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Abstract – Shooter localization in a wireless network
of microphones is studied. Both the acoustic muzzle
blast (MB) from the gunfire and the ballistic shock wave
(SW) from the bullet can be detected by the microphones
and considered as measurements. The MB measure-
ments give rise to a standard sensor network problem,
similar to time difference of arrivals in cellular phone
networks, and the localization accuracy is good, pro-
vided that the sensors are well synchronized compared
to the MB detection accuracy. The detection times of
the SW depend on both shooter position and aiming an-
gle, and may provide additional information beside the
shooter location, but again, this requires good synchro-
nization. We analyze the approach to base the esti-
mation on the time difference of MB and SW at each
sensor, which becomes insensitive to synchronization
inaccuracies. Cramér-Rao lower bound analysis indi-
cates how a lower bound of the root mean square er-
ror depends on the synchronization error for the MB
and the MB–SW difference, respectively. The estima-
tion problem is formulated in a separable nonlinear least
squares framework. Results from field trials with differ-
ent types of ammunition show excellent accuracy us-
ing the MB–SW difference for both the position and the
aiming angle of the shooter.

Keywords: Sniper Localization, Sensor Network,
Acoustics, Synchronization, Cramér-Rao Analysis

1 Introduction
Several acoustic shooter localization systems are to-

day commercially available, see for instance [1–4]. Typ-
ically, one or more microphone arrays are used, each
synchronously sampling acoustic phenomena associated
with gunfire. An overview is found in [5]. Some of
these systems are mobile, and in [6] it is even described
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how soldiers can carry the microphone arrays on their
helmets. One interesting attempt to find direction of
sound from one microphone only is described in [7]. It
is based on direction dependent spatial filters (mimick-
ing the human outer ear) and prior knowledge of the
sound waveform, but this approach has not yet been
applied to gun shots.

Indeed, less common are shooter localization sys-
tems based on singleton microphones geographically
distributed in a wireless sensor network. An obvious
issue in wireless networks is the sensor synchroniza-
tion. For localization algorithms that rely on accu-
rate timing like the ones based on time difference of
arrival (TDOA), it is of major importance that syn-
chronization errors are carefully controlled. Regardless
if the synchronization is solved by using GPS or other
techniques, see for instance [8–10], the synchronization
procedures are associated with costs in battery life or
communication resources that usually must be kept at
a minimum.

In [11] the synchronization error impact on the sniper
localization ability of an urban network is studied by
using Monte Carlo simulations. One of the results is
that the inaccuracy increased significantly (> 2 m) for
synchronization errors exceeding approximately 4 ms.
56 small wireless sensor nodes were modeled. An-
other closely related work that deals with mobile asyn-
chronous sensors is [12], where the estimation bounds
with respect to both sensor synchronization and posi-
tion errors are developed and validated by Monte-Carlo
simulations. Also [13] should be mentioned, where com-
binations of directional and omnidirectional acoustic
sensors for sniper localization are evaluated by pertur-
bation analysis. In [14], estimation bounds for multiple
acoustic arrays are developed and validated by Monte-
Carlo simulations.

In this paper we derive fundamental estimation
bounds for shooter localization systems based on wire-
less sensor networks, with the synchronization errors in
focus. An accurate method independent of the synchro-



nization errors will be analyzed (the MB–SW model),
as well as a useful bullet deceleration model. The al-
gorithms are tested on data from a field trial with 10
microphones spread over an area of 100 m and with
gunfire at distances up to 400 m. Partial results of
this investigation appeared in [15] and almost simulta-
neously in [12].

The outline is as follows. Section 2 sketches the local-
ization principle and describes the acoustical phenom-
ena that are used. Section 3 gives the estimation frame-
work. Section 4 derives the signal models for the muz-
zle blast (MB), shock wave (SW), combined MB;SW
and difference MB–SW, respectively. Section 5 derives
expressions for the root mean square error (RMSE)
Cramér-Rao lower bound (CRLB) for the described
models, and provides numerical results from a realis-
tic scenario. Section 6 presents the results from field
trials, and Section 7 gives the conclusions.

2 Localization Principle
Two acoustical phenomena associated with gunfire

will be exploited to determine the shooter’s position:
the muzzle blast and the shock wave. The principle
is to detect and time stamp the phenomena as they
reach microphones distributed over an area, and let the
shooter’s position be estimated by, in a sense, the most
likely point, considering the microphone locations and
detection times.

The muzzle blast (MB) is the sound that probably
most of us associate with a gun shot; the “bang”. The
MB is generated by the pressure depletion in effect of
the bullet leaving the gun barrel. The sound of the
MB travels at the speed of sound in all directions from
the shooter. Provided that a sufficient number of mi-
crophones detect the MB, the shooters position can be
more or less accurately determined.

