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Abstract— For linear and hybrid systems, constrained time- minimizing an objective function, the number of time steps
optimal control was shown to be a low complexity alternative to converge to a terminal region is minimized. The main
to the explicit solution of the constrained finite-time-optmal benefit is that the required computations are computation-

control problem. In this paper we show how Plya’s relaxation v | d di Theref fi timal trol b
can be employed to compute minimum-time controllers for ally less demanding. 1heretore uime-optimal control can be

discrete-time LPV systems. Contrary to previous publicatons, ~applied to systems of higher dimensions and/or for a longer
our approach allows the use of parameter-varying input mati-  prediction horizon. Moreover, if the control applied insid

ces. In a comparison over 20 random system, it is shown that the terminal region is stabilizing and renders the terminal

compared to explicit LPV-MPC the proposed approach achieve  yqqiqn invariant, the controller obtained using minimumet
similar or even better control performance, while reducing . S
control is stabilizing.

the complexity of the resulting controller up to an order of ‘ . )
magnitude. Contrary to previous schemes (e.g. in [5]), we consider

the general class of discrete-time LPV systems, i.e. we do
|. INTRODUCTION not restrict our attention to constant input matrices. The
Linear Parameter-Varying (LPV) systems constitute gonsequences of a varying input matrix are more extensive
powerful system class, incorporating a whole family othan one might expect, because it results in the closed-loop
linear systems. They are used to model linear systengystem leaving the class of polytopic systems.
whose dynamics depend on external scheduling signals, gr. .
. . I%otatlon
to embed nonlinear systems. LPV systems mainly appear i
gain-scheduling to expand the applicability of linear coht ~ The following notation is used throughout this paper.
techniques to some extent to nonlinear systems, [1]. IdsteBracketed superscript§)l! denote indices and not expo-
of interpolating control laws, the interpolation is broagtx  nents. Calligraphic letters are used for uncountable sets,
the modelling level, allowing for a-priori statements teth While fat capital letters are used for sets with a finite numbe
to stability and control performance. Control of LPV sys-Of elementsX = {zi,...,2,}. 1 denotes a column vector
tems stems from robust control and relies on semidefinit&ith ones,1 = [1,...,1]”, O a zero matrix of appropriate
programming. dimensions. Element-wise inequalities are denoted<hy
Also the Model Predictive Control (MPC) community haswhile < denotes matrix inequalities.
considered LPV systems in the past, enabling finite-horizon
optimal control under state and input constraints, [2].c8in
MPC requires the solution of an optimization problem inA- Set-theoric Basics
each sampling interval (a semidefinite program in the case of This section contains some useful set-theoretic basics for
LPV systems, [2]), its application is limited to systemstwit discrete-time systems under the influence of a scheduling
sufficiently slow dynamics. A remedy for small systems isparameter. A profound treatment of set-theoretic methods i
explicit MPC, the a-priori computation of the optimal casitr control can be found in [5], and the references herein. First
law. Recently, an explicit MPC scheme was proposed fake consider the discrete-time system
LPV systems, [3]. This scheme is based on multi-parametric

Il. PRELIMINARIES

programming and thus shares also its shortcomings as high i1 = f @k, Or) 1)
complexity of the resulting control law. with the stater;, under state constraints

In [4] was shown for linear systems that minimum-time .
control can be a low complexity alternative for explicit rp € X CR™, (2)

MPC. The complexity of the control laws could be reduced 4 with the scheduling paramet@y living in a bounded
by an order of magnitude, while yielding close to optimalq;

control performance. In minimum-time control, instead of 0, €O CR™. (3)
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the origin and contains all robust invariant setsdhthat gain-scheduling control invariant set for the system (5)
contain the origin. subject to the constraints (6), f¢s . iS gain-scheduling

The maximal robust invariant (MRI) sé?,, can be com- control invariant and contains all gain-scheduling contro
puted by making repeated use of presets, see Algorithm linvariant sets contained .

