significantly better results,
especially when γ is higher.

In total 100 Monte Carlo simulations were performed, each
with new measurement noise and clutter measurements. The
results are shown in Fig. 6a and Fig. 6b, which show the corre-
sponding multi-target measure optimal subpattern assignment
metric (OSPA) [31], and the cardinality, respectively. In the
OSPA metric the parameters are set to p = 2, corresponding
to using the 2-norm which is a standard choice, and c = 60,
corresponding to a maximum error equal to three measurement
noise standard deviations. Here, the cardinality is computed
as
∑Jk|k
j=1 w

(j)
k|k. This sum can be rounded to obtain an integer

estimate of target number [18].

It is evident from the two figures that the presented ET-GM-
PHD significantly outperforms the standard GM-PHD, which
does not take into account the possibility of the multiple
measurements from single targets. The main difference be-
tween the two filters is the estimation of cardinality, i.e. the
number of targets. The ET-GM-PHD-filter correctly estimates
the cardinality with the exception of when the new target is
spawned – after time 67 there is a small dip in the mean
estimated cardinality, even though Sub-Partition is used. The

reason for this is that the targets are only 20m apart. With the
target extension being a circle of 40m radius, at 20m distance
the measurements overlap significantly and the probability that
the new target’s measurements were also generated by the old
target, as computed in (12e), is large. As the targets separate,
this probability decreases and the ET-GM-PHD filter recovers
the correct cardinality. It should still be noted that, in reality,
where the targets would probably be rigid bodies, this type of
very close situation is highly unlikely and the results of the
ET-GM-PHD filter with Sub-Partition would be close to those
presented in Section VI-C.

E. Standard single measurement targets

This section investigates how ET-GM-PHD handles standard
targets that produce at most one measurement per time step, in
comparison to standard GM-PHD which is designed under the
standard target measurement generation assumption. Note that
the measurement set cardinality distribution (i.e. the probabil-
ity mass function for the number of measurements generated
by a target) for a standard target contains only a single nonzero
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Fig. 6. Results from multiple target tracking using the true tracks in Fig. 3c. (a) Mean OSPA (solid lines) ±1 standard deviation (dashed lines). (b) Mean
cardinality compared to the true cardinality.

element2 at cardinality 1, which is impossible to model with a
Poisson distribution underlying the ET-GM-PHD filter. Hence,
the case where each target generates measurements whose
number is Poisson distributed with rate γ = 1 is very different
from the standard target measurement generation.

Four targets were simulated in 100 Monte Carlo simulations,
and all the targets were separated, i.e. there were no track
crossings or new target spawn. Initially, in the ET-GM-PHD fil-
ter, γ(j) are all set as γ(j) = 1 in the comparison. The average
sum of weights and the average number of extracted targets
(obtained by rounding the weights to the nearest integer) for
the algorithms are shown in Fig. 7a and Fig. 7b respectively.
As is shown, the sum of weights and number of extracted
targets are too large for the ET-GM-PHD filter. The reason for
this is that when the expected number of measurements per
target (i.e. γ(j)) is small, the effective probability of detection3

p
(j)
D,eff =

(
1− e−γ

(j)
)
p
(j)
D (29)

becomes significantly smaller than one. For example, the case
γ(j) = 1 and p

(j)
D = 0.99 gives p(j)D,eff = 0.6258. This low

effective probability of detection is what causes the weights
in the ET-GM-PHD filter to become too large.

Actually, this problem has been seen to be inherited by
the ET-GM-PHD filter from the standard PHD filter. We here
give a simple explanation to the problem with low (effective)
probability of detection in the PHD filter. Assuming no false
alarms, and a single target with existence probability pE,
ideally a single detection should cause the expected number
of targets to be unity. However, applying the standard PHD
formulae to this simple example, one can calculate the updated
expected number of targets to be 1+pE(1−pD) whose positive
bias increases as pD decreases. We have seen that when the
(effective) probability of detection is low, the increase in

2Note that a standard target always generates a single measurement.
Whether no measurements or a single measurement is obtained from the
standard target is determined by the detection process.