The shock wave (SW) is formed by supersonic bullets.
The SW has (approximately) the shape of an expand-
ing cone, with the bullet trajectory as axis, and reaches
only microphones that happens to be located inside the
cone. The SW propagates at the speed of sound in di-
rection away from the bullet trajectory, but since it is
generated by a supersonic bullet, it always reaches the
microphone before the MB, if it reaches the microphone
at all. A number of SW detections may primarily reveal
the direction to the shooter. Extra observations or as-
sumptions on the ammunition are generally needed to
deduce the distance to the shooter. The SW detection
is also more difficult to utilize than the MB detection,
since it depends on the bullet’s speed and ballistic be-
havior.

Figure 1 shows an acoustic recording of gunfire. The
first pulse is the SW, which for distant shooters signif-
icantly dominates the MB, not the least if the bullet
passes close to the microphone. The figure shows real
data, but a rather ideal case. Usually, and particularly

0 50 100 150 200 [ms]

Muzzle Blast

Shock Wave

Figure 1: Signal from a microphone placed 180 m from
a firing gun. Initial bullet speed is 767 m/s. The bul-
let passes the microphone at a distance of 30 m. The
shockwave from the supersonic bullet reaches the mi-
crophone before the muzzle blast.

in urban environments, there are reflections and other
acoustic effects that make it difficult to accurately de-
termine the MB and SW times. This issue will however
not be treated in this work. We will instead assume that
the detection error is stochastic with a certain distribu-
tion. A more thorough analysis of the SW propagation
is given in [16].

Of course, the MB and SW (when present) can be
used in conjunction with each other. One of the ideas
exploited later is to utilize the time difference between
the MB and SW detections. This way, the localization
is independent of the clock synchronization errors that
are always present in wireless sensor networks.

3 Estimation Framework
It is assumed throughout this work that

1. the coordinates of the microphones are known with
negligible error,

2. the arrival times of the MB and SW at each micro-
phone are measured with significant synchroniza-
tion error, and that

3. the shooter position and aim direction are the
sought parameters.

Thus, assume there are M microphones with known
positions {pk}M

k=1 in the network detecting the muz-
zle blast. Without loss of generality, the first S ≤ M
ones also detect the shock wave. The detected times
are denoted {yMB

k }M
1 , and {ySW

k }S
1 , respectively. Each

detected time is subject to a detection error {eMB
k }M

1

and {eSW
k }S

1 , different for all times, and a clock syn-
chronization error {bk}M

1 specific for each microphone.



The firing time t0, shooter position x ∈ R
3 and shoot-

ing direction α ∈ R
2 are unknown parameters. Also

the bullet speed v and speed of sound c are unknown.
Basic signal models for the detected times as a function
of the parameters will be derived in the next section.
The notation is summarized in Table 1.

The derived signal models will be of the form

y = h(x, θ; p) + e, (1)

where y is a vector with the measured detection times, h
is a nonlinear function with values in R

M+S , and where
θ represents the unknown parameters apart from x.
The error e is assumed to be stochastic, see Section 4.5.
Given the sensor locations in p ∈ R

M×3, nonlinear op-
timization can be performed to estimate x, using the
nonlinear least squares (NLS) criterion

x̂ = argminx min
θ

V (x, θ; p), (2a)

V (x, θ; p) = ||y − h(x, θ; p)||2R. (2b)

Here, argmin denotes the minimizing argument, min
the minimum of the function, and ||v||2Q denotes the Q-

norm, that is, ||v||2Q , vT Q−1v. Whenever Q is omit-
ted, Q = I is assumed. The loss function norm R is
chosen by consideration of the expected error character-
istics. Numerical optimization, for instance the Gauss-
Newton method, can here be applied to get the NLS
estimate.

In the next section it will become clear that the as-
sumed unknown firing time and the inverse speed of
sound enter the model equations linearly. To exploit
this fact we identify a sub-linear structure in the signal
model and apply the weighted least squares method to
the parameters appearing linearly, the separable least
squares method, see for instance [17]. By doing so, the
NLS search space is reduced which in turn significantly
reduces the computational burden. For that reason, the
signal model (1) is rewritten as

y = hN (x, θN ; p) + hL(x, θN ; p)θL + e. (3)

Note that θL enters linearly here. The NLS problem
can then be formulated as

x̂ = argminx min
θL,θN

V (x, θN , θL; p),

V (x, θN , θL; p) = ||y − hN (x, θN ; p) − hL(x, θN ; p)θL||
2
R.