Definition 3: (Presef)(Z)). The presef)(Z) contains all Since we are interested in control of LPV systems, where
states which are mapped by system equation (1) subject the scheduling parametey is known and used for feedback,
to the constraints (2) - (3), we restrict our attention from now on to the gain-scheduling
case, and drop the subscri@tS. Analogue to Def. 3, the

Q(Z) = {z € X|f(z,0) € ZV0 € O} : ) definition of presets can be stated for the non-autonomous
The computation of presets for LPV systems will be shown . .
in Section Il system (5) under gain-scheduling control.
' Definition 8: (Presef2(Z2)). For non-autonomous systems
Algorithm 1 Computation of MRI set. _(5) su_bject to the constraints (6), the preQég) of a setZ
— is defined as
Zy=X
21 =Q(20) QZ)={recX|VoecOIuecl: f(r,u,0)c Z}. (7)
L= 1 The maximal gain-scheduling control invariant (MGSCI) set
while Z; # 2,4 do Co can be computed using Algorithm 2.
Zit1 = Q(Z)
i=i+1 Algorithm 2 Computation of MGSCI sef,
end while Zo = X
O = 2; 21 =Q(20)
1=1
Now consider the non-autonomous discrete-time system Wwhile Z; # 2Z;_, do
Zit1 = Q(Z)
Tp1 = f(@g, uk, Ok) (%) i=i+1
where the state;, the inputsuy, and the scheduling para- €nd while
meterd,, are constrained, Coo = Zi

. €EXCR™, wupreUdU CR™, 6,0 CR™. (6)

Analogue to robust invariant sets for system (1), contrtﬁ' Minimum Time Control

invariant sets are defined for system (5) subject to the con- This section restates the computation of time-optimal con-
straints (6). Depending on the availability of the scheatyli trollers for linear discrete-time systems under the infagen
parameten);, for feedback, two classes of control invariantof a scheduling parameter. The task to reach a targef set
sets are distinguished. If the scheduling parameter is uif* the minimal number of time steps can be stated as
known or not used for feedback purposes,= u(xy), we

. . . min N (8a)
consider the robust control invariant set. [U,N]

Definition 4: (Robust Control Invariant Sefg). A set s.t. V6, €0, k=0,...,N—1: (8b)

Cr C X is said to be a robust control invariant set for the Top1 = f(@0,ue, 0k), k=0,...,N —1(8c)

system (5) subject to the constraints (6)Yify € Cr Jui €
Z/[:Zk+1:f($k,uk,9k)€CR VO € ©. zpeX, upeld, k=0,...,N—1 (8d)
On the other hand, if the scheduling parameter is used for zy €7, (8e)
feedbackuy, = u(xk, 0x), the corresponding set is the gain-
scheduling control invariant set.

Definition 5: (Gain-Scheduling Control Invariant Set
Cas). AsetCas C X is said to be a gain-scheduling control
invariant set for the system (5) subject to the constraibits (

if Vo € CasVlr € O : Jup, €U : 1 = f(ak, uk, k) € we measure or estimate statg and scheduling parameter

CGS- . i . 9(), solve
Analogue to Def. 2 the Maximal Robust / Gain-Scheduling

Control Invariant Sets are defined. 7" = min i (9a)
Definition 6: (Maximal Robust Control Invariant Set !
. . . s.t. Ty € Z;, (9b)
CRr,o0). The seCpr  is said to be the maximal robust control
invariant set for the system (5) subject to the constraits ( and apply the control law, = pu;-(xo,6y) associated to
if Cr.oo IS robust control invariant and contains all robustz;-. This procedure guarantees the convergence of (5) to
control invariant sets contained . the target regiorZ in the minimal number of time steps.
Definition 7: (Maximal Gain-Scheduling Control Invari- Moreover, if a stabilizing control law is applied for states
ant SetCgs,0). The setCqs o iS said to be the maximal inside7, and if 7 is robust invariant under this control, then

where the control inputs are merged t&J =
{wo,...,un—1}. The optimization problem (8) can be
solved by applying Algorithm 2, initialized witky = 7. In
each iteration the seg; is stored together with the control
law v = p;(z,0), which steers the state int6,_;. Online,



feasibility of the minimum-time controller implies recive LPV framework, see e.g. [1]. For the control problem to
constraint satisfaction and stability. make sense, it is assumed that the system (10) is contllabl
(and observable) for alt;, € O, see [9], [10].

The objective is to compute a stabilizing minimum-time
Polya’s relaxation allows the reformulation of consttain controller as in Section 11-B for the LPV system (10) which

which depend polynomially on the scheduling parameter intgikes knowledge of the scheduling parameter into account,
sufficient parameter-independent constraints. The rétaxa

is based on Polya’s theorem. up = (@i, Ok) - (14)
Theorem 1:Polya’s theorem. If a homogeneous poly-
nomial p(#) is positive on the standard simple®, all
coefficients ofpy, (6) = p(9) - (372, OV
for a sufficiently large Polya degre¥,,.
Proof: See [6], [7]. ]

C. Pblya’s Relaxation

The computation of a minimum-time controller for the
__ LPV system (10) consists of three steps, in order to determin
v are positive iy 5 terminal controller for the terminal regio, (i) the
terminal region7 itself, which should be robust invariant

