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Abstract— For linear and hybrid systems, constrained time-
optimal control was shown to be a low complexity alternative
to the explicit solution of the constrained finite-time-optimal
control problem. In this paper we show how Ṕolya’s relaxation
can be employed to compute minimum-time controllers for
discrete-time LPV systems. Contrary to previous publications,
our approach allows the use of parameter-varying input matri-
ces. In a comparison over 20 random system, it is shown that
compared to explicit LPV-MPC the proposed approach achieves
similar or even better control performance, while reducing
the complexity of the resulting controller up to an order of
magnitude.

I. I NTRODUCTION

Linear Parameter-Varying (LPV) systems constitute a
powerful system class, incorporating a whole family of
linear systems. They are used to model linear systems,
whose dynamics depend on external scheduling signals, or
to embed nonlinear systems. LPV systems mainly appear in
gain-scheduling to expand the applicability of linear control
techniques to some extent to nonlinear systems, [1]. Instead
of interpolating control laws, the interpolation is brought to
the modelling level, allowing for a-priori statements related
to stability and control performance. Control of LPV sys-
tems stems from robust control and relies on semidefinite
programming.

Also the Model Predictive Control (MPC) community has
considered LPV systems in the past, enabling finite-horizon
optimal control under state and input constraints, [2]. Since
MPC requires the solution of an optimization problem in
each sampling interval (a semidefinite program in the case of
LPV systems, [2]), its application is limited to systems with
sufficiently slow dynamics. A remedy for small systems is
explicit MPC, the a-priori computation of the optimal control
law. Recently, an explicit MPC scheme was proposed for
LPV systems, [3]. This scheme is based on multi-parametric
programming and thus shares also its shortcomings as high
complexity of the resulting control law.

In [4] was shown for linear systems that minimum-time
control can be a low complexity alternative for explicit
MPC. The complexity of the control laws could be reduced
by an order of magnitude, while yielding close to optimal
control performance. In minimum-time control, instead of
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minimizing an objective function, the number of time steps
to converge to a terminal region is minimized. The main
benefit is that the required computations are computation-
ally less demanding. Therefore time-optimal control can be
applied to systems of higher dimensions and/or for a longer
prediction horizon. Moreover, if the control applied inside
the terminal region is stabilizing and renders the terminal
region invariant, the controller obtained using minimum-time
control is stabilizing.

Contrary to previous schemes (e.g. in [5]), we consider
the general class of discrete-time LPV systems, i.e. we do
not restrict our attention to constant input matrices. The
consequences of a varying input matrix are more extensive
than one might expect, because it results in the closed-loop
system leaving the class of polytopic systems.

Notation

The following notation is used throughout this paper.
Bracketed superscripts(·)[j] denote indices and not expo-
nents. Calligraphic letters are used for uncountable sets,
while fat capital letters are used for sets with a finite number
of elementsX = {x1, . . . , xn}. 1 denotes a column vector
with ones,1 = [1, . . . , 1]T , O a zero matrix of appropriate
dimensions. Element-wise inequalities are denoted by≤,
while � denotes matrix inequalities.

II. PRELIMINARIES

A. Set-theoric Basics

This section contains some useful set-theoretic basics for
discrete-time systems under the influence of a scheduling
parameter. A profound treatment of set-theoretic methods in
control can be found in [5], and the references herein. First
we consider the discrete-time system

xk+1 = f(xk, θk) (1)

with the statexk under state constraints

xk ∈ X ⊂ Rnx , (2)

and with the scheduling parameterθk living in a bounded
set,

θk ∈ Θ ⊂ Rnx . (3)

Definition 1: (Robust Invariant Set). A setO ⊆ X is said
to be a robust (positive) invariant set for system (1) subject to
the constraints (2) – (3), if∀xk ∈ O alsoxk+1 ∈ O ∀θk ∈ Θ.

Definition 2: (Maximal Robust Invariant SetO∞). The set
O∞ is the maximal robust invariant set of system (1) subject
to the constraints (2) – (3), ifO∞ is robust invariant, contains



the origin and contains all robust invariant sets inX that
contain the origin.

The maximal robust invariant (MRI) setO∞ can be com-
puted by making repeated use of presets, see Algorithm 1.