Since θL enters linearly it can be solved for by lin-
ear least squares (the arguments of hL(x, θN ; p) and
hN (x, θN ; p) are suppressed for clarity):

θ̂L = argminθL
V (x, θN , θL; p)

= (hT
LR−1hL)−1hT

LR−1(y − hN ), (4a)

PL = (hT
LR−1hL)−1. (4b)

Here, θ̂L is the weighted least squares estimate and PL

is the covariance matrix of the estimation error. This
simplifies the nonlinear minimization to

x̂ = argminx min
θN

V (x, θN , θ̂L; p) (5a)

= argminx min
θN

||y − hN + hL(hT
LR−1hL)−1hT

LR−1(y − hN)||2R′ ,

R′ = R + hLPLhT
L. (5b)

This general separable least squares (SLS) approach
will now be applied to four different combinations of
signal models for the MB and SW detection times.

4 Signal Models
4.1 Muzzle Blast Model (MB)

According to the clock at microphone k, the muzzle
blast (MB) sound is assumed to reach pk at the time

yk = t0 + bk + 1
c
||pk − x|| + ek. (6)

The shooter position x and microphone location pk are
in R

n, where generally n = 3. However, both compu-
tational and numerical issues occasionally motivate a
simplified plane model with n = 2. For all M micro-
phones, the model is represented in vector form as

y = b + hL(x; p)θL + e, (7)

where

θL =
[

t0 1/c
]T

, (8a)

hL,k(x; p) =
[

1 ||pk − x||
]T

, (8b)

and where y, b, and e are vectors with elements yk, bk,
and ek, respectively. 1M is the vector with M ones,
where M might be omitted if there is no ambiguity
regarding the dimension. Furthermore, p is M -by-n,
where each row is a microphone position. Note that
the inverse of the speed of sound enters linearly. The
·L notation indicates that · is part of a linear relation,
as described in the previous section. With hN = 0 and
hL = hL(x; p), (5) gives

x̂ = argminx ‖y − hL(hT
LR−1hL)−1hT

LR−1y‖2
R′ , (9a)

R′ = R + hL(hT
LR−1hL)−1hT

L. (9b)

Here, hL depends on x as given in (8b).
This criterion has computationally efficient imple-

mentations, that in many applications make the time
it takes to do an exhaustive minimization over a, say,
10-meter grid acceptable. The grid-based minimization
of course reduces the risk to settle on suboptimal lo-
cal minimizers, which otherwise could be a risk using
greedy search methods. The objective function does,
however, behave rather well. Figure 2 visualizes (9a) in
logarithmic scale for data from a field trial (the norm is
R′ = I). Apparently, there are only two local minima.



Table 1: Notation. MB, SW, and MB–SW are different models, and L/N indicates if model parameters or signals
enter the model linearly (L) or nonlinearly (N).

Variable MB SW MB–SW Description
M Number of microphones
S Number of microphones receiving shock wave, S ≤ M
x N N N Position of shooter, R

n (n = 2, 3)
pk N N N Position of microphone k, R

n (n = 2, 3)
yk L L L Measured detection time for microphone at position pk

t0 L L Rifle or gun firing time
c L N N Speed of sound
v N N Speed of bullet
α N N Shooting direction, R

n−1 (n = 2, 3)
bk L L Synchronization error for microphone k
ek L L L Detection error at microphone k
r N N Bullet speed decay rate
dk Point of origin for shock wave received by microphone k
β Mach angle, sinβ = c/v
γ Angle between line of sight to shooter and shooting angle

Microphones

Shooter

1000 m

Figure 2: Level curves of the muzzle blast localization
criterion based on data from a field trial.

4.2 Shock Wave Model (SW)

In general, the bullet follows a ballistic three-
dimensional trajectory. In practice, a simpler model
with a two-dimensional trajectory with constant decel-
eration might suffice. Thus, it will be assumed that the
bullet follows a straight line with initial speed v0, see
Figure 3. Due to air friction, the bullet decelerates, so
when the bullet has traveled the distance ||dk − x||, for
some point dk on the trajectory, the speed is reduced
to

v = v0 − r||dk − x||, (10)

where r is an assumed known ballistic parameter. This
is a rather coarse bullet trajectory model, compared
with, for instance, the curvilinear trajectories proposed
by [18], but we use it here for simplicity. This model is
also a special case of the ballistic model used in [19].

The shock wave from the bullet trajectory propagates
at the speed of sound c with angle βk to the bullet
heading. βk is the Mach angle defined as

sinβk =
c

v
=

c

v0 − r||dk − x||
. (11)

dk is now the point where the shock wave that reaches

microphone k is generated. The time it takes the bullet
to reach dk is

∫ ||x−dk||

0

dξ

v0 − r · ξ
= 1

r
log

v0

v0 − r||dk − x||
. (12)

This time and the wave propagation time from dk to pk

sum up to the total time from firing to detection,

yk = t0 + bk + 1
r

log
v0

v0 − r||dk − x||
+ 1

c
||dk − pk||+ ek,

according to the clock at microphone k. Note that the
variable names y and e for notational simplicity have
been reused from the MB model. Below, also h, θN , and
θL will be reused. When there is ambiguity, a super-
script will indicate exactly which entity that is referred
to, for instance, yMB, hSW.