< ) under the terminal control, and (iii) the control lawgx, 6)

In the remaining part of the paper, we will fepeatedIXNhich steer the state in the minimal number of step§to
make use of the more obvious reverse of Polya’s thebrem Unfortunately, taking the scheduling parameter into ac-
ie., pqsmve coefficients of t_he extended polypomla! meap, nt (14) renders the closed-loop system polynonfally
positivity over the whole simplex. By applying POlya's jonandant on the scheduling parameter, such that the set of
relaxation, we mean the processing of the following stepsg;atas which can be mapped into a polytope under (14) is an
1) Reformulate constraints which are polynomial in thentersection of infinitely many polytopes, thus convex, hot

scheduling parameter into a positivity constraint of aecessarily a polytope itself. In the following we propose t

polynomialp(6). employ Polya’s relaxation (Section 1I-C) to approximate t
2) Homogenize the polynomia(#) by multiplying single  MR| and MGSCI set of the LPV system (10) by polytopic

monomials with>>7?, §7)(= 1) until all monomials  subsets, and to use these polytopic sets within the minimum-
have the same degree. time framework.

3) Set the Polya degre¥,, and compute the coefficients
cn, of the extended polynomiaby,(6) = p(¢) - A. Terminal Region Control

(272, 0V1)N>. In this step some conservatism may The first step of the computations is concerned with the
be introduced depending on the selection/f. By  control of the unconstrained system, which is to be applied
increasing the polynomial degre€,, the relaxations iy an environment around the origin where no constraints
become tighter until the exact problem is consideredgre active. In principle, every control technique for uncon
4) Replace the polynomial constraint by;, > 0. strained LPV systems can be employed here, assumed it
1. M AIN RESULTS is asymptotically stable and renders a set of states robust
invariant. A straight-forward choice is the computation of

From now on, we consider the LPV system LQR controllers for each vertex of the parameter simplex

rtp1 = A(Ok)zr + B(0k)uy . (10) (12), and to interpolate the obtained feedback matrices,
. . . . 6 .
subject to polytopic state and input constraints = K (0)ay = ZKJHLJ]M . (15)
xp € X ={x|Hyx <1}, wup €U ={u|Hu <1}, j=1

N o o (11)  In many cases this will result in a controller with satisfyin
containing the origin in their interiors. The scheduling pastapility and performance properties. On the other hand,

rameter vector, = [9}",...,0;""|” is measured online. guarantees can only be given for the vertices of the paramete
Future values are however Only known to lie in a standargﬁmp|eX, while Stab|||ty and performance m|ght decrease
ng-simplex© in the parameter space, for scheduling parameter values in the relative interior of
ne the simplex. Therefore we recommend to compute the state
0p € © :={0p € R’ Z ol = 1}. (12) feedback matriced; in (15) by an approach similar to the
j=1 computation of discrete-time LQR controllers, which takes

the whole parameter simplex into account. This approach is
facilitated by a matrix-valued version of Polya’s relarat
[11]. We start with the assumption of a quadratic cost
ne ne . . . oy .
. il . i) functionJ = 2} Pz, with P symmetric and positive definit,
AlOr) = z; A, BOx) = X;B’e’“ ’ (13) and require that the cost decreases in each step at least by a
J= J=

_ guadratic stage cost,
where A; and B; denote thej-th vertices of the polytopes.

The parameter-varying matriced(;) and B(6,) are
known to lie in polytopes,

. . L. . . . T T T T
This polytopic description is a common assumption in the k1 PZkt1 < @) Py — 2, Qg — up Rug . (16)
1The presented usage of Polya’s theorem is implemented IVR as 2Assumed (14) is an affine or polynomial function of the schiadu

one of the so called filters in the robust optimization fraroeky [8]. parameter.



Inserting the state update equation (10) and the statede&dbwhich fulfil the constraints arising when applying Polya’s
equation (15) yields relaxation with degreéV, to the presef}(Z;).
For Qu (Z;) again the polytopic presély (x,(Z;)) can

T T P P P
Tk [(A(ek)JrB(o’“)K(@kT)) P(A(0x) + B(0x) K (01)) be computed. Repeated computation of polytopic presets
—P+Q+ K(0k) RK(0x)]lxi, <0 V0, € ©. (17)  within Algorithm 1 yields the polytopic approximate maxi-
mum robust invariant (AMRI) se@ivo‘“.

