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Abstract—In Gilholm et al.’s extended target model, the num-
ber of measurements generated by a target is Poisson distributed
with measurement rate γ. Practical use of this extended target
model in multiple extended target tracking algorithms requires
a good estimate of γ. In this paper, we first give a Bayesian
recursion for estimating γ using the well-known conjugate
prior Gamma-distribution. In multiple extended target tracking,
consideration of different measurement set associations to a single
target makes Gamma-mixtures arise naturally. This causes a
need for mixture reduction, and we consider the reduction of
Gamma-mixtures by means of merging. Analytical minimization
of the Kullback-Leibler divergence is used to compute the single
Gamma distribution that best approximates a weighted sum of
Gamma distributions. Results from simulations show the merits
of the presented multiple target measurement-rate estimator.
The Bayesian recursion and presented reduction algorithm have
important implications for multiple extended target tracking, e.g.
using the implementations of the extended target PHD filter.

Index Terms—Poisson distribution, Poisson rate, Gamma dis-
tribution, conjugate prior, Bayesian estimator, extended target,
PHD filter, mixture reduction, Kullback-Leibler divergence.

I. INTRODUCTION

In target tracking, the assumption is often made that a target
gives rise to at most one measurement per time step, see e.g.
[1]. However, in extended target tracking this assumption is
relaxed, and the extended targets are modeled as potentially
giving rise to more than one measurement per time step. In
an extended target tracking scenario it is therefore of interest
to model the number of measurements that each target gives
rise to.

One such model is given by Gilholm et al. [2], where
the measurements are modeled as an inhomogeneous Poisson
point process. At each time step, a Poisson distributed random
number of measurements are generated, distributed around
the target. Mahler has given an extended target Probability
Hypothesis Density (PHD) filter under this model [3], and
a Gaussian Mixture implementation of this filter, called the
Extended Target Gaussian Mixture PHD (ET-GM-PHD) filter,
has been presented [4], [5]. A Gaussian inverse Wishart
implementation of [3], called the Gaussian inverse Wishart
PHD (GIW-PHD) filter is presented in [6]. The measurement
model [2] can be understood to imply that the extended target
is sufficiently far away from the sensor for the measurements
to resemble a cluster of points, rather than a geometrically

structured ensemble, see e.g. [4], [5] for simulation examples.
However, the ET-GM-PHD filter and GIW-PHD filter have also
been applied successfully to data from laser range sensors,
which give (highly) structured measurements, see [5]–[7].

In the extended target PHD filter the Poisson rate γ is
modeled as a function of the extended target state x, i.e.
γ , γ (x). In the ET-GM-PHD filter γ is approximated as
a function of the extended targets’ state estimates [5]. It has
been noted that having a good estimate γ̂ of the true parameter
is important when multiple targets are spatially close [5]. More
specifically, under the assumption that the true rate is constant
and equal for all targets, the true parameter must lie in the
interval

γ̂ −
√
γ̂ ≤ γ ≤ γ̂ +

√
γ̂ (1)

for the estimated cardinality to be correct [5]. However, in the
most general case the rates are neither constant over time, nor
equal for all extended targets. It might also be the case that the
true function γ( · ) is difficult to model, or even time-varying.
All of these issues raise the need for a method to estimate
individual Poisson rates for multiple extended targets.

In this paper we consider multiple extended targets under
the measurement model [2]. The set of extended targets at
time tk is denoted

Xk =
{
x

(i)
k

}Nx,k

i=1
. (2)

At each time step, the number of measurements generated by
the i:th target is a Poisson distributed random variable with
rate γ(i)

k . The measurement set at time tk, denoted

Zk =
{
z

(j)
k

}Nz,k

j=1
, (3)

is the union of all target measurements and the clutter mea-
surements. The number of clutter measurements generated at
each time step is assumed to be Poisson distributed with rate
λk. Let Zk denote all measurement sets up to, and including,
time tk. We assume the existence of an underlying multiple
extended target tracker that estimates the target states x(i)

k , e.g.
[4], [5]. The set of measurements that are used to update the
state of the i:th target at time tk is denoted Z

(i)
k .



The first objective of this work is to estimate the set of
measurement rates γ(i)

k , given sequences of measurement sets

Zk,(i) ,
{
Z

(i)
0 , . . . ,Z

(i)
k

}
, i = 1, . . . , nx,k. (4)

To this end, in Section II we give a recursive Bayesian esti-
mator for γ(i)

k , with exponential forgetting for the prediction
step. We also show how the predicted likelihood is affected
when the measurement rates γ(i)

k are estimated in addition to
estimating the target states x

(i)
k .