It is a little bit tedious to calculate dk. The law of
sines gives

sin(90◦ − βk − γk)

||dk − x||
=

sin(90◦ + βk)

||pk − x||
, (13)

which together with (11) implicitly defines dk. We have
not found any simple closed form for dk, so we solve for
dk numerically, and in case of multiple solutions keep
the admissible one (which turns out to be unique). γk

is trivially induced by the shooting direction α (and x,
pk). Both these angles thus depend on x implicitly.

The vector form of the model is

y = b + hN (x, θN ; p) + hL(x, θN ; p)θL + e, (14)

where

hL(x, θN ; p) = 1,

θL = t0,

θN =
[

1/c αT v0

]T
,
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Figure 3: Geometry of supersonic bullet trajectory and
shock wave. Given the shooter location x, the shooting
direction (aim) α, the bullet speed v, and the speed
of sound c, the time it takes from firing the gun to
detecting the shock wave can be calculated.

and where row k of hN (x, θN ; p) ∈ R
S×1 is

hN,k(x, θN ; pk) = 1
r

log
v0

v0 − r||dk − x||
+ 1

c
||dk − pk||,

and dk is the admissible solution to (11) and (13).

4.3 Combined Model (MB;SW)

In the MB and SW models, the synchronization error
has to be regarded as a noise component. In a combined
model, each pair of MB and SW detections depend on
the same synchronization error, and consequently the
synchronization error can be regarded as a parameter
(at least for all sensor nodes inside the SW cone). The
total signal model could be fused from the MB and SW
models as the total observation vector

yMB;SW = hMB;SW
N (x, θN ; p) + hMB;SW

L (x, θN ; p)θL

(15)
where

yMB;SW =

[

yMB

ySW

]

(16)

θL =
[

t0, b
T
M

]T
(17)

hMB;SW
L (x, θN ; p) =

[

1M,1 IM

1S,1

[

IS 0S,M−S

]

]

, (18)

θN =
[

αT v0 c
]T

(19)

hMB;SW
N,k =

[

1
c
||pk − x||T hSW

N,k(x, θN ; p)
]

.

(20)

Here, bM denotes the set of clock synchronization er-
rors for the M MB observations, and bS denotes the S
clock synchronization errors for the SW observations.
Usually, bS is a subset of bM .

4.4 Difference Model (MB–SW)

Motivated by accurate localization despite synchro-
nization errors, we study the MB–SW model :

yMB−SW
k = yMB

k − ySW

k

= hMB

L (x; p)θMB

L − hSW

N (x, θSW

N ; p)

− hSW

L (x, θN ; p)θSW

N + eMB

k − eSW

k , (21)

for k = 1, 2 . . . S. This rather special model has also
been analyzed in [12, 15]. The key idea is that y is by
cancellation independent of both the firing time t0 and
the synchronization error b. The drawback, of course,
is that there are only S equations (instead of a total of
M + S) and the detection error increases, eMB

k − eSW

k .
However, when the synchronization errors are expected
to be significantly larger than the detection errors, and
when also S is sufficiently large (at least as large as the
number of parameters), this model is believed to give
better localization accuracy. This will be investigated
later.

There are no parameters in (21) that appear linearly
everywhere. Thus, the vector form for the MB–SW
model can be written

yMB−SW = hMB−SW
N (x, θN ; p) + e, (22)

where

hMB−SW
N,k (x, θN ; pk) =

= 1
c
||pk − x|| − 1

r
log

v0

v0 − r||dk − x||
− 1

c
||dk − pk||,

and y = yMB − ySW, e = eMB − eSW. As before, dk is the
admissible solution to (11), (13). The MB–SW least
squares criterion is

x̂ = arg min
x,θN

||yMB−SW − hMB−SW
N (x, θN ; p)||2R, (23)

which requires numerical optimization. Numerical ex-
periments indicate that this optimization problem is
more prone to local minima, compared to (9a) for the
MB model, therefore good starting points for the nu-
merical search are essential. One such starting point
could for instance be the MB estimate x̂MB. Initial
shooting direction could be given by assuming, in a
sense, the worst possible case; that the shooter aims
at some point close to the center of the microphone
network.