3More correctly, p(j)D,eff in (29) is the probability of the event that at least
one measurement from the (jth) target is obtained by the sensor.

∑Jk|k
j=1 w

(j)
k|k is a manifestation of this type of sensitivity of

the PHD type filters.4 A similar sensitivity issue is mentioned
in [33] for the case of no detection.

This problem can be overcome by increasing γ(j) slightly
in the ET-GM-PHD filter, e.g. γ(j) = 2 gives pjD,eff = 0.8560
which gives sum of weights and number of extracted targets
that better match the results from GM-PHD, see Fig. 7c and
Fig. 7d. Using γ(j) = 3 gives results that are more or less
identical to GM-PHD, thus a conclusion that can be drawn is
that when tracking standard targets with an ET-GM-PHD filter,
the parameter γ(j) should not be set too small. The following
subsection investigates the issue of selecting the parameter γ
in more detail.

F. Unknown expected number of measurements γ

In the simulations above, the parameters γ = γ(j) were
assumed to be known a priori. Further, in Section IV-C where
Sub-Partition is presented, the knowledge of the Poisson rate γ
was used to determine whether a cell should be split or not to
create an additional partition. In this section, some scenarios
where γ is not known a priori are investigated. For the sake
of clarity, γ is used to denote the true Poisson rate with which
measurements were generated, and γ̂ is used to denote the
corresponding parameter in the ET-GM-PHD-filter.

In many real world scenarios, the number of measurements
generated by a target is dependent on the distance between the
target and the sensor. Typically, the longer the distance, the
lower the number of measurements generated by the targets.
This is true for sensors such as laser range sensors, radars
and even cameras. Thus, it is of interest to evaluate the ET-
GM-PHD-filter in a scenario where the number of generated
measurements varies with the target to sensor distance. This
is simulated in Section VI-F1, where the ET-GM-PHD filter
is compared for the cases when the parameter γ̂ is constant,
and when the parameter is modeled as distance varying.
Section VI-F2 presents results from simulations where the

4Some extreme versions of this phenomenon for lower PD values are
illustrated and investigated in detail in the recent work [32].
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0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

E
x
t.

ta
rg
et
s

Time

 

 

True
ET-GM-PHD
GM-PHD

(b) γ(j) = 1
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(c) γ(j) = 2
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(d) γ(j) = 2

Fig. 7. Simulation results, comparison of ET-GM-PHD and GM-PHD for standard targets that produce at most one measurement per time step. The top row
shows results when the parameter γ(j) is set to one, the bottom row shows results when it is set to two. Due to the low effective probability of detection,
the ET-GM-PHD weights become too large, resulting in sum of weights larger than the true number of targets. When each weight is rounded to the nearest
integer to extract targets, results for γ(j) = 2 gives the correct number of extracted targets.

parameter γ̂ is set incorrectly, and Section VI-F3 presents
results with targets of different sizes. Finally, Section VI-F4
presents a discussion about the results from the simulations,
and supplies some guidelines into the selection of γ̂.

1) Distance varying γ: A scenario was constructed where
a target moved such that the target to sensor distance first
decreased, and then increased. The sensor was simulated such
that the true parameter γ depended on the target to sensor
distance ρ as follows.

γ(ρ) =


1, if ρ > 400m

b−0.08ρ+ 33.5c , if 100m ≤ ρ ≤ 400m

25, ρ < 100m

(30)

where b · c is the floor function. Thus, at distances larger than
400m, with p(j)D = 0.99, the effective probability of detection
is only 0.6258 (as in the previous subsection). Note that the
scenario is different from a target that always generates one
measurement, which is detected with probability p(j)D = 0.99.