In the multiple target case under clutter and missed detec-
tions, there might be multiple alternative measurement sets
(corresponding to different association hypotheses)

Z
(i1)
k ,Z

(i2)
k , . . . ,Z

(iNi
)

k (5)

that are used to update the i:th target state at time tk. In
this case, the state densities of the targets are represented
by mixture densities. As time progresses, the number of
mixture components grow. To obtain computationally tractable
algorithms, hypothesis reduction must be performed, e.g. via
pruning or merging.

The second objective of this work is to show how a mixture
of γ estimates can be reduced. In Section III, we consider
merging a weighted sum of measurement rate estimates by
minimization of the Kullback-Leibler divergence, and we also
give a criterion that is used to determine whether or not two
components should be merged.

The proposed Bayesian estimator and merging method is
evaluated in Simulations in Section IV, and the paper is
finalized with concluding remarks in Section V.

II. BAYESIAN RECURSION FOR γk

In this section, we consider recursive estimation of the
i:th target’s measurement rate γ

(i)
k from the sequence of

measurement sets Zk,(i). We also show how estimating the
measurement rate affects the resulting extended target pre-
dicted likelihood. Since we consider only the i:th target, from
this point on in this section, we suppress the superscript (i).

A. Measurement update and prediction

The conjugate prior to the Poisson distribution is well
known to be the Gamma distribution, see e.g. [8]. Assume
that at time tk the prior distribution for the Poisson rate γk is
a Gamma distribution,

p
(
γk|Zk−1

)
=GAM

(
γk ; αk|k−1, βk|k−1

)
(6)

=
β
αk|k−1

k|k−1

Γ
(
αk|k−1

)γαk|k−1−1

k e−βk|k−1γk . (7)

Let the k:th measurement set Zk contains Nz,k elements,
where Nz,k is Poisson distributed with rate γk,

p (Nz,k|γk) =PS (Nz,k; γk) (8)

=
γ
Nz,k

k e−γk

Nz,k!
. (9)

The posterior distribution is

p
(
γk|Zk

)
=GAM

(
γk ; αk|k−1, βk|k−1

)
PS (Nz,k; γk)

(10a)

=
β
αk|k−1

k|k−1 γ
αk|k−1+Nz,k−1

k e−(βk|k−1+1)γk

Γ
(
αk|k−1

)
Nz,k!

(10b)

=GAM
(
γk ; αk|k−1 +Nz,k, βk|k−1 + 1

)
(10c)

×
Γ
(
αk|k−1 +Nz,k

)
β
αk|k−1

k|k−1

Γ
(
αk|k−1

) (
βk|k−1 + 1

)αk|k−1+Nz,k Nz,k!

=GAM
(
γk ; αk|k, βk|k

)
× Lγ

(
αk|k−1, βk|k−1, Nz,k

)
, (10d)

where the predicted likelihood Lγ( · ) is a negative binomial
distribution, see e.g. [8].

In case the true parameter is known to be constant over time,
the posterior distribution can be predicted as p

(
γk|Zk

)
=

p
(
γk|Zk−1

)
. However, in the general case γk may change

over time. We propose to use exponential forgetting with a
forgetting factor 1

ηk
for the prediction of γk,

αk+1|k =
αk|k
ηk

, βk+1|k =
βk|k
ηk

, (11)

where ηk > 1. This prediction has an effective window of
length we = 1

1−1/ηk
= ηk

ηk−1 . Using exponential forgetting
prediction with window length we approximately means that
we only “trust” the information that was contained in the
measurements from the last we time steps.

The expected value and variance of γk are

E [γk] =
αk|k
βk|k

, Var (γk) =
αk|k
β2
k|k

. (12)

Note that the prediction (11) corresponds to keeping the
expected value constant while increasing the variance with a
factor ηk > 1.