4.5 Error Model

At an arbitrary moment, the detection errors and
synchronization errors are assumed to be independent
stochastic variables with normal distribution,

eMB ∼ N (0, RMB), (24a)

eSW ∼ N (0, RSW), (24b)

b ∼ N (0, Rb). (24c)



For the MB–SW model the error is consequently

eMB–SW ∼ N (0, RMB + RSW). (24d)

Assuming that S = M in the MB;SW model, the de-
tection error covariance can be expressed in a simple
manner as

RMB;SW =

[

RMB + Rb Rb

Rb RSW + Rb

]

. (24e)

Note that the correlation structure of the clock synchro-
nization error b enables estimation of these. Note also
that the (assumed known) total error covariance, gener-
ally denoted R, dictates the norm used in the weighted
least squares criterion. R also impacts the estimation
bounds. This will be discussed in the next section.

4.6 Summary of Models

Four models with different purposes have been de-
scribed in this section:

• MB. Given that the acoustic environment en-
ables reliable detection of the muzzle blast, the
MB model promises the most robust estima-
tion algorithms. It also allows global minimiza-
tion with low-dimensional exhaustive search algo-
rithms. This model is thus suitable for initializa-
tion of algorithms based on the subsequent models.

• SW. The SW model extends the MB model with
shooting angle, bullet speed, and deceleration pa-
rameters, which provide useful information for
sniper detection applications. The SW is easier
to detect in disturbed environments, particularly
when the shooter is far away and the bullet passes
closely. However, a sufficient number of micro-
phones are required to be located within the SW
cone, and the SW measurements alone can not be
used to determine the distance to the shooter.

• MB;SW. The total MB;SW model keeps all in-
formation from the observations, and should thus
provide the most accurate and general estimation
performance. However, the complexity of the esti-
mation problem is large.

• MB–SW. All algorithms based on the models
above require that the synchronization error in
each microphone is either negligible or can be
described with a statistical distribution. The
MB–SW model relaxes such assumptions by elim-
inating the synchronization error by taking differ-
ences of the two pulses at each microphone. This
also eliminates the shooting time. The final model
contains all interesting parameters for the problem,
but only one nuisance parameter (actual speed of
sound, which further may be eliminated if known
sufficiently well).

The different parameter vectors in the relation y =
hL(θN )θL + hN (θN ) + e are summarized in Table 2.

5 Cramér-Rao Lower Bound
The accuracy of any unbiased estimator η̂ in the

rather general model

y = h(η) + e (25)

is, under not too restrictive assumptions [20], bounded
by the Cramér-Rao bound,

Cov(η̂) ≥ I−1(ηo), (26)

where I(ηo) is the Fisher’s information matrix eval-
uated at the correct parameter values ηo. Here, the
location x is for notational purposes part of the param-
eter vector η. Also the sensor positions pk can be part
of η, if these are known only with a certain uncertainty.
The Cramér-Rao lower bound provides a fundamental
estimation limit for unbiased estimators, see [20]. This
bound has been analyzed thoroughly in the literature,
primarily for AOA, TOA and TDOA, [21–23].

The Fisher information matrix for e ∼ N (0, R) takes
the form

I(η) = ∇η[h(η)]R−1∇T
η [h(η)]. (27)

The bound is evaluated for a specific location, param-
eter setting, and microphone positioning, collectively
η = ηo.

The bound for the localization error is

Cov(x̂) ≥
[

In 0
]

I−1(ηo)

[

In

0

]

. (28)

This covariance can be converted to a more convenient
scalar value giving a bound on the root mean square
error (RMSE) using the trace operator:

RMSE ≥

√

1

n
tr

(

[

In 0
]

I−1(ηo)

[

In

0

])

. (29)

The RMSE bound can be used to compare the infor-
mation in different models in a simple and unambigu-
ous way, which does not depend on which optimization
criterion is used or which numerical algorithm that is
applied to minimize the criterion.

5.1 MB Case

For the MB case, the entities in (27) are identified by

η =
[

xT θT
L

]T
, (30)

h(η) = hMB

L (x; p)θL, (31)

R = RMB + Rb. (32)

Note that b is accounted for by the error model. The
Jacobian ∇ηh is an M -by-n+2 matrix, n being the di-
mension of x. The LS solution in (4a) however gives a
shortcut to an M -by-n Jacobian,

∇x[hLθ̂L] = ∇x[hL(hT
LR−1hL)−1hT

LR−1yo] (33)



Model Linear Parameters Nonlinear Parameters dim(θ) dim(y)

MB θMB
L =

[

t0 1/c
]T

θMB
N = [ ] 2 + 0 M

SW θSW
L = t0 θMB

N =
[

1/c, αT , v0

]T
1 + (n + 1) S

MB;SW θMB;SW
L =

[

t0 b
]T

θMB;SW
N =

[

1/c, αT , v0

]T
(M + 1) + (n + 1) M + S

MB–SW θMB−SW
L = [ ] θMB−SW

N =
[

1/c, αT , v0

]T
0 + (n + 1) S

Table 2: Summary of parameter vectors for the different models y = hL(θN )θL + hN (θN ) + e, where the noise
models are summarized in (24). The values of the dimensions assume that the set of microphones giving SW
observations is a subset of the MB observations.