Monte Carlo simulations were made with two ET-GM-PHD-
filters: one with constant value γ̂ = 10 and another where γ̂
was selected to be dependent on the state of the targets via the
function (30). The results are shown in Fig. 8. For constant γ̂,
the number of targets is underestimated when the true γ is low.
This is due to the fact that the filter expects a target to generate
more measurements, and thus the likelihood that some small
number of measurements are all clutter is higher. However, at
distances ρ such that γ (ρ) > 5, γ̂ = 10 works quite well.
When the model (30) for distance dependent γ is assumed
known, the results are much more reasonable and acceptable.
The only, and possibly negligible, drawback seems to be the
number of targets being slightly overestimated. There are two
main reasons for this. The first reason is the low effective

probability of detection when γ̂ is low. When γ̂ becomes
smaller than 5, this behavior is more evident. The second
reason is that the clutter falling into the region ρ > 400m (i.e.
when the true parameter is γ = 1) is interpreted as targets to
some extent, which causes a positive, though small, bias in
the estimation of number of targets. In that region, the target
behavior is fairly similar to the clutter behavior which results
in some Gaussian components with small weights surviving
until the situation is resolved.

2) Incorrect γ parameter: In this simulation study, the
target tracks in Fig. 3b were used. Each target generated
measurements with a Poisson rate of γ = 20 and eleven
different ET-GM-PHD-filters, each using a different γ̂ value,
were run. The set of γ̂ values used is given as

γ̂ = 10, 12, . . . , 28, 30. (31)

The results, in terms of the sum of weights averaged over
the Monte Carlo runs, are shown in Fig. 9. The figure shows
that for sufficiently separated targets, the ET-GM-PHD-filter
correctly estimates the number of targets for all values of
γ̂. However, for spatially close targets, the ET-GM-PHD-filter
overestimates the number of targets when γ̂ is set too low, and
underestimates the number of targets when γ̂ is set too high.
This result is actually expected, and is a direct consequence
of the simple Sub-Partition algorithm which is used. When
γ̂ is too low, Sub-Partition creates an additional partition
with too many cells, causing the overestimation of number
of targets. Conversely, when γ̂ is too high, Sub-Partition does
not create partitions with sufficient number of cells, causing
the underestimation of number of targets. It is very important
to note here that Sub-Partition runs even when the targets are
well separated and does not cause any overestimation. Our
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Fig. 8. Results from the simulation scenario where γ is dependent on the
target to sensor distance. In (a), the true γ is plotted against time, and in (b)
the mean sum of weights is plotted against time. The ET-GM-PHD-filter is
compared for the cases when the parameter γ̂ is held constant (gray) or is
set to the true distance dependent value (black). The correct target number
is one, thus the sum of weights should be around one. In both cases, at the
beginning and the end of the scenario when the distance is largest and γ = 1,
tracking performance gets worse.

observations show that this is a result of the fact that additional
partitions created (when γ̂ is selected too low) cannot win
over single target partitions when the targets measurements
are distributed in a blob shape. It is only when the two targets
approach each other, resulting in an eight-shaped cluster of
measurements, that the additional partition can gain dominance
over the single target partition. This property, though not
proved mathematically, is considered to be a manifestation
of the Poisson property and the Gaussianity assumptions
underlying the measurements.

If the cardinality estimates of the algorithms are rounded
to the nearest integer, an interesting property observed with
Fig. 9 is that no cardinality error appears for the cases that
satisfy

γ̂ −
√
γ̂ ≤ γ ≤ γ̂ +

√
γ̂. (32)

Thus, when the true parameter γ lies in the interval determined
by the mean (γ̂) ± one standard deviation (

√
γ̂), cardinality

is expected to be estimated correctly even for close targets.
3) Targets of different size: In many scenarios, it is possible

to encounter multiple targets of different sizes, thus producing
a different number of measurements. This means that two
targets would not have the same Poisson rate γ. In this
section, results are presented for a scenario with two targets
with measurement generating Poisson rates of 10 and 20,
respectively. In Monte Carlo simulations, three ET-GM-PHD-
filters were run with the parameter γ̂ set to 10, 15 and 20,
respectively. This corresponds to using either the true value
of the smaller target, the mean of both, or the true value
of the larger target. The results, in terms of average sum of
weights over time are shown in Fig. 10. When the targets
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Fig. 9. Simulation results for various values of the ET-GM-PHD-filter
parameter γ̂. There are two targets, the true Poisson rate used to generate
measurements for both targets was γ = 20.
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Fig. 10. Simulation results from a scenario with two targets of different sizes.
The two targets have the true Poisson rates γ = 10 and γ = 20, respectively.
The legend refers to the filter parameter γ̂.

are spatially separated, all three filters perform equally well.
However, when the targets are spatially close, the target with γ̂
set to the mean of the true γs performs better than the others.

