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ABSTRACT

In the presented sensor fusion approach, centralized
filtering of related sensor signals is used to improve
and correct low price sensor measurements. From
this, we compute high-quality state information as
drift-free yaw rate and exact velocity (accounting for
unknown tire radius and slipping wheels on 4WD ve-
hicles). The basic tool here is a Kalman filter sup-
ported by change detection for sensor diagnosis. Re-
sults and experience of real-time implementations are
presented.

1 INTRODUCTION

During the last decade, a number of automotive con-
trol systems for motion control has appeared and be-
come standard in high-end vehicles. These systems
may benefit from more accurate state information, as
the vehicle’s speed and yaw rate, as listed below. The
longitudinal slip is here defined as the relative differ-
ence of the wheel’s peripheral speed and its abolute
speed, while the slip angle is defined as the difference
in angle between the steering wheel and the wheel’s
velocity vector.

• ABS needs absolute velocity information to com-
pute the slip.

• The anti-spin system has problems to compute
the optimal slip on four-wheel driven (4WD)
vehicles.

• A dynamic stability system basically controls

the slip angle. A car that under-steers will have
a positive angle while over-steering causes a
negative angle. The basic idea is to brake the
rear inside wheel during under-steering and the
front outside wheel during over-steering. To
compute the slip angle, the yaw angle taken
from a gyro is needed. Since this is corrupted
with noise, a dead-zone is needed. Because of
drift in the yaw angle, a D-controller is used,
since only the derivative of the slip angle is
known accurately enough.

• An adaptive cruise controller including a radar
needs accurate yaw rate information for its sit-
uation awareness.

Instrumental for improving such systems using accu-
rate state informations is knowledge of the offsets in
Table 1. Adaptive estimation of these is the core of
the approach.

NIRA Dynamics AB is together with Link¨oping
University developing adaptive filters for automotive
applications. The department of electrical engineer-
ing at Linköping University has long experience in
sensor fusion in airborne navigation systems, which
have similar problems. Bringing over this compe-
tence from aircraft to cars was originally the motiva-
tion for this work. The approach herein is based on
Kalman filtering, change detection and sensor fusion
theory, which is thoroughly described in Gustafsson
(2000).

Figure 1 shows the structure of the signal process-
ing. Only existing sensors in modern, high-end cars
are used. The result is a yaw rate with drift less than
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Figure 1: Overview of the sensor fusion system.

δr Absolute difference in average and nominal wheel radius [mm]
δ12 Relative difference between front left and right wheel radius
δ34 Relative difference between rear left and right wheel radius
δo,acc Accelerometer offset[m/s2]
δo,gyro Gyro offset[rad/s]
δsc,gyro Gyro scale factor relative error

Table 1: Offset parameters for high-precision filtering.

0.2 degrees per second, and absolute speed with an
error in the order of centimeters per second, without
any prior knowledge of tire radius.

Section 2 describes estimation of yaw rate, while
Section 3 describes absolute velocity estimation. As
a related project with many cross-couplings, virtual
sensors for estimating tire-road friction and tire pres-
sure are described in an accompanying paper. The
approach is patent pending Gustafsson and Ahlqvist
(2000).

2 ACCURATE YAW RATE COMPUTATION

Accurate yaw rate computation is considered. The
first possibility of using only a yaw rate sensor is suf-
fering from an unavoidable measurement offset which
varies in time.

Another possibility is to compute the curve ra-
dius from wheel angular velocities taken from the
wheel speed sensors in the ABS system (hereafter
simply called ABS sensors), which can be converted
to yaw rate information. Again, there will be an off-
set caused by imperfect knowledge of the tire radii.
By integrating the information from both sensors, these

two offsets can be estimated accurately in an adap-
tive filter or Kalman filter, as illustrated in Figure 2.
Furthermore, the Kalman filter has the advantage of
attenuating measurement noise, implying a high ac-
curacyvirtual yaw rate sensor.

As applications for an accurate yaw rate, we have
lateral slip computation, used in vehicle stability sys-
tems and friction estimation.

Filter-

-

-

-
ABS: wheel velocityω

Gyro: yaw rateΨ̇ Yaw rateΨ̇

Yaw rate offsetδo,gyro

Figure 2: Basic structure of high precision yaw rate
computation.

Basic relations

Figure 3 defines the notation used in this section. The
well-known relations between yaw ratėψ, lateral ac-
celerationay, longitudinal velocityvx and curve ra-
diusR are (see any text book on vehicle dynamics as
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Adler (1993), Gillespie (1992) and Wong (1993))

Ψ̇ =
vx
R

= vxR
−1

ay =
v2
x

R
= v2

xR
−1 = vxΨ̇

The ABS sensors measure rotational wheel velocities
ω, where the index convention is thatrl means rear
left, fr means forward right and so on.