Microphones

Road

Camp

Trees

Shooter

Trees

1000 m

x

x

2

1

Figure 4: Example scenario. A network with 14 sen-
sors deployed for camp protection. The sensors detect
intruders, keep track on vehicle movements, and, of
course, locate shooters.

for yo = hL(xo; po)θo
L, where xo, po and θo denote the

true (unperturbed) values. For the case n = 2 and
known p = po, this Jacobian can, with some effort, be
expressed explicitly. The equivalent bound is

Cov(x̂) ≥
[

∇T
x [hLθ̂L]R−1∇x[hLθ̂L]

]−1
. (34)

5.2 SW, MB;SW and MB–SW Cases

The estimation bounds for the SW, MB;SW and
MB–SW cases are analogously to (28), but there are
hardly any analytical expressions available. The Ja-
cobian is probably best evaluated by finite difference
methods.

5.3 Numerical Example

The really interesting question is how the information
in the different models relate to each other. We will
study a scenario where 14 microphones are deployed
in a sensor network to support camp protection, see
Figure 4. The microphones are positioned along a road
to track vehicles and around the camp site to detect in-
truders. Of course, the microphones also detect muzzle
blasts and shock waves from gunfire, so shooters can be
localized and the shooter’s target identified.

A plane model (flat camp site) is assumed, x ∈ R
2,

α ∈ R. Furthermore, it is assumed that

Rb = σ2
b I, (synchronization error cov.)

RMB = RSW = σ2
eI, (detection error cov.)

and that α = 0, c = 330 m/s, v0 = 700 m/s, r = 0.63.
The scenario setup implies that all microphones detect
the shock wave, so S = M = 14. All bounds pre-
sented below are calculated by numerical finite differ-
ence methods.

MB model The localization accuracy using the MB
model is bounded below according to

Cov(x̂MB) ≥ (σ2
e + σ2

b )

[

64 −17
−17 9

]

· 104. (35)

The root mean square error (RMSE) is consequently
bounded according to

RMSE
(

x̂MB
)

≥
√

1
n

tr Cov x̂MB ≈ 606
√

σ2
e + σ2

b [m].

(36)
Monte Carlo simulations (not described here) indicate
that the NLS estimator attains this lower bound for
√

σ2
e + σ2

b < 0.1 s. The dash-dotted curve in Figure 5
shows the bound versus σb for fix σe = 500 µs. An
uncontrolled increase as soon as σb > σe can be noted.

SW Model The SW model is disregarded here, since
the SW detections alone contain no shooter distance
information.

MB–SW Model The localization accuracy using the
MB–SW model is bounded according to

Cov(x̂MB–SW) ≥ σ2
e

[

28 5
5 12

]

· 105, (37)

RMSE
(

x̂MB–SW
)

≥ 1430σe [m]. (38)

The dashed lines in Figure 5 correspond to the RMSE
bound for four different values of σe. Here, the MB–SW
model gives at least twice the error of the MB model,
provided that there are no synchronization errors. How-
ever, in a wireless network we expect the synchroniza-
tion error to be 10-100 times larger than the detection
error, and then the MB–SW error will be substantially
smaller than the MB error.



0.1 1 10 100
0

0.5

1

1.5 σ
e
 = 1000 µs

σ
e
 = 500 µs

σ
e
 = 200 µs

σ
e
 = 50 µs

 

 

R
M

S
E

 [m
]

MB (σ
e
 = 500 µs)

MB−SW (σ
e
 = 50 − 1000 µs)

MB;SW (σ
e
 = 50 − 1000 µs)

σb [ms]

Figure 5: Cramér-Rao RMSE bound (29) for the MB
(36), the MB–SW (38), and the MB;SW models, re-
spectively, as a function of the synchronization error
(STD) σb, and for different levels of detection error σe.

MB;SW Model The expression for the MB;SW
bound is somewhat involved, so the dependence on σb

is only presented graphically, see Figure 5. The solid
curves correspond to the MB;SW RMSE bound for the
same four values of σe as for the MB–SW bound.

Apparently, when the synchronization error σb is
large compared to the detection error σe, the MB–SW
and MB;SW models contain roughly the same amount
of information, and the model having the simplest es-
timator, that is, the MB–SW model, should be pre-
ferred. However, when the synchronization error is
smaller than 100 times the detection error, the com-
plete MB;SW model becomes more informative.

These results are comparable with the analysis in [12]
(Figure 4a), where an example scenario with 6 micro-
phones is considered.