4) Discussion: The simulation results above show that the
ET-GM-PHD-filter works well even when γ̂ 6= γ, except when
γ < 5 or targets are spatially close. For γ < 5, the filter is more
sensitive, and a correct value for γ̂ is increasingly important.
For targets that are spatially close, it is important for γ̂ to
be a good estimate of γ, since the Sub-Partition algorithm
relies on γ̂. When such a good estimate is unavailable, a more
advanced sub-partitioning algorithm seems to be necessary
for robustness. With the proposed Sub-Partition procedure,
our findings support the intuitive conclusion that the true
parameter γ should be in one standard deviation uncertainty
region around the mean γ̂ of the Poisson distribution for a
reasonable performance for close targets.

The simulation with different target sizes shows that the
close target case in this example is harder to tackle than
the others. A possible solution is to adaptively estimate the
parameters γ̂ for each Gaussian mixture component, based
on the previous measurements. Another solution, which is
possibly more straightforward, is to use a state dependent
γ̂ parameter, where the state contains information about the
target extent, which can readily be estimated, see e.g. [5], [6],
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[13]–[15]. Using the estimated shape and size, and a model of
the sensor that is used, γ̂ can then be estimated with reasonable
accuracy. This has indeed recently been performed using an
ET-GM-PHD-filter [13].

VII. EXPERIMENT RESULTS

This section presents results from experiments with data
from two data sets acquired with a laser range sensor. The
experiments are included more as a proof of concept and as a
potential application, rather than as an exhaustive evaluation
of the presented target tracking filter. The measurements were
collected using a SICK LMS laser range sensor. The sensor
measures range every 0.5◦ over a 180◦ surveillance area.
Ranges shorter than 13 m were converted to (x, y) measure-
ments using a polar to Cartesian transformation.

The two data sets contain 411 and 400 laser range sweeps in
total, respectively. During the data collection humans moved
through the surveillance area, entering the surveillance area at
different times. The laser sensor was at the waist level of the
humans.

Because there is no ground truth available it is difficult to
obtain a definite measure of target tracking quality, however
by examining the raw data we were able to observe the true
cardinality, which can thus be compared to the estimated
cardinality.

Section VII-A presents results from an experiment with
spatially close targets, and Section VII-B presents results from
an experiment with both spatially close targets and occlusion.

A. Experiment with close targets

In this experiment, a data set containing 411 laser range
scans was used. The data set contains two human targets that
repeatedly move towards and away from each other, moving
right next to each other at several times. The two targets passed
each other at close distance moving in the opposite direction,
representing instances in time when the targets were close for
short periods of time. The targets also moved close to each
other moving in the same direction, representing instances in
time when the targets were close for longer periods of time.

The locations of the extracted Gaussian components are
shown in Fig. 11a, the number of extracted targets is shown in
Fig. 11b and the sum of weights are shown in Fig. 11c. Around
time 320 there is a decrease in the number of extracted targets
for three time steps, in all other situations the filter handles the
two targets without problem. Thus, using Sub-Partition with
K-means as split ( · , · ) function, the ET-GM-PHD filter can
be said to handle most of the spatially close target cases.