B. Extended target predicted likelihood

The measurement update and corresponding predicted like-
lihood is an important part of any framework for multiple
target tracking under uncertain association and clutter. Let ξk
denote the augmented extended target state,

ξk = (γk,xk) . (13)

Given a set of measurements Zk and a prior distribution
p
(
ξk|Zk−1

)
, the posterior distribution is

p
(
ξk|Zk

)
=p (Zk|ξk) p

(
ξk|Zk−1

)
(14a)

=p (Zk|ξk) p
(
γk|Zk−1

)
p
(
xk|Zk−1

)
. (14b)

Note that there is an implicit assumption here that
the prior distribution p

(
ξk|Zk−1

)
can be factorized as

p
(
γk|Zk−1

)
p
(
xk|Zk−1

)
. This assumption neglects the de-

pendence between the number of measurements and any ex-
tension parameters that are included in xk. However the prob-
ability density over the number of measurements, conditioned



on the target extension, is unknown in most applications, and
we believe that this assumption is valid in most cases.

Assume also that the measurement likelihood can be de-
composed as

p (Zk|ξk) = p (Zk, Nz,k|ξk) = p (Nz,k|γk) p (Zk|xk) . (15)

The validity of this assumption is also dependent on the
considerations mentioned above. The posterior distribution and
predicted likelihood is

p
(
γk|Zk

)
p
(
xk|Zk

)︸ ︷︷ ︸
posterior

×Lγ
(
αk|k−1, βk|k−1, Nz,k

)
Lx

(
x̌k|k−1,Zk

)︸ ︷︷ ︸
predicted likelihood

, (16)

where x̌k|k−1 denotes the sufficient statistics of xk. Thus,
any extended target tracking framework that estimates the
states xk can be augmented to also include estimates of the
measurement rates γk.

In the results section below we give an example where
we integrate γk estimation into the ET-GM-PHD filter [4],
[5]. The posterior distribution for γk and the corresponding
predicted likelihood Lγ( · ) are given in (10d). The details for
the posterior distribution and predicted likelihood for xk, as
well as the full filter recursion, can be found in [4], [5].

III. MULTI-TARGET MIXTURE REDUCTION

A straightforward way to model uncertainty in multiple
target tracking is to use mixtures of distributions, see e.g. the
Multi-hypothesis Tracking filter [9], or the Gaussian Mixture
PHD-filters [4], [5], [10]. Let p( · ) be a mixture of distributions,

p (ξk) =

Jk|k∑
j=1

wjpj (ξk) (17)

=

Jk|k∑
j=1

wjGAM
(
γk ; α

(j)
k|k, β

(j)
k|k

)
p
(
xk; x̌

(j)
k|k

)
where each distribution pj is called component. A common
choice is to model the state xk as Gaussian distributed, see
e.g. [4], [5], [9], [10], which would give a Gamma Gaussian
(GG) distributed extended target ξk. In Koch’s random matrix
framework [11], the extent is modeled as an inverse Wishart
distributed random matrix Xk, and the kinematic parameters1

are modeled as a random vector xk. In this case we have
ξk = (γk,xk, Xk), and (17) would be a mixture of Gamma
Gaussian inverse Wishart distributions.

A natural consequence of the tracking frameworks [4], [5],
[9], [10] is the increasing number of mixture components, or
hypotheses. To keep the target tracking implementation at a
tractable level, the mixture must be reduced regularly, which
is typically performed via pruning or merging. The output of

1Position, velocity and acceleration.

mixture reduction is an approximate mixture,

p̃ (ξk) =

J̃k|k∑
j=1

wj p̃j (ξk) (18)

=

J̃k|k∑
j=1

wjGAM
(
γk ; α̃

(j)
k|k, β̃

(j)
k|k

)
p
(
xk; ˜̌x

(j)
k|k

)
,

where J̃k|k < Jk|k and the difference between p( · ) and p̃( · )
is small by some measure. Here we address mixture reduction
via component merging.

One approach to merging is to successively find component
pairs that are close by some merging criterion, and merge
them, see e.g. [4], [5], [10]. Different methods for merging of
Gaussian mixtures are given in e.g. [12]–[16], a method for
merging of Gaussian inverse Wishart mixtures is given in [17].
In Section III-A we give a theorem which is used to find the
Gamma distribution q( · ) that minimizes the Kullback-Leibler
divergence between w̄q( · ) and the sum p = Σi∈Lwipi, where
w̄ = Σi∈Lwi and L ⊆

{
1, . . . , Jk|k

}
.

When the extended targets are modeled with a mixture
(17), the merging criterion should consider both parts of the
components, i.e. the distributions of both γk and xk. Different
merging criteria for Gaussian distributions are given in e.g.
[4], [5], [10], [12]–[16]. In Section III-B we give a merging
criterion for mixtures of Gamma distributions.