A geometrical relation from Figure 3 is used to
compute the curve radius, whereR is defined as the
distance to the center of the rear wheel axle,

vrr
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Solving forR−1 (the inverse to avoid numerical prob-
lems when driving straight ahead) gives
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The wheel radius is denotedr. The wheel radii ratio
is subject to an offset
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4
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The offset’s influence on the denominator is negligi-
ble, so we will use the following expression for in-
verse curve radius:
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Here we have introduced the computable quantity
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)
for the inverse curve radius.

Finally, the velocity at the center of the rear wheel
axle is

vx =
ωrl + ωrr

2
r

=
ωrl + ωrr

2
(rm − δr)

= vx,m −
ωrl + ωrr

2
δr

whererm is the nominal wheel radius, andδr the ab-
solute error in this value. Again, indexm indicates a
computable value.

Measurements

The measurements under consideration are

• y1
t from gyro (yaw rate sensor).

• y2
t = vx,mR

−1
m from ABS sensors.

• Possiblyy3
t from lateral acceleration sensor.1

The gyro signal is subject to an offset and scale factor
error

y1
t = (1 + δsc)Ψ̇t + δo,gyro + e1

t

Hereδgyro,sc is the scale factor error in the gyro, which
enters the measurement non-linearly. A good work-
ing approximation might be to use

y1 = ψ̇ +
ˆ̇
ψδsc,gyro + δo,gyro. (1)

1 Everywhere when an acceleromater is mention, this may, and
should, be supported by a vertical accelerometer to compen-
sate for a non-horizontal position of the car.



The nominal velocityvx,m differs from the true
one because of unknown absolute wheel radius ac-
cording to (1). The measurement is thus related to
known and unknown quantities as
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For the accelerometer, we have

y3
t =vxΨ̇t + δo,acc

=

(
vx,m −

ωrl + ωrr
2

δr

)
Ψ̇t + δo,acc.

Again, there is a non-linear scaling factor error due
to absolute wheel radius. A linearization as above is
necessary. Note that the two scale factors are linearly
independent when the velocity is changing.

In summary, the slowly time-varying parameters
in Table 1 must be estimated (in order of relative im-
portance):

Offset estimation by least squares

Here we neglect the scale factor errors and only use
wheel velocities and the gyro. Eliminating the yaw
rate from the first two measurements yields a linear
regression in the two offsets:

ȳt =ϕTt δ + ēt

where

ȳt =y1
t − y2

t
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1

L

2
ωrl
ωrr

+ 1

ωrl
ωrr

)T

δ =(δo,gyro, δ34)T

ēt =e1
t − e2

t

With an accelerometer, the regression quantities are

ȳt =y1
t −

y3
t

vx

ϕt =(1,
1
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The least squares estimate is computed by
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The important question ofidentifiability, that is,
under what conditions are the offsets possible to esti-
mate, is answered by studying the rank of the matrix
to be inverted in the LS solution. For the accelerom-
eter sensor, the matrix is given by
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In short, this matrix has full rank if and only if the ve-
locity changes during the time horizon. Furthermore,
the more variation, the better estimate.

Similarly, the offsets are identifiable from yaw
rate and ABS sensors if the velocityor the curve ra-
dius changes anytime.

The offsets can be estimatedadaptivelyin a stan-
dard way by recursive least squares (RLS) algorithm,
or least mean square (LMS) or a Kalman filter.

Kalman filter

The Kalman filter is completely specified by a state
space equation of the form

xt+1 =Axt +Bvt

yt =Cxt + et

where the covariance matrices ofvt and et are de-
notedQ andR, respectively. The unknown quantities
in thestate vectorxt are estimated by a recursion

x̂t+1 = Ax̂t +Kt(A,B,C,Q,R)(yt − Cx̂t),



where the filter gainKt(A,B,C,Q,R) is given by
the Kalman filter equations. Thus, the design prob-
lem is to setup the state space model.

Using the state vector

xt =


Ψ̇t

Ψ̈t

δo,gyro
δ34

δsc,gyro
δr


a continuous time state space model is

ẋt =
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0 0 0 0
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It is here assumed that there is an unknown inputvt
that affects the yaw acceleration, which is a com-
mon model for motion models, basically motivated
by Newton’s lawF = ma.

A discrete time state space model can be derived

xt+1 =
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0 0 0 1
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which is used by the Kalman filter.

Experimental results Figure 4 illustrates a test drive
with four laps in a large slightly elliptic roundabout
(radius approximately 90 meters). The marked paths
are obtained by dead-reckoning. Due to the real off-
set in the gyro, the straightforward attempt of dead-
reckoning leaves the roundabout with a phase error
of 180 degrees. After compensation, the plot shows
perfect resemblance with the map and reveals exactly
which lane was followed.

Figure 4: Path obtained by dead-reckoning the gyro
signal and the estimated yaw rate, respectively.

Figure 5: Wheel offset estimation. The true offsets
are not known here.