B. Experiment with occlusion

In this experiment, a dataset containing 400 laser range
scans was used. The data set contains four human targets that
move through the surveillance area, however there are at most
three targets present at any one time. The first target enters the
surveillance area at time k = 22 and proceeds to the center of
the surveillance area where he remains still for the remainder
of the experiment. The second target enters the surveillance
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Fig. 11. Experiment results, two human targets moving close to each other.
Note that in (a) the gray scale indicates the time line, lighter gray is earlier
time steps, darker is later time steps. In (b), the number of extracted targets
(black) is compared to the ground truth (gray). In (c) the sum of weights
is shown. Around time 320 the cardinality is underestimated for three time
steps.

area at time k = 38 and repeatedly moves in front of and
behind the first target. The third target enters and exits at time
k = 283 and k = 310, respectively. The last target enters and
exits at time k = 345 and k = 362, respectively.

This case requires a state dependent (i.e. variable) proba-
bility of detection pD( · ) selection for the targets. Otherwise,
i.e. with a constant probability of detection assumption, when
a target is occluded, this would be interpreted as the exit of
the target from the area of surveillance while it is only the
disappearance of the target behind another. The variable pD
is modeled as a function of the mean, covariance and the
weights of the Gaussian components. The intuition behind this
idea is that the knowledge of the targets that are present, i.e.
the knowledge of the estimated Gaussian components of the
PHD, can be used to determine what parts of the surveillance
area are likely to be in view of the sensor, and which parts
are not. Leaving the details of the variable pD calculation to
Appendix B, we present the results below.

The locations of the extracted Gaussian components are
shown in Fig. 12a, the number of extracted targets is shown in
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Fig. 12. Experiment results, targets moving in and out of occluded regions
of the surveillance area. Note that in (a) the gray scale indicates the time line,
lighter gray is earlier time steps, darker is later time steps. In (b), the number
of extracted targets (black) is compared to the ground truth (gray). In (c) the
sum of weights is shown.

Fig. 12b and the sum of weights are shown in Fig. 12c. In total,
there are six situations where one target is occluded by another.
The extracted number of targets is incorrect in two of these
situations, where the occluded target is spatially very close to
(right next to) the target which is causing the occlusion. The
ET-GM-PHD filter correctly estimates the cardinality in four
out of six occlusions.

Thus, using the suggested variable pD, the filter can cor-
rectly predict the target while it is occluded, provided that
it is not very close to another target while the occlusion is
happening. If

∑Jk|k
j=1 w

(j)
k|k is rounded to the nearest integer

there is no cardinality error for the first four occlusions.
However, as the target exits the occluded area there is a
“jump” in

∑Jk|k
j=1 w

(j)
k|k around times k = 75, k = 125,

k = 175 and k = 210, see Fig. 12c. We have seen that
this “jumping” behavior is caused by the sensitivity of the
cardinality estimates of the PHD filter to detections when p(j)D

is set to a low value, which is the case when the target is half
occluded while it gets out of the occluded region. This is the
same phenomenon observed with low effective probability of

detection in Section VI-E.

VIII. CONCLUSIONS

In this paper a Gaussian mixture implementation of the
probability hypothesis density filter for tracking extended
targets was presented. It was shown that all possible partitions
of the measurement set does not need to be considered, instead
it is sufficient to consider a subset of partitions, as long as this
subset contains the most probable partitions. A simple method
for finding this subset of all measurement set partitions was
described. This partitioning method is complemented with a
sub-partitioning strategy to handle the cases that involve close
targets better. Simulations and experiments have shown that
the proposed filter is capable of tracking extended targets in
cluttered measurements. The number of targets is estimated
correctly even for most of the cases when tracks are close.
The detailed investigations carried out gave some guidelines
about the selection of the Poisson rate parameter for the
cases when it is unknown. Using inhomogeneous detection
probabilities in the surveillance region, it was shown that
targets can be tracked as they move through occluded parts
of the surveillance area.

IX. FUTURE WORK

In recent work, a cardinalized PHD filter [34] for extended
targets has been presented [32]. This filter has less sensitive
estimates of the number of targets. Initial steps have also been
taken towards including estimation of target extent in the ET-
GM-PHD-filter [13]. More work is needed in both of these
research directions.

A further interesting research can be to see the potential
use of the partitioning algorithms presented in this work
with more conventional multiple target tracking algorithms.
A comparison of such algorithms with the ET-GM-PHD filter
can illustrate the advantage coming from the use of the random
set framework.