A. Merging N Gamma components

The Kullback-Leibler divergence (KL-div),

KL (p||q) =

∫
p(x) log

(
p(x)

q(x)

)
dx, (19)

is a measure of how similar two functions p and q are.
The KL-div is well-known in the literature for its moment-
matching characteristics, see e.g. [18], [19], and for probability
distributions it is considered the optimal difference measure in
a maximum likelihood sense [13]–[15]. Note that minimizing
the KL-div between p and q w.r.t. q can be rewritten as a
maximization problem,

min
q

KL (p||q) = max
q

∫
p(x) log (q(x)) dx. (20)

Theorem 1: Let p( · ) be a weighted sum of Gamma com-
ponents,

p (γ) =

N∑
i=1

wiGAM (γ ; αi, βi) =

N∑
i=1

wipi (γ), (21)

where w̄ =
∑N
i=1 wi. Let

q (γ) = w̄GAM (γ ; α, β) (22)

be the minimizer of the KL-div between p (γ) and q (γ) among
all Gamma distributions, i.e.

q (γ) , arg min
q(γ)∈GAM

KL (p (γ) ||q (γ)) . (23)



Then the parameter β is given by

β =
α

1
w̄

∑N
i=1 wi

αi

βi

, (24)

and the parameter α is the solution to

0 = logα− ψ0 (α) +
1

w̄

N∑
i=1

wi (ψ0 (αi)− log βi)

− log

(
1

w̄

N∑
i=1

wi
αi
βi

)
. (25)

�
Proof: Given in Appendix A.
Remarks: The expression for β (24) corresponds to match-

ing the expected values under both distributions q and p,

w̄Eq [γ] =

N∑
i=1

wi Epi [γ] . (26)

The expression for α (25) corresponds to matching the ex-
pected values of the logarithm under both distributions q and
p,

w̄Eq [log γ] =

N∑
i=1

wi Epi [log γ] . (27)

A value for the parameter α is easily obtained by applying
a numerical root finding algorithm to (25), e.g. Newton’s
algorithm, see e.g. [20].

B. Merging criterion for Gamma components

In this section we derive a criterion that is used to determine
whether or not two Gamma components should be merged.
When reducing the number of components, it is preferred to
keep the overall modality of the mixture. Thus, if the initial
mixture p ( · ) has M modes, then the reduced mixture p̃ ( · )
should have M modes.

The optimal solution to this problem is to consider every
possible way to reduce Jk|k components, compute the corre-
sponding KL-div:s, and then find the best trade-off between
low KL-div and reduction of Jk|k. For Jk|k components, there
are BJk|k different ways to merge, where Bi is the i:th
Bell number [21]. Because Bi increases rapidly with i, e.g.
B5 = 52 and B10 = 115975, the optimal solution can not be
used in practice.

Instead a merging criterion must be used to determine
whether or not a pair of Gamma components should be
merged. As merging criterion the KL-div could be used,
however because it is asymmetrical,

KL (p||q) 6= KL (q||p) , (28)

it should not be used directly. Instead we use the Kullback-
Leibler difference (KL-diff), defined for two distributions p (γ)

and q (γ) as

DKL (p (γ) , q (γ))

=KL (p (γ) ||q (γ)) + KL (q (γ) ||p (γ)) (29a)

=

∫
p (γ) log

(
p (γ)

q (γ)

)
dγ +

∫
q (γ) log

(
q (γ)

p (γ)

)
dγ.

(29b)

Let p (γ) and q (γ) be defined as

p (γ) =GAM (γ ; α1, β1) , (30a)
q (γ) =GAM (γ ; α2, β2) . (30b)

The KL-div between p( · ) and q( · ) is

KL (p (γ) ||q (γ))

=α1 log β1 − log Γ(α1) + (α1 − 1) (ψ0 (α1)− log β1)

− α1 − α2 log β2 + log Γ(α2)

− (α2 − 1) (ψ0 (α1)− log β1) + β2
α1

β1
(31a)

= log

(
βα1

1

βα2
2

)
+ log

(
Γ(α2)

Γ(α1)

)
+ (α1 − α2) (ψ0 (α1)− log β1) + α1

(
β2

β1
− 1

)
, (31b)

and the KL-div between q and p is defined analogously. The
KL-diff between p and q becomes

DKL (p (γ) , q (γ))

= (α1 − α2)

(
ψ0 (α1)− ψ0 (α2) + log

β2

β1

)
(32)

+ (β2 − β1)

(
α1

β1
− α2

β2

)
.