5.4 Summary of the CRLB Analysis

The synchronization error level in a wireless sensor
network is usually a matter of design trade off between
performance and battery costs required by synchroniza-
tion mechanisms. Based on the scenario example, the
CRLB analysis is summarized with the following rec-
ommendations:

• If σb � σe, then the MB–SW model should be
used.

• If σb is moderate, then the MB;SW model should
be used.

• Only if σb is very small (σb ≤ σe), and the shooting
direction is of minor interest, and performance may
be traded for simplicity, then the MB model should
be used.

Target

1

2

3

 

 

500 m

Shooter
Microphone

Figure 6: Scene of the shooter localization field trial.
There are ten microphones, three shooter positions, and
a common target.

6 Experimental Data
A field trial to collect acoustic data on non-military

small arms fire is conducted. 10 microphones are placed
around a fictitious camp, see Figure 6. The micro-
phones are placed close to the ground and wired to a
common recorder with 16-bit sampling at 48 kHz. A
total of 42 rounds are fired from three positions and
aimed at a common cardboard target. Three rifles and
one pistol are used, see Table 3. Four rounds are fired of
each armament at each shooter position, with two ex-
ceptions. The pistol is only used at position three. At
position three, six instead of four rounds of 308W are
fired. All ammunition types are supersonic. However,
when firing from position three, not all microphones are
subjected to the shock wave.

Light wind, no clouds, around 24 ◦C are the weather
conditions. Little or no acoustic disturbances are
present. The terrain is rough. Dense woods surround
the test site. There is light bush vegetation within the
site. Shooter position 1 is elevated some 20 m, oth-
erwise spots are within ±5 m of a horizontal plane.
Ground truth values of the positions are determined
with less relative error than 1 m, except for shooter
position 1, which is determined with 10 m accuracy.

6.1 Detection

The MB and SW are detected by visual inspection
of the microphone signals in conjunction with filter-
ing techniques. For shooter position 1 and 2, the shock
wave detection accuracy is approximately σSW

e ≈ 80 µs,
and the muzzle blast error σMB

e is slightly worse. For
shooting position 3 the accuracies are generally much
worse, since the muzzle blast and shock wave compo-
nents become intermixed in time.

6.2 Numerical Setup

For simplicity, a plane model is assumed. All eleva-
tion measurements are ignored and x ∈ R

2 and α ∈ R.
Localization using the MB model (6) is done by mini-
mizing (9a) over a 10 m grid well covering the area of



Table 3: Armament and ammunition used at the trial, and number of rounds fired at each shooter position. Also,
the resulting localization RMSE for the MB–SW model for each shooter position. For the Luger Pistol the MB
model RMSE is given, since only one microphone is located in the Luger Pistol SW cone.

Type Caliber Weight Velocity Sh. pos. # Rounds RMSE
308 Winchester 7.62 mm 9.55 g 847 m/s 1, 2, 3 4, 4, 6 19, 6, 6 m
Hunting Rifle 9.3 mm 15 g 767 m/s 1, 2, 3 4, 4, 4 6, 5, 6 m
Swedish Mauser 6.5 mm 8.42 g 852 m/s 1, 2, 3 4, 4, 4 40, 6, 6 m
Luger Pistol 9 mm 6.8 g 400 m/s 3 –, –, 4 –, –, 2 m

interest, followed by numerical minimization.
Localization using the MB–SW model (21) is done

by numerically minimizing (23). The objective func-
tion is subject to local optima, therefore the more ro-
bust muzzle blast localization x̂ is used as an initial
guess. Furthermore, the direction from x̂ toward the
mean point of the microphones (“the camp”) is used
as initial shooting direction α. Initial bullet speed is
v = 800 m/s and initial speed of sound is c = 330 m/s.
r = 0.63 is used, which is a value derived from the 308
Winchester ammunition ballistics.

6.3 Results

Figure 7 shows, at three enlarged parts of the scene,
the resulting position estimates based on the MB model
(blue crosses) and based on the MB–SW (squares). Ap-
parently, the use of the shock wave significantly im-
proves localization at position 1 and 2, while rather the
opposite holds at position 3. Figure 8 visualizes the
shooting direction estimates, α̂. Estimate root mean
square errors (RMSE) for the three shooter positions,
together with the theoretical bounds (29) are given in
Table 4. The practical results indicate that the use of
the shock wave from distant shooters cut the error by
at least 75%.