The AMRI setsOX? are robust invariant and can be taken

[(A(Or) + B(0r)K (0x))T P(A(6y) + B(6r)K (61)) as terminal regiorZ. The choice of the Polya degre¥

—P+Q+K(W:)"RK(0,)] =<0 Vb,c0 (18) reflects a trade-off between the number of facetsOg¥
) o o ) ) and its size. It influences not only the shape of the terminal
must hold. This matrix inequality is not linear in the Ma-egion 7 but also the complexity of the succeeding control
trix variables K (6;) and P. SubstitutingY” := P~! and laws 1, (, 0).
F(0x) := K(0)Y, and multiplying from left and right with  \gte that the robust invariance property ensures that the
Y yields state remains insidg once it has entered the terminal
(4Y + BONFO)Y A0V + BOOFG) e e s and o mater, how the site
“YPY +YQY + F(0x)"RF(61)] 20 V0, € ©. (19) feedback matrices (15) were obtained. ,

Applying Schur complement we obtain the linear matrixc Minimum Time Iterations
inequality (LMI) (20) which inherits the requirements > ' . ) ) ) . .
0,Q = 0,R = 0. The LMI (20) is linear in the matrix After_determmmg an invariant terminal region and termi-
variablesy” and F(d; ), but still depends polynomially on the N region control, the control laws; (x, 0), which steer the
scheduling paramete,. Hence we apply Polya’s relaxation State in the minimal number of ﬂme steps to tlhe t_er:mmal
to obtain an LMI independent of the scheduling parameté?g'on I'T’ arehllcom;:')lljte'd. F?r t 1S purposel Agor:ct mh2
6. In the semidefinite program we can minimize the trace d¢ 2PPlied, while Polya's relaxation is employed for the
the largest eigenvalue af, to obtain the cost function with COmputation of polytopic presets.

the minimum expected/worst-case cost. The Polya degreem;he prr?p(;)slgd procedure, tT]e deper;dence %f ]Ehe ri]nplg
N, can be chosen high since there is a strong influendd e scheduling parameter has to be set beforehand.

on the performance ok (6), but only indirect influence on | IS dependence can bg pol)anomial, bu';rduedto corgplexity
complexity through the size of the terminal reginwhich ~"€2SONs, we recommend to choose an affine dependence,
depends on (15). LR
_ (41, (4]
Remark 1:1t is also possible to use not a constantbut Uk = Zek wp (k) (22)
a polynomial function of the paramet&t(d). This would 7=1
reduce the conservatism of the approach, but at the sarfRer notational simplicity we unite the vertex control laves t

For Eq. (17) to be fulfilled, the matrix inequality

time lead to a controlleK (0;,), which is a rational function Uy = [ug], . ,uEC""]].

of the scheduling parameter. The control law p;(x,6), which steers the state from
Z;41 to Z;, is not unique, but can be selected from a

B. Terminal Region set of control laws. For this selection the following multi-

parametric program can be employed,

In the second step the terminal regi@nis determined. _
The terminal region is required to be robust invariant under min J(@k, uk) (23a)
the unconstrained control law (15), and represents a set of st Hyxp <1, (23b)

states where neither state nor input constraints (11) éikeac

The terminal region7 can be computed by Algorithm 1 Hyup <1, (23¢)
combined with Polya’s relaxation. If the polytopic s&t = H;i(A(Ok)zr + B(Ok)ur) <1,  (23d)
{z|H;xz < 1} is given, its presef)(Z;) is Vo, € O, (23e)
Hyx < 1, where the objective functiod (xy,uy) determines the pre-
N H.K@0)z < 1, ferred selection. A possible objective function is
UZ) =11 mae) + BOKO) < 1, (@D
Vo € © J (g, ug) = max Qwrt1llp + [[Rukllp (24)

Using Polya’s relaxation, the constraints of (21) can beherep denotes a polytopic norm. This objective function

transformed into parameter-independent constraintsyand represents a minimization of the worst-case cost during

obtain a polytopic approximation of this preset, namely one-step-ahead prediction. Analogue to [3], an epigraph

On,(Zi) = {Hip12 < 13, reformulation can be used to handle the maximization over
Definition 9: (Polytopic Presef)y, (Z;)). A setQy,(2;) the scheduling parameter.

is called polytopic preset of the polytopgg for the system It is possible, but not necessary, to minimize the worst

(10) subject to the constraints (11), if it contains all ssat case, since convergenced0is guaranteed, and the choice