C. Merging of extended target components

When merging is used to reduce an extended target mixture
(17), the merging criterion should be defined over both γk
and xk. For example, the following merging criterion could
be used

DKL (pi (ξk) , pj (ξk)) < U, (33)

where DKL( · ) is the KL-diff between two extended target
components. Owing to the assumed conditional independence
of the distributions over γk and xk in (14), the KL-diff can
expressed as a sum

DKL (pi (ξk) , pj (ξk)) = Dγ
KL (i, j) +Dx

KL (i, j) , (34)

where Dγ
KL (i, j) = DKL (pi(γ), pj(γ)) is given in (32)

and Dx
KL (i, j) = DKL (pi(x), pj(x)). Thus, the following

merging criterion could alternatively be used(
Dγ

KL (i, j) < Uγ

)
&
(
Dx

KL (i, j) < Ux

)
, (35)

where & is the logical and operator. In case xk is Gaussian
distributed, possible merging criterions Dx

KL (i, j) are given in
e.g. [10], [12].
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Fig. 1. KL-diff for two Gamma distributions, when α2 = aα1 = a10 and
β2 = bβ1. When a ≈ b, the expected value is approximately the same for
both distributions, and the the ratio of the variances is 1/b. This explains the
elongated shape of the KL-diff along a ≈ b.
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Fig. 2. Merging of 20 Gamma components, using the merging method
and criterion of Section III. The reduced mixture has 7 components and has
preserved the overall modality.

IV. RESULTS

A. Merging criterion

Letting α2 = aα1 and β2 = bβ1, the KL-diff simplifies to

DKL (p (γ) , q (γ))

=α1 (1− a) (log b+ ψ0(α1)− ψ0(aα1))

+ α1 (b− 1)
(

1− a

b

)
, (36)

i.e. it becomes independent of the specific value of β1. It can
be shown that, for given a and b, a larger α1 means a larger
KL-diff. For α1 = 10, the KL-diff is shown in Figure 1.

B. Comparison of merging algorithms

An intensity p (γ) with 20 Gamma components was re-
duced using the merging method and criterion presented in
Section III. The Gamma mixture parameters were sampled
uniformly from the following intervals,

wi ∈ [0.05 , 0.95] , αi ∈ [50 , 2500] , βi ∈ [5 , 50] , (37)

i.e. αi and βi were sampled such that the expected value and
variance of γ belongs to [10 , 50] and [1 , 2], respectively.
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(b) ηk = 1.10, we = 11
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(c) ηk = 1.25, we = 5
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Fig. 3. Single target results. (a): The true rate γk varied between γ0 = 5 and
γ0 + γ1 = 35. (b), (c) and (d): The solid line shows the average estimation
error, the gray area is the average estimation error ± one standard deviation,
and the dashed lines are the bounds ±

√
γ̂, c.f. (1). A higher ηk gives a lower

average estimation error, however the estimation error also has much larger
standard deviation.

The original mixture and the approximation are shown in
Figure 2. The reduced mixture has 7 components, and manages
to capture the overall modality of the original mixture.

C. Single target results

A single target with time varying γ was simulated for 150
time steps, the true measurement rate varied with time as
shown in Figure 3a. The estimation error, averaged over 104

Monte Carlo runs, is shown in Figures 3b, 3c and 3d, for
ηk = 1.10, ηk = 1.25 and ηk = 2.25, respectively. With a
higher ηk, the estimate responds faster to changes in the true
parameter, at the expense of being more sensitive to noise.
As with any prediction and correction recursion, setting the
parameter requires a trade off between noise cancellation and
tracking capabilities.

D. Multiple target results

The Bayesian γk estimator was integrated into the Gaussian
Mixture Probability Hypothesis Density (ET-GM-PHD) filter
[4], [5]. A scenario with three targets was simulated for 100

time steps, the true Poisson rates were set to γ(1)
k = 5, γ(2)

k =

15 and γ(3)
k = 30. Estimation results for ηk = 1.25 are shown

in Figure 4a. The estimates

γ̂
(i)
k|k =

α
(i)
k|k

β
(i)
k|k

(38)

are a bit noisy, however they remain within the bounds given
by

γ
(i)
k ±

√
γ

(i)
k , (39)

i.e. the true mean ± one standard deviation. With ηk = 1.01
the estimation error is much smaller, see Figure 4b. However,
as discussed previously, with a low ηk the response to changes
in the true parameter would be slower.
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Fig. 4. Three targets with true rates γ(1)k = 5, γ(2)k = 15 and γ(3)k = 30,
shown as dark gray lines. The estimates γ̂(i)

k|k , shown as black dots, remain

within the bounds γ(i)k ±
√
γ
(i)
k , i.e. the true mean ± one standard deviation,

shown as light gray areas. The same sequence of measurement sets is used
in (a) and (b), with different ηk .