Synchronization and Detection Errors Since all
microphones are recorded by a common recorder, there
are actually no timing errors due to inaccurate clocks.
This is of course the best way to conduct a controlled
experiment, where any uncertainty renders the dataset
less useful. From experimental point of view, it is
then simple to add synchronization errors of any de-
sired magnitude off-line. On the dataset at hand, this
is however work under progress. At the moment, there
are apparently other sources of error, worth identify-
ing. It should however be clarified, that in the final
wireless sensor product, there will always be an unpre-
dictable clock error. As mentioned, detection errors
are present, and the expected level of these (80 µs) are
used for bound calculations in Table 4. It is noted that
the bounds are in level with, or below, the positioning
errors.

There are at least two explanations for the bad per-
formance using the MB–SW model at shooter posi-

tion 3. One is, that the number of microphones reached
by the shock wave is insufficient to make accurate esti-
mates. There are four unknown model parameters, but
for the relatively low speed of pistol ammunition, for
instance, only one microphone has a valid shock wave
detection. Another explanation is, that the increased
detection uncertainty (due to SW/MB intermix) im-
pacts the MB–SW model harder, since it relies on ac-
curate detection of both the MB and SW.

Model Errors No doubt, there are model inaccura-
cies both in the ballistic and in the acoustic domain. To
that end, there are meteorological uncertainties out of
our control. For instance, looking at the MB–SW local-
izations around shooter position 1 in Figure 7 (squares),
three clusters are identified that correspond to three
ammunition types with different ballistic properties, see
the RMSE for each ammunition and position in Table 3.
This clustering or bias more likely stems from model er-
rors than from detection errors, and could at least par-
tially explain the large gap between theoretical bound
and RMSE in Table 4. Working with three-dimensional
data in the plane is of course another model discrep-
ancy, that could have greater impact than we first an-
ticipated. This will be investigated in experiments to
come.

Numerical Uncertainties Finally, we face numeri-
cal uncertainties. There is no guarantee that the nu-
merical minimization programs we have used here for
the MB–SW model really deliver the global minimum.
In a realistic implementation, every possible a priori
knowledge and also qualitative analysis of the SW and
MB signals (amplitude, duration, caliber classification
and so on) together with basic consistency checks are
used to reduce the search space. The reduced search
space may then be exhaustively sampled over a grid
prior to the final numerical minimization. Simple ex-
periments on an ordinary desktop PC indicate that with
an efficient implementation, it is feasible to within the
time frame of one second minimize any of the described
model objective functions over a discrete grid with 107

points. Thus, by allowing–say–one second extra of com-
putation time, the risk for hitting a local optima could
be significantly reduced.
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Figure 7: Estimated positions x̂ based on the MB model
and on the MB–SW model. The diagrams are enlarge-
ments of the interesting areas around the shooter posi-
tions. The dashed lines identify the shooting directions.

7 Conclusions
We have presented a framework for estimation of

shooter location and aiming angle from wireless net-
works where each node has a single microphone. Both
the acoustic muzzle blast (MB) and the ballistic shock
wave (SW) contain useful information about the po-
sition, but only the SW contains information about
the aiming angle. A separable nonlinear least squares
(SNLS) framework was proposed to limit the paramet-
ric search space and to enable the use of global grid-
based optimization algorithms (for the MB model),
eliminating potential problems with local minima.

For a perfectly synchronized network, both MB and
SW measurements should be stacked into one large sig-
nal model for which SNLS is applied. However, when
the synchronization error in the network becomes com-
parable to the detection error for MB and SW, the
performance quickly deteriorates. For that reason, the

Target

500 m
 

 

Shooter
Microphone
Est. Pos.

Figure 8: Estimated shooting directions. The relatively
slow pistol ammunition is excluded.

Table 4: Localization RMSE and theoretical bound (29)
for the three different shooter positions using the MB
and the MB–SW models, respectively, beside the aim
RMSE for the MB–SW model. The aim RMSE is with
respect to the aim at x̂ against the target, α′, not with
respect to the true direction α. This way the ability to
identify the target is assessed.

Shooter position 1 2 3
RMSE(x̂MB) 105 m 28 m 2.4 m
MB Bound 1 m 0.4 m 0.02 m

RMSE (x̂MB–SW) 26 m 5.7 m 5.2 m
MB–SW Bound 9 m 0.1 m 0.08 m

RMSE(α̂′) 0.041◦ 0.14◦ 17◦

time difference of MB and SW at each microphone is
used, which automatically eliminates any clock offset.
The effective number of measurements decreases in this
approach, but as the CRLB analysis showed, the root
mean square position error is comparable to that of
the ideal stacked model, at the same time as the syn-
chronization error distribution may be completely dis-
regarded.

The bullet speed occurs as nuisance parameters in
the proposed signal model. Further, the bullet retar-
dation constant was optimized manually. Future work
will investigate if the retardation constant should also
be estimated, and if these two parameters can be used,
together with the MB and SW signal forms, to identify
the weapon and ammunition.

References
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