Definition 3: (PresetΩ(Z)). The presetΩ(Z) contains all
states which are mapped toZ by system equation (1) subject
to the constraints (2) - (3),

Ω(Z) = {x ∈ X|f(x, θ) ∈ Z ∀θ ∈ Θ} . (4)
The computation of presets for LPV systems will be shown
in Section III.

Algorithm 1 Computation of MRI setO∞

Z0 = X
Z1 = Ω(Z0)
i = 1
while Zi 6= Zi−1 do
Zi+1 = Ω(Zi)
i = i + 1

end while
O∞ = Zi

Now consider the non-autonomous discrete-time system

xk+1 = f(xk, uk, θk) , (5)

where the statexk, the inputsuk and the scheduling para-
meterθk are constrained,

xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu , θk ∈ Θ ⊂ Rnθ . (6)

Analogue to robust invariant sets for system (1), control
invariant sets are defined for system (5) subject to the con-
straints (6). Depending on the availability of the scheduling
parameterθk for feedback, two classes of control invariant
sets are distinguished. If the scheduling parameter is un-
known or not used for feedback purposes,uk = µ(xk), we
consider the robust control invariant set.

Definition 4: (Robust Control Invariant SetCR). A set
CR ⊆ X is said to be a robust control invariant set for the
system (5) subject to the constraints (6), if∀xk ∈ CR ∃uk ∈
U : xk+1 = f(xk, uk, θk) ∈ CR ∀θk ∈ Θ.
On the other hand, if the scheduling parameter is used for
feedback,uk = µ(xk, θk), the corresponding set is the gain-
scheduling control invariant set.

Definition 5: (Gain-Scheduling Control Invariant Set
CGS). A setCGS ⊆ X is said to be a gain-scheduling control
invariant set for the system (5) subject to the constraints (6),
if ∀xk ∈ CGS ∀θk ∈ Θ : ∃uk ∈ U : xk+1 = f(xk, uk, θk) ∈
CGS.

Analogue to Def. 2 the Maximal Robust / Gain-Scheduling
Control Invariant Sets are defined.

Definition 6: (Maximal Robust Control Invariant Set
CR,∞). The setCR,∞ is said to be the maximal robust control
invariant set for the system (5) subject to the constraints (6),
if CR,∞ is robust control invariant and contains all robust
control invariant sets contained inX .

Definition 7: (Maximal Gain-Scheduling Control Invari-
ant SetCGS,∞). The setCGS,∞ is said to be the maximal

gain-scheduling control invariant set for the system (5)
subject to the constraints (6), ifCGS,∞ is gain-scheduling
control invariant and contains all gain-scheduling control
invariant sets contained inX .
Since we are interested in control of LPV systems, where
the scheduling parameterθk is known and used for feedback,
we restrict our attention from now on to the gain-scheduling
case, and drop the subscriptGS. Analogue to Def. 3, the
definition of presets can be stated for the non-autonomous
system (5) under gain-scheduling control.

Definition 8: (PresetΩ(Z)). For non-autonomous systems
(5) subject to the constraints (6), the presetΩ(Z) of a setZ
is defined as

Ω(Z) = {x ∈ X|∀θ ∈ Θ ∃u ∈ U : f(x, u, θ) ∈ Z } . (7)
The maximal gain-scheduling control invariant (MGSCI) set
C∞ can be computed using Algorithm 2.

Algorithm 2 Computation of MGSCI setC∞
Z0 = X
Z1 = Ω(Z0)
i = 1
while Zi 6= Zi−1 do
Zi+1 = Ω(Zi)
i = i + 1

end while
C∞ = Zi

B. Minimum Time Control

This section restates the computation of time-optimal con-
trollers for linear discrete-time systems under the influence
of a scheduling parameter. The task to reach a target setT
in the minimal number of time steps can be stated as

min
[U,N ]

N (8a)

s.t. ∀θk ∈ Θ, k = 0, . . . , N − 1 : (8b)

xk+1 = f(xk, uk, θk), k = 0, . . . , N − 1 (8c)

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1 (8d)

xN ∈ T , (8e)

where the control inputs are merged toU =
{u0, . . . , uN−1}. The optimization problem (8) can be
solved by applying Algorithm 2, initialized withZ0 = T . In
each iteration the setZi is stored together with the control
law u = µi(x, θ), which steers the state intoZi−1. Online,
we measure or estimate statex0 and scheduling parameter
θ0, solve

i∗ = min
i

i (9a)

s.t. x0 ∈ Zi , (9b)

and apply the control lawu = µi∗(x0, θ0) associated to
Zi∗ . This procedure guarantees the convergence of (5) to
the target regionT in the minimal number of time steps.
Moreover, if a stabilizing control law is applied for states
insideT , and ifT is robust invariant under this control, then



feasibility of the minimum-time controller implies recursive
constraint satisfaction and stability.