V. CONCLUDING REMARKS

This paper presented a Bayesian estimator for the rate
parameter γ of a Poisson distribution. The conjugate prior of
γ is the Gamma distribution, and, using exponential forgetting
prediction, it is possible to track a rate γ that changes
over time. To manage multiple targets with different rates, a
mixture of Gamma distributions is utilized. Mixture reduction
is addressed, where components are merged via analytical
minimization of the Kullback-Leibler divergence between a
weighted sum of Gamma distributions and the single Gamma
distribution that best approximates the sum. A simulation study
was used to show the merits of the Poisson rate estimation
framework.

In future work, we intend to integrate the rate estimation
fully into the Gaussian mixture and Gaussian inverse Wishart
extended target PHD filters. Having a good estimate of the
measurement rate could have important implications for the
performance, especially during the measurement partitioning
step. Future work also includes improving upon the expo-
nential forgetting prediction. The number of measurements
generated can be affected by the extended target’s position,
as well as its shape and size. Including the estimated position,
size and shape in the prediction step could possibly improve
tracking of Poisson rates that change over time.

APPENDIX A
PROOF OF THEOREM 1

First we derive an expected value which is needed in the
proof of Theorem 1.

A. Expected value of logarithm
Let y be a uni-variate random variable. The moment gen-

erating function for y is defined as

µy (s) , Ey [esy] , (40)

and the expected value of y is given in terms of µy (s) as

E [y] =
dµy (s)

ds

∣∣∣∣
s=0

. (41)

Let y = log γ, where γ ∼ GAM (γ ; α, β). The moment
generating function of y is

µy (s) = E [γs] (42a)

=

∫
γs

βα

Γ (α)
γα−1e−βγdγ (42b)

=
βα

Γ (α)

Γ (s+ α)

βs+α

∫
GAM (γ ; s+ α, β) dγ (42c)

=
Γ (s+ α)

Γ (α)βs
. (42d)

The expected value of y is

E [y] = E [log γ] (43a)

=
d

ds

(
Γ (s+ α)

Γ (α)βs

)∣∣∣∣
s=0

(43b)

=

(
d
dsΓ (s+ α)

Γ (α)βs

)∣∣∣∣∣
s=0

+

(
Γ (s+ α)

Γ (α)

d

ds
β−s

)∣∣∣∣
s=0

(43c)
=ψ0 (α)− log β (43d)

where ψ0( · ) is the digamma function (a.k.a. the polygamma
function of order 0).

B. Proof
Proof: We have q( · ) given as

q(γ) ,arg min
q

KL(p||q) (44a)

=arg max
q

∫
p(γ) log(q(γ))dγ (44b)

=arg max
q

N∑
i=1

wi

∫
pi (γ) log (q (γ)) dγ, (44c)

where the i:th integral is∫
pi (γ) log (q (γ)) dγ

=

∫
pi (γ) [α log β − log Γ(α) + (α+ 1) log γ − βγ] dγ

=α log β − log Γ(α) + (α− 1) Ei [log γ]− β Ei [γ]

=α log β − log Γ(α) + (α− 1) (ψ0 (αi)− log βi)− β
αi
βi
.

(45)



Taking the derivative of the objective function with respect to
β, equating the result to zero, and solving for β, we get

β =
α

1
w̄

∑N
i=1 wi

αi

βi

. (46)

Now, we take the derivative of the objective function with
respect to α and equate the result to zero to obtain

0 =

N∑
i=1

wi (log β − ψ0 (α) + ψ0 (αi)− log βi) (47)

=w̄ log β − w̄ψ0 (α) +

N∑
i=1

wi (ψ0 (αi)− log βi) . (48)

Inserting β and rearranging the terms we obtain

0 = logα− ψ0 (α) +
1

w̄

N∑
i=1

wi (ψ0 (αi)− log βi)

− log

(
1

w̄

N∑
i=1

wi
αi
βi

)
. (49)
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