APPENDIX A
PROOF OF THEOREM 1

The proof is composed of two parts.
• We first prove that there is a partition satisfying the

conditions of the theorem. The proof is constructive.
Consider the algorithm in Table IV. In the algorithm,
one first forms a partition formed of singleton sets of the
individual measurements and then combine the cells of
this cluster until conditions of the theorem are satisfied.
�

• We need to prove that the partition satisfying the con-
ditions of the theorem is unique. The proof is by con-
tradiction. Suppose that there are two different partitions
pi and pj satisfying the conditions of the theorem. Then,
there must exist (at least) one measurement z(m) ∈ Z
such that the cells W i

mi
3 z(m) and W j

mj
3 z(m) are

different, i.e., W i
mi
6= W j

mj
. This requires (at least) a

single measurement z(n) ∈ Z that is in one of W i
mi
,W j

mj

but not in the other. Without loss of generality, suppose
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TABLE IV
FIND PARTITION p THAT SATISFIES THE CONDITIONS OF THEOREM 1

Require: Set of measurements Z =
{
z(1), z(2), . . . , z(Nz)

}
, where Nz is

the number of measurements.
1: Set p0 =

{
{z(1)}, {z(2)}, . . . , {z(Nz)}

}
i.e., set W 0

j = {z(j)} for
j = 1, . . . , Nz .

2: Set i = 1.
3: Calculate all the pairwise distances between the cells of pi−1 as

ηi−1
st = min

z(m)∈W i−1
s

z(n)∈W i−1
t

d
(
z(m), z(n)

)
(33)

4: If min1≤s 6=t≤|pi−1| η
i−1
st > d`, then stop the algorithm, since pi−1 is

a partition satisfying the conditions of the theorem.
5: Otherwise, combine all cells that satisfy ηi−1

st ≤ d` to form a single cell.
6: Set pi to be the set of cells obtained in Step 5.
7: Set i = i+ 1 and go to Step 3.

z(n) ∈ W i
mi

and z(n) 6∈ W j
mj

. Since both z(m) and z(n)

are in W i
mi

, there must exist a (possibly empty) subset
{z(r1), z(r2), . . . , z(rR)} ⊂ W i

mi
\{z(m), z(n)} such that

the following conditions hold.

d
(
z(m), z(r1)

)
≤d` (34a)

d
(
z(rs), z(rs+1)

)
≤d` s = 1, 2, . . . , R− 1 (34b)

d
(
z(rR), z(n)

)
≤d` (34c)

However, (34) implies that the measurements
{z(m), z(r1), z(r2), . . . , z(rR), z(n)} should all be in
the same cell. For pj , this is the cell W j

mj
3 z(m),

which contradicts the fact that z(n) 6∈ W j
mj

. Thus, the
initial assumption that there are two different partitions
satisfying the conditions of the theorem must be wrong.
The proof is complete. �

APPENDIX B
VARIABLE PROBABILITY OF DETECTION

FOR THE LASER SENSOR

The variable probability of detection function reduces pD
behind (i.e. at larger range from the sensor) each component
of the PHD.

For a given point x in the surveillance area, the probability
of detection pD(x) is computed as

pD(x) = max (pD,min , p
v
D)

pv
D = pD,0 −

∑
i:r>r(i)

w(i)
√

σs
σ̄ϕ(i)

exp

(
−(ϕ− ϕ(i))2

2σ̄ϕ(i)

)
(35)

where
• pD,min is the minimum probability of detection value a

target can have;
• pD,0 is the nominal probability of detection of the targets

when they are not occluded;
• r and ϕ are the range and bearing, respectively, from the

sensor to the point x;
• r(i) and ϕ(i) are the range and bearing, respectively, from

the sensor to the ith Gaussian component;
• w(i) is the weight of the ith component;

• σ̄ϕ(i) is defined as

σ̄ϕ(i) ,


σmax, if σϕ(i) > σmax

σmin, if σϕ(i) < σmin

σϕ(i) , otherwise
(36)

where σϕ(i) is the bearing standard deviation of the ith
component given as

σϕ(i) ,
√
uT

ϕ(i)P
(i)
p uϕ(i) . (37)

Here, P (i)
p is the position covariance of the ith component

and uϕ(i) is the unit vector orthogonal to the range
direction from the ith component to the sensor.