C. Pólya’s Relaxation

Pólya’s relaxation allows the reformulation of constraints,
which depend polynomially on the scheduling parameter into
sufficient parameter-independent constraints. The relaxation
is based on Pólya’s theorem.

Theorem 1:Pólya’s theorem. If a homogeneous poly-
nomial p(θ) is positive on the standard simplexΘ, all
coefficients ofpNp

(θ) = p(θ) · (
∑nθ

j=1 θ[j])Np are positive
for a sufficiently large Pólya degreeNp.

Proof: See [6], [7].
In the remaining part of the paper, we will repeatedly

make use of the more obvious reverse of Pólya’s theorem1,
i.e., positive coefficients of the extended polynomial mean
positivity over the whole simplex. By applying Pólya’s
relaxation, we mean the processing of the following steps:

1) Reformulate constraints which are polynomial in the
scheduling parameter into a positivity constraint of a
polynomialp(θ).

2) Homogenize the polynomialp(θ) by multiplying single
monomials with

∑nθ

j=1 θ[j](= 1) until all monomials
have the same degree.

3) Set the Pólya degreeNp, and compute the coefficients
cNp

of the extended polynomialpNp
(θ) = p(θ) ·

(
∑nθ

j=1 θ[j])Np . In this step some conservatism may
be introduced depending on the selection ofNp. By
increasing the polynomial degreeNp, the relaxations
become tighter until the exact problem is considered.

4) Replace the polynomial constraint bycNp
> 0.

III. M AIN RESULTS

From now on, we consider the LPV system

xk+1 = A(θk)xk + B(θk)uk . (10)

subject to polytopic state and input constraints

xk ∈ X = {x|Hxx ≤ 1}, uk ∈ U = {u|Huu ≤ 1} ,

(11)
containing the origin in their interiors. The scheduling pa-
rameter vectorθk = [θ

[1]
k , . . . , θ

[nθ ]
k ]T is measured online.

Future values are however only known to lie in a standard
nθ-simplexΘ in the parameter space,

θk ∈ Θ := {θk ∈ Rnθ

+ |

nθ
∑

j=1

θ
[j]
k = 1}. (12)

The parameter-varying matricesA(θk) and B(θk) are
known to lie in polytopes,

A(θk) =

nθ
∑

j=1

Ajθ
[j]
k , B(θk) =

nθ
∑

j=1

Bjθ
[j]
k , (13)

whereAj andBj denote thej-th vertices of the polytopes.
This polytopic description is a common assumption in the

1The presented usage of Pólya’s theorem is implemented in YALMIP as
one of the so called filters in the robust optimization framework, [8].

LPV framework, see e.g. [1]. For the control problem to
make sense, it is assumed that the system (10) is controllable
(and observable) for allθk ∈ Θ, see [9], [10].

The objective is to compute a stabilizing minimum-time
controller as in Section II-B for the LPV system (10) which
takes knowledge of the scheduling parameter into account,

uk = µ(xk, θk) . (14)

The computation of a minimum-time controller for the
LPV system (10) consists of three steps, in order to determine
(i) a terminal controller for the terminal regionT , (ii) the
terminal regionT itself, which should be robust invariant
under the terminal control, and (iii) the control lawsµi(x, θ)
which steer the state in the minimal number of steps toT .

Unfortunately, taking the scheduling parameter into ac-
count (14) renders the closed-loop system polynomially2

dependant on the scheduling parameter, such that the set of
states which can be mapped into a polytope under (14) is an
intersection of infinitely many polytopes, thus convex, butnot
necessarily a polytope itself. In the following we propose to
employ Pólya’s relaxation (Section II-C) to approximate the
MRI and MGSCI set of the LPV system (10) by polytopic
subsets, and to use these polytopic sets within the minimum-
time framework.