Related publications

Related material is the article Hac and Simpson (2000),
where sensor fusion is used for wheel speeds and
lateral accelerometer, the patent Shivashankaret al.
(1996), where two accelerometers and steering an-
gle are used, and the patent Williams (1991), which
adapts the offsets when the steering wheel angle and
lateral acceleration are both close to zero. None of
these include the gyro signal.



Figure 6: Gyro offset estimation, where a linear drift
has been added to the sensor signal afterwards. The
Kalman filter tracks the time-varying offset with an
error not exceeding 0.1 deg/s.

3 ACCURATE SPEED COMPUTATION

The standard approach to compute velocity is to use
the wheel speed signals, possibly averaging over right
and left wheels and preferably using non-driven wheels
to avoid wheel slip. This approach obviously has
shortcomings during braking when the wheels are locked
and during wheel spin on 4WD vehicles. For 4WD
vehicles an additional problem is that there will even
during normal driving be a small positive offset in
velocity caused by the wheel slip.

This approach uses an accelerometer as a comple-
ment to the wheel speed signals, as illustrated in Fig-
ure 7. In this way, the velocity can be computed after
locking the wheels when braking. For 4WD vehicles
and otherwise when non-driven wheel speed signals
are not available, the system compensates for wheel
slip and gives accurate velocity and accelerometer in-
formation.
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ABS: wheel velocityω

Accelerometer:ax Velocity vx

Accelerationax

Figure 7: Basic structure of high precision speed
computation.

Measurements

The sensor signals to be fused and their characteris-
tics are here:

• ABS sensors provide wheel rotional speedω
that can be transformed to a scaled velocity at
any position in the car:

y1
t = ωtrm + e1

t = ωt(r + δr) + e1
t

= vx,t + ωtδr + e1
t .

This holds for a non-driven wheel. Fusion of
the driven wheels is also possible, but then the
wheel slip must be modeled. This will show up
as a scale factor error.

• An accelerometer in longitudinal directionax

y2
t = v̇x,t + δo,acc + e2

t .

Summing up to timet gives

ȳ2
t =

t∑
k=0

y2
t = vx,t − vx,0 + δo,acct + ē2

t .

The offset factor here (1 ort) is linearly independent
of the one from the ABS sensor (a small variation in
angular speedω is needed), so the offsetsδo,acc, δr are
observable.

Kalman filter

Basically, the same estimation approaches as for yaw
rate are possible: least squares (usingy1

t and ȳ2
t ) or

Kalman filtering (usingy1
t and ȳ2

t ). The on-line im-
plementation uses a Kalman filter. With the state vec-
tor

xt =


vx,t
v̇x,t
δr
δo,acc


the state space model becomes

xt+1 =


1 Ts 0 0
0 1 0 0
0 0 1 0
0 0 0 1

xt +


T 2
s /2
Ts
0
0

 vt

yt =

(
1 0 ω 0
0 1 0 1

)
xt + et.

Everything else is similar as to the previous section.



Experimental results

The numerical illustration is based on a test drive
modified in the following way. First, all offsets are
manually tuned such that the path obtained by dead-
reckoning of the sensor signals fits a road map per-
fectly. Then the offsets in Table 1 are added to the
measurements, and the algorithm tries to estimate them.
Figure 8 shows how the individual tire radii are esti-
mated. It takes less than a minute to find a value with
less than half a millimeter error. As a consequence,
the velocity error decreases significantly, see Figure
9.
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Figure 8: Estimation of error in nominal tire radius
as a function of time. The added offsets on 3 and 4
mm, respectively, are after 60 seconds estimated with
an error less than 0.5 mm.

4 CONCLUSIONS

The technique of sensor fusion, which is standard in
avionic navigation systems, has been brought over to
the automotive problems of yaw rate and absolute ve-
locity estimation. By simultaneously estimating sen-
sor offsets with the state variables of interest and by
using both temporal and spatial (multi-sensor) corre-
lation, the motion states of the car are obtained with
an accuracy far better than by using each sensor indi-
vidually.

The results using standard sensors in a Volvo S80
are a yaw rate value with drift less than 0.2 degrees
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Figure 9: Accurate speed estimation follows from the
knowledge of tire radius offsets. Here the velocity er-
ror is shown (true is zero) using nominal wheel radius
(upper curve) and estimated wheel radius (the curve
close to zero).

per second, and absolute speed value with an error in
the order of centimeters per second, respectively. No
calibration is needed, and the system adapts to tem-
perature and aging drifts in sensors and wheel radii.

The wheel radius estimates (hereδ34 andδ12) are
useful for tire pressure estimation, which is described
in an accompanying paper.

The question of order of excitation and degree of
observability is not addressed here. Basically, the off-
sets are much easier to estimate than scale factor er-
rors. Also, relative difference in tire radius is easier
to estimate than absolute value (the average error).
The current implementation switches the adaptivity
depending on the current excitation, as is coupled to
accelerations and turning of the vehicle.
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