• The constant term σs is used to scale the bearing standard
deviation.

Intuitively, the operation of (35) is to reduce the nominal
probability of detection at a point. The reduction depends on
the weights, means and standard deviations of the components
of the last estimated PHD. Reductions are only performed
for the components that have smaller range values than the
range of the point, and the angular proximity of the point and
the components is taken into account through the exponential
function in (35).
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of Linköping University for his valuable comments on the
manuscript.

REFERENCES

[1] K. Gilholm and D. Salmond, “Spatial distribution model for tracking
extended objects,” IEE Proceedings Radar, Sonar and Navigation, vol.
152, no. 5, pp. 364–371, Oct. 2005.

[2] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, “Poisson models
for extended target and group tracking,” in Proceedings of Signal and
Data Processing of Small Targets, vol. 5913. San Diego, CA, USA:
SPIE, Aug. 2005, pp. 230–241.

[3] Y. Boers, H. Driessen, J. Torstensson, M. Trieb, R. Karlsson, and
F. Gustafsson, “A track before detect algorithm for tracking extended
targets,” IEE Proceedings Radar, Sonar and Navigation, vol. 153, no. 4,
pp. 345–351, Aug. 2006.

[4] M. Baum and U. D. Hanebeck, “Random hypersurface models for
extended object tracking,” in IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), Ajman, United Arab
Emirates, Dec. 2009, pp. 178–183.

[5] M. Baum, B. Noack, and U. D. Hanebeck, “Extended Object and Group
Tracking with Elliptic Random Hypersurface Models,” in Proceedings
of the International Conference on Information Fusion, Edinburgh, UK,
Jul. 2010.

[6] M. Baum and U. D. Hanebeck, “Shape Tracking of Extended Objects
and Group Targets with Star-Convex RHMs,” in Proceedings of the
International Conference on Information Fusion, Chicago, IL, USA, Jul.
2011, pp. 338–345.

[7] J. W. Koch, “Bayesian approach to extended object and cluster tracking
using random matrices,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 44, no. 3, pp. 1042–1059, Jul. 2008.

[8] J. W. Koch and M. Feldmann, “Cluster tracking under kinematical
constraints using random matrices,” Robotics and Autonomous Systems,
vol. 57, no. 3, pp. 296–309, Mar. 2009.

[9] M. Feldmann, D. Fränken, and J. W. Koch, “Tracking of extended
objects and group targets using random matrices,” IEEE Transactions
on Signal Processing, vol. 59, no. 4, pp. 1409–1420, Apr. 2011.



16

[10] W. Wieneke and J. W. Koch, “Probabilistic tracking of multiple extended
targets using random matrices,” in Proceedings of SPIE Signal and Data
Processing of Small Targets, Orlando, FL, USA, Apr. 2010.

[11] M. Baum, M. Feldmann, D. Fränken, U. D. Hanebeck, and J. W.
Koch, “Extended object and group tracking: A comparison of random
matrices and random hypersurface models,” in Proceedings of the IEEE
ISIF Workshop on Sensor Data Fusion: Trends, Solutions, Applications
(SDF), Leipzig, Germany, Oct. 2010.

[12] D. J. Salmond and M. C. Parr, “Track maintenance using measurements
of target extent,” IEE Proceedings - Radar, Sonar and Navigation, vol.
150, no. 6, pp. 389–395, Dec. 2003.

[13] K. Granström, C. Lundquist, and U. Orguner, “Tracking Rectangular and
Elliptical Extended Targets Using Laser Measurements,” in Proceedings
of the International Conference on Information Fusion, Chicago, IL,
USA, Jul. 2011, pp. 592–599.