A. Terminal Region Control

The first step of the computations is concerned with the
control of the unconstrained system, which is to be applied
in an environment around the origin where no constraints
are active. In principle, every control technique for uncon-
strained LPV systems can be employed here, assumed it
is asymptotically stable and renders a set of states robust
invariant. A straight-forward choice is the computation of
LQR controllers for each vertex of the parameter simplex
(12), and to interpolate the obtained feedback matrices,

uk = K(θ)xk =

nθ
∑

j=1

Kjθ
[j]
k xk . (15)

In many cases this will result in a controller with satisfying
stability and performance properties. On the other hand,
guarantees can only be given for the vertices of the parameter
simplex, while stability and performance might decrease
for scheduling parameter values in the relative interior of
the simplex. Therefore we recommend to compute the state
feedback matricesKj in (15) by an approach similar to the
computation of discrete-time LQR controllers, which takes
the whole parameter simplex into account. This approach is
facilitated by a matrix-valued version of Pólya’s relaxation,
[11]. We start with the assumption of a quadratic cost
functionJ = xT

k Pxk with P symmetric and positive definit,
and require that the cost decreases in each step at least by a
quadratic stage cost,

xT
k+1Pxk+1 ≤ xT

k Pxk − xT
k Qxk − uT

k Ruk . (16)

2Assumed (14) is an affine or polynomial function of the scheduling
parameter.



Inserting the state update equation (10) and the state feedback
equation (15) yields

xT
k [(A(θk) + B(θk)K(θk))T P (A(θk) + B(θk)K(θk))

−P + Q + K(θk)T RK(θk)]xk ≤ 0 ∀θk ∈ Θ . (17)

For Eq. (17) to be fulfilled, the matrix inequality

[(A(θk) + B(θk)K(θk))T P (A(θk) + B(θk)K(θk))

−P + Q + K(θk)T RK(θk)] � 0 ∀θk ∈ Θ (18)

must hold. This matrix inequality is not linear in the ma-
trix variablesK(θk) and P . SubstitutingY := P−1 and
F (θk) := K(θk)Y , and multiplying from left and right with
Y yields

[(A(θk)Y + B(θk)F (θk))T Y −1(A(θk)Y + B(θk)F (θk))

−Y PY + Y QY + F (θk)T RF (θk)] � 0 ∀θk ∈ Θ . (19)

Applying Schur complement we obtain the linear matrix
inequality (LMI) (20) which inherits the requirementsY �
0, Q � 0, R � 0. The LMI (20) is linear in the matrix
variablesY andF (θk), but still depends polynomially on the
scheduling parameterθk. Hence we apply Pólya’s relaxation
to obtain an LMI independent of the scheduling parameter
θk. In the semidefinite program we can minimize the trace or
the largest eigenvalue ofP , to obtain the cost function with
the minimum expected/worst-case cost. The Pólya degree
Np can be chosen high since there is a strong influence
on the performance ofK(θ), but only indirect influence on
complexity through the size of the terminal regionT , which
depends on (15).

Remark 1: It is also possible to use not a constantY , but
a polynomial function of the parameterY (θk). This would
reduce the conservatism of the approach, but at the same
time lead to a controllerK(θk), which is a rational function
of the scheduling parameter.

B. Terminal Region

In the second step the terminal regionT is determined.
The terminal region is required to be robust invariant under
the unconstrained control law (15), and represents a set of
states where neither state nor input constraints (11) are active.
The terminal regionT can be computed by Algorithm 1
combined with Pólya’s relaxation. If the polytopic setZi =
{x|Hix ≤ 1} is given, its presetΩ(Zi) is

Ω(Zi) =















x

Hxx ≤ 1 ,

HuK(θ)x ≤ 1 ,

Hi(A(θ) + B(θ)K(θ))x ≤ 1 ,

∀θ ∈ Θ















. (21)

Using Pólya’s relaxation, the constraints of (21) can be
transformed into parameter-independent constraints, andwe
obtain a polytopic approximation of this preset, namely
ΩNp

(Zi) = {Hi+1x ≤ 1}.
Definition 9: (Polytopic PresetΩNp

(Zi)). A setΩNp
(Zi)

is called polytopic preset of the polytopeZi for the system
(10) subject to the constraints (11), if it contains all states

which fulfil the constraints arising when applying Pólya’s
relaxation with degreeNp to the presetΩ(Zi).
For ΩNp

(Zi) again the polytopic presetΩNp
(ΩNp

(Zi)) can
be computed. Repeated computation of polytopic presets
within Algorithm 1 yields the polytopic approximate maxi-
mum robust invariant (AMRI) setONp

∞ .
The AMRI setsONp

∞ are robust invariant and can be taken
as terminal regionT . The choice of the Pólya degreeNp

reflects a trade-off between the number of facets ofO
Np
∞

and its size. It influences not only the shape of the terminal
regionT , but also the complexity of the succeeding control
laws µi(x, θ).