Y A(0r)Y + B(Oy)F(0k) O 0
(A(G)Y + g(ek)F(ok»T v 72211 F (‘;’)’f <0 Vo, cO, (20)
0) F(0k) o  -Rr

of the objective function/(x,u;) can focus entirely on the elements of the system matrices are uniformly disteidbut
control performance. When common operating points aandom numbers in the interval [-1,1], i.e. also unstable
the scheduling parametf, . . ., 9_"@] (e.g. the vertices) are systems are considered. The state and input constrainés wer
known, it is also possible to minimize the cost predictionghosen to be

for these operating points,
perafing p X={z]llefw <10}, U={u|lul<1}. (26)

{l(xk’ ) Three methods were compared. The first is the minimum-

_ Z(A(ér)wk + B(8,)u) " P(AG,)zs, + B0, )uy) time_schemt_a proposed in this paper, denotec_inby The
terminal region control was computed by solving the LMI
(25) (20), while the cost function (25) penalizing the vertex-pre
dictions was minimized during the minimum-time iterations
Since an epigraph formulation is not necessary, this abfect The Polya degree of the relaxations wa&s = 10 for the
function can be quadratic. The matrX can be taken from terminal region controller, andv, = 2 for the terminal
the terminal region control, s.t. (25) reflects the infinitaegion and minimum-time iterations.
horizon cost under the assumption of unconstrained stateThe second method is the explicit LPV-MPC scheme from
evolution. [3], minimizing the co-norm of finite-horizon predictions
Compared to explicit LPV-MPC, which was presented irand denoted byMPCz. We were also interested in the role
[3], (23) comprises significantly fewer constraints, mginl of the uncontrolled successor state (ussh eMPCz, thus
because the objective function takes only the current aad tive included as a third method an analogue explicit LPV-
succeeding step directly into account, and thus has a simpMPC scheme denoted bgMPCx, which does not utilize
structure. This is the main reason for the low complexityhe uncontrolled successor state. The Polya degree in both
of minimum-time control compared to explicit LPV-MPC. methods was set t,, = 2, and the matrixP from (20) was
Additionally, the future scheduling parameter values arased in the terminal cost.
unknown, what can lead to a broad variety of possible future The setup of the three methods is as follows. The stage
trajectories, such that the exact future costs are simpty noost matrices are

]

r=1

+  u} Ruyg .

available. Hence it is questionable if much effort should be 1 0

spend on a trade-off between current and future costs, or if Q= {O J ., R=1. (27)

a simple approximation of the future costs as in (25) is not o _ o )
sufficient. The prediction horizon (and the number of minimum-time

The Polya degreeV,, which is applied to (23), is not iterations, respectively) was set = 3. In all three _
only determining the size and number of constraints of th@€thods the control inputs depend affinely on the scheduling
polytopic presefy (Z;), but also has a direct impact on Parameter. In order to ensure a fair comparison between the
the number of constraints of the multi-parametric prografiumber of regions, the terminal region of the minimum-time
(23), and thus on the complexity of the resulting controldawcontroller was included as terminal region constraintshia t
11:(z, ). Hence it should be selected rather low. other two methods. Thus the feasible region in principle is

Remark 2:1t should be noted that the resulting control lawth® same for all three methods, and only the use of the uss
is not a minimum-time control law in a strict sense, sincé changes the feasible region feMPCz. _
there might be states in the preset, which do not belong to FOr all 20 systems, control laws were computed employing
the polytopic preset, and thus are not mapped to the tardéf three mentioned methods. The computatiore MPCz

region in the minimum number of steps. andeMPCx for systems 13 and 19 was aborted after several
hours. The complexity of the remaining control laws is
IV. NUMERICAL EXAMPLES depicted in Fig. 1. The complexity oft varies from about

In order to justify claims about complexity and control per-half the complexity oeMPCz, up to an order of magnitude
formance, we compared the proposed minimum-time scherdéference (system 2). The complexity eMPCx is usually
to explicit LPV-MPC by means of 20 random examples. Thisiigher than ofeMPCz, even significantly, but there are also
comparison is by no means a proof, but can serve as apstems, whereMPCx is less complex thaeaMPCz (systems
indicator of to be expected properties of the minimum tim®, 20). For all systems, the offline computation time fior
scheme. For the computations we employed the NAG solveras way shorter than faeMPCz and e MPCx.
under MPT 2.6, [12], interfaced via YALMIP, [8]. In order to compare the control performance of the three
The example systems consist of two states and one inpuiethods, the state space was gridded into 900 points, and
The scheduling parameters live in standard 2-simpliced, aeach point served as initial state for the systems under one
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Fig. 1: Number of regions of the control lawg (black), eMPCz (gray) andeMPCx (white) for 20 example systems.
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Fig. 2: Relative average costs under the control laws(black),eMPCz (gray) andeMPCx (white) for 20 example systems.

of the three control methods. The closed-loop system was
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