[14] C. Lundquist, K. Granström, and U. Orguner, “Estimating the Shape
of Targets with a PHD Filter,” in Proceedings of the International
Conference on Information Fusion, Chicago, IL, USA, Jul. 2011, pp.
49–56.

[15] H. Zhu, C. Han, and C. Li, “An extended target tracking method with
random finite set observations,” in Proceedings of the International
Conference on Information Fusion, Chicago, IL, USA, Jul. 2011, pp.
73–78.

[16] R. Mahler, Statistical Multisource-Multitarget Information Fusion. Nor-
wood, MA, USA: Artech House, 2007.

[17] ——, “Multitarget Bayes filtering via first-order multi target moments,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4,
pp. 1152–1178, Oct. 2003.

[18] B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis
density filter,” IEEE Transactions on Signal Processing, vol. 54, no. 11,
pp. 4091–4104, Nov. 2006.

[19] R. Mahler, “PHD filters for nonstandard targets, I: Extended targets,”
in Proceedings of the International Conference on Information Fusion,
Seattle, WA, USA, Jul. 2009, pp. 915–921.

[20] K. Granström, C. Lundquist, and U. Orguner, “A Gaussian mixture PHD
filter for extended target tracking,” in Proceedings of the International
Conference on Information Fusion, Edinburgh, UK, Jul. 2010.

[21] K. Panta, D. Clark, and B.-N. Vo, “Data association and track man-
agement for the Gaussian mixture probability hypothesis density filter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3,
pp. 1003–1016, Jul. 2009.

[22] D. Clark, K. Panta, and B.-N. Vo, “The GM-PHD Filter Multiple Target
Tracker,” in Proceedings of the International Conference on Information
Fusion, Florence, Italy, Jul. 2006.

[23] M. Ulmke, O. Erdinc, and P. Willett, “Gaussian Mixture Cardinalized
PHD Filter for Ground Moving Target Tracking,” in Proceedings of the
International Conference on Information Fusion, Quebec City, Canada,
Jul. 2007, pp. 1–8.

[24] G.-C. Rota, “The number of partitions of a set,” The American Mathe-
matical Monthly, vol. 71, no. 5, pp. 498–504, May 1964.

[25] C. M. Bishop, Pattern recognition and machine learning. New York,
USA: Springer, 2006.

[26] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical
learning : Data mining, inference, and prediction, 2nd ed. New York:
Springer, 2009.

[27] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful
Seeding,” in Proceedings of the ACM-SIAM symposium on Discrete
algorithms, Philadelphi, PA, USA, Jan. 2007, pp. 1027–1035.

[28] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, “The Effective-
ness of Lloyd-Type Methods for the k-Means Problem,” in Proceedings
of the IEEE Symposium on Foundations of Computer Science (FOCS),
Berkeley, CA, USA, Oct. 2006, pp. 165–174.

[29] L. Sorber, “k-means++,” 2011, accessed 30-August-
2011. [Online]. Available: [http://www.mathworks.com/matlabcentral/
fileexchange/28804-k-means++]

[30] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking: Part
I. Dynamic models,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 39, no. 4, pp. 1333–1364, Oct. 2003.

[31] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

[32] U. Orguner, C. Lundquist, and K. Granström, “Extended Target Tracking
with a Cardinalized Probability Hypothesis Density Filter,” in Proceed-
ings of the International Conference on Information Fusion, Chicago,
IL, USA, Jul. 2011, pp. 65–72.

[33] O. Erdinc, P. Willett, and Y. Bar-Shalom, “The bin-occupancy filter
and its connection to the PHD filters,” IEEE Transactions on Signal
Processing, vol. 57, no. 11, pp. 4232 –4246, Nov. 2009.

[34] R. Mahler, “PHD filters of higher order in target number,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 43, no. 4, pp.
1523–1543, Oct. 2007.

Karl Granström received the M.Sc. degree in ap-
plied physics and electrical engineering in 2008,
and the Tech.Lic. degree in automatic controlin
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