Note that the robust invariance property ensures that the
state remains insideT once it has entered the terminal
region, and that this property holds independent of the actual
scheduling parameter values and no matter, how the state
feedback matrices (15) were obtained.

C. Minimum Time Iterations

After determining an invariant terminal region and termi-
nal region control, the control lawsµi(x, θ), which steer the
state in the minimal number of time steps to the terminal
region T , are computed. For this purpose Algorithm 2
is applied, while Pólya’s relaxation is employed for the
computation of polytopic presets.

In the proposed procedure, the dependence of the input
on the scheduling parameter has to be set beforehand.
This dependence can be polynomial, but due to complexity
reasons, we recommend to choose an affine dependence,

uk =

nθ
∑

j=1

θ
[j]
k u

[j]
k (xk). (22)

For notational simplicity we unite the vertex control laws to
Uk = [u

[1]
k , . . . , u

[nθ]
k ].

The control law µi(x, θ), which steers the state from
Zi+1 to Zi, is not unique, but can be selected from a
set of control laws. For this selection the following multi-
parametric program can be employed,

min
Uk

J(xk, uk) (23a)

s.t. Hxxk ≤ 1 , (23b)

Huuk ≤ 1 , (23c)

Hi(A(θk)xk + B(θk)uk) ≤ 1 , (23d)

∀θk ∈ Θ , (23e)

where the objective functionJ(xk, uk) determines the pre-
ferred selection. A possible objective function is

J(xk, uk) = max
θk

‖Qxk+1‖p + ‖Ruk‖p , (24)

wherep denotes a polytopic norm. This objective function
represents a minimization of the worst-case cost during
a one-step-ahead prediction. Analogue to [3], an epigraph
reformulation can be used to handle the maximization over
the scheduling parameter.

It is possible, but not necessary, to minimize the worst
case, since convergence toT is guaranteed, and the choice











−Y A(θk)Y + B(θk)F (θk) O O

(A(θk)Y + B(θk)F (θk))T −Y Y F (θk)T

O Y −Q−1 O

O F (θk) O −R−1









� 0 ∀θk ∈ Θ , (20)

of the objective functionJ(xk, uk) can focus entirely on
control performance. When common operating points of
the scheduling parameter[θ̄1, . . . , θ̄nθ̄

] (e.g. the vertices) are
known, it is also possible to minimize the cost predictions
for these operating points,

J(xk, uk)

=

nθ̄
∑

r=1

(A(θ̄r)xk + B(θ̄r)uk)T P (A(θ̄r)xk + B(θ̄r)uk)

+ uT
k Ruk . (25)

Since an epigraph formulation is not necessary, this objective
function can be quadratic. The matrixP can be taken from
the terminal region control, s.t. (25) reflects the infinite
horizon cost under the assumption of unconstrained state
evolution.

Compared to explicit LPV-MPC, which was presented in
[3], (23) comprises significantly fewer constraints, mainly
because the objective function takes only the current and the
succeeding step directly into account, and thus has a simpler
structure. This is the main reason for the low complexity
of minimum-time control compared to explicit LPV-MPC.
Additionally, the future scheduling parameter values are
unknown, what can lead to a broad variety of possible future
trajectories, such that the exact future costs are simply not
available. Hence it is questionable if much effort should be
spend on a trade-off between current and future costs, or if
a simple approximation of the future costs as in (25) is not
sufficient.

The Pólya degreeNp, which is applied to (23), is not
only determining the size and number of constraints of the
polytopic presetΩNp

(Zi), but also has a direct impact on
the number of constraints of the multi-parametric program
(23), and thus on the complexity of the resulting control laws
µi(xk, θk). Hence it should be selected rather low.

Remark 2: It should be noted that the resulting control law
is not a minimum-time control law in a strict sense, since
there might be states in the preset, which do not belong to
the polytopic preset, and thus are not mapped to the target
region in the minimum number of steps.

IV. N UMERICAL EXAMPLES

In order to justify claims about complexity and control per-
formance, we compared the proposed minimum-time scheme
to explicit LPV-MPC by means of 20 random examples. This
comparison is by no means a proof, but can serve as an
indicator of to be expected properties of the minimum time
scheme. For the computations we employed the NAG solver
under MPT 2.6, [12], interfaced via YALMIP, [8].

The example systems consist of two states and one input.
The scheduling parameters live in standard 2-simplices, and

the elements of the system matrices are uniformly distributed
random numbers in the interval [-1,1], i.e. also unstable
systems are considered. The state and input constraints were
chosen to be

X = {x | ‖x‖∞ ≤ 10} , U = {u | |u| ≤ 1} . (26)

Three methods were compared. The first is the minimum-
time scheme proposed in this paper, denoted bymt. The
terminal region control was computed by solving the LMI
(20), while the cost function (25) penalizing the vertex pre-
dictions was minimized during the minimum-time iterations.
The Pólya degree of the relaxations wasNp = 10 for the
terminal region controller, andNp = 2 for the terminal
region and minimum-time iterations.

The second method is the explicit LPV-MPC scheme from
[3], minimizing the ∞-norm of finite-horizon predictions
and denoted byeMPCz. We were also interested in the role
of the uncontrolled successor state (uss)z in eMPCz, thus
we included as a third method an analogue explicit LPV-
MPC scheme denoted byeMPCx, which does not utilize
the uncontrolled successor state. The Pólya degree in both
methods was set toNp = 2, and the matrixP from (20) was
used in the terminal cost.

The setup of the three methods is as follows. The stage
cost matrices are

Q =

[

1 0
0 1

]

, R = 1 . (27)

The prediction horizon (and the number of minimum-time
iterations, respectively) was set toN = 3. In all three
methods the control inputs depend affinely on the scheduling
parameter. In order to ensure a fair comparison between the
number of regions, the terminal region of the minimum-time
controller was included as terminal region constraints in the
other two methods. Thus the feasible region in principle is
the same for all three methods, and only the use of the uss
z changes the feasible region foreMPCz.

For all 20 systems, control laws were computed employing
the three mentioned methods. The computation ofeMPCz
andeMPCx for systems 13 and 19 was aborted after several
hours. The complexity of the remaining control laws is
depicted in Fig. 1. The complexity ofmt varies from about
half the complexity ofeMPCz, up to an order of magnitude
difference (system 2). The complexity ofeMPCx is usually
higher than ofeMPCz, even significantly, but there are also
systems, whereeMPCx is less complex thaneMPCz (systems
9, 20). For all systems, the offline computation time formt
was way shorter than foreMPCz andeMPCx.

In order to compare the control performance of the three
methods, the state space was gridded into 900 points, and
each point served as initial state for the systems under one
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Fig. 2: Relative average costs under the control lawsmt (black),eMPCz (gray) andeMPCx (white) for 20 example systems.

of the three control methods. The closed-loop system was
simulated for 40 time steps, and the∞-norm of the actual
stage costs were added up. The scheduling parameter values
at each time step were selected randomly in the parameter
simplex. These simulations were repeated ten times with
different scheduling parameter values (all control methods
were confronted with the same scheduling parameter values,
of course). Finally the average cost values over all grid points
and all simulations were taken. The average costs relative to
the costs ofmt are depicted in Fig. 2. For system 7,eMPCx is
not stabilizing, therefore system 7 is not included in Fig. 2.
Otherwise it can be seen thateMPCz usually outperforms
eMPCx, but sometimes yields worse performance (systems
4,10,15). The control performance ofmt is often comparable
to eMPCz, though there also exist systems where one method
outperforms the other.

What can be drawn as conclusions? First that minimum-
time MPC represents also for LPV systems a low complexity
alternative to finite-horizon optimal control with intriguing
control performance. Occasionally it even outperforms ex-
plicit LPV-MPC, likely because the terminal cost matricesP

were adapted to quadratic costs and because explicit LPV-
MPC is optimizing worst-case costs instead of average costs.
Additionally the benefit of using the ussz within explicit
LPV-MPC was demonstrated, in average improving control
performance with lower complexity. Hence the ussz should
only be disregarded in exceptions, or to avoid a possible
reduction of the set of feasible solutions.
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