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fredrik@isy.liu.se

ABSTRACT

We consider probabilistic methods to compute the near midair colli-
sion risk using state estimate and covariance from a target tracking
filter based on angle-only sensors such as digital video cameras. Ex-
isting work is only concerned with risk estimation at a certain time
instant, while the focus here is to compute the integrated risk over
the critical time horizon. This novel formulation leads to evaluating
the probability for level-crossing. The analytic expression for this
involves a multi-dimensional integral which is hardly tractable in
practice. Further, a huge number of Monte Carlo simulationswould
be needed to get sufficient reliability for the small risks that the ap-
plications require. Instead, we propose a sound numerical approxi-
mation that leads to a one-dimensional integral which is suitable for
real-time implementations.

Index Terms— Near midair collision, collision avoidance, UAV,
target tracking, level-crossings.

1. INTRODUCTION

Manned aircraft flying in controlled airspace maintain a safe distance
between each other using the service provided by an Air Traffic Con-
trol (ATC). ATC informs and orders human pilots to perform maneu-
vers in order to avoid Near MidAir Collisions (NMAC). A NMAC
between two aircraft occurs if the relative distance between the two
aircraft becomes less than a predefined distance. The last decade
semi-automatic systems like ACAS (Airborne Collision Avoidance
System) have been implemented that essentially move this responsi-
bility from ATC to the pilot. The ACAS system, however, assumes
that both aircraft exchange data on speed, height and bearing over
a data link and that both systems cooperate. When operating small
UAVs this assumption is often no longer valid. A typical UAV oper-
ates on altitudes where small intruding aircraft are often present that
do not carry transponders.

This paper describes a method for detecting hazardous situations
based on data from a passive angle-only sensor. A challenge with
angle-only measuring sensors is how to deal with the significant un-
certainty obtained in estimated relative distance and speed. One ap-
proach to increase accuracy in the distance estimate is to perform
own platform maneuvers [1]. The method in this paper does not
rely on accurate distance estimates. The reason is that the method is
based on computing the probability of NMAC over a period of time.
The method is robust to large uncertainties, as opposed to a method
based on instantaneous probability of NMAC [2] where large uncer-
tainties tend to diminish the resulting probability.
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We present an approximate solution to the in general computa-
tionally intractable problem of computing the probabilityof NMAC.
Although Monte-Carlo methods are known to be able to approximate
probabilities arbitrarily well [3], they are also known to be computer
intensive particularly when the underlying probabilitiesare small.
Here we do not rely on Monte-Carlo methods, but instead we make
use of theory for stochastic processes and level-crossings. The event
corresponding to NMAC can be seen as a crossing of the safety
zone boundary. By appropriate approximations of the safetyzone
the probability of crossing the boundary becomes computationally
tractable. The same approach was applied in [2] but for the case
of known initial position and velocity. Here we consider thesitua-
tion with large initial uncertainties, typically as a result of tracking
intruders based on angle-only sensors.

2. PROBLEM FORMULATION

The probability of near-midair collision (NMAC) between two aerial
vehicles for a given time period(0, T ) is defined as

P
(

NMAC(0,T )

)

= P
(

min
0<t<T

|s(t)|<R ∩ |s(0)|>R
)

, (1)

wheres(t) represents the relative position between the two vehicles
at timet ≥ 0 andt is the prediction time.R is the radius of a safety
zone, which we assume has the shape of a sphere, andR = 150 m.
The definition according to (1) means that if the relative distance

|s(t)| =
√

s2
x(t) + s2

y(t) + s2
z(t)

for any0 < t < T falls belowR, no matter for how long, we have
a NMAC. We are only interested in a potential NMAC in the future,
thereby the added condition|s(0)| > R. The existing ACAS sys-
tem is capable of detecting and avoiding a NMAC, given a collision
scenario, with a probability which is approximately0.95. For the
detection part it is therefore reasonable to provide a method which
computes probability of NMAC with a relative accuracy of0.1 or
better when the underlying probability of NMAC is0.01 or larger.

Typically, an estimate of relative position is provided by an angle-
only tracking filter [4]. Target tracking will not be pursuedhere in
detail, we simply state that based on measurements from an angle
measurement unit e.g. an electro-optical sensor, the tracking filter
estimates three-dimensional relative positions(0) and velocityv(0)
in cartesian coordinates together with their covariances.To simplify
the problem formulation we assume the angle measurement unit is
accurate and the coordinate system is rotated such that thex− axis
is aligned with line of sight. This means that

sy(0) ≡ sz(0) ≡ 0 (2)



and the estimated state vector used for the probability computations
is

x̂(0) =
[

ŝx(0) v̂x(0) v̂y(0) v̂z(0)
]T

, (3)

together with its covariance matrix, noting from (2) thatσsy =
σsz = 0,

P (0) =









σ2
sx ρσsxσvx 0 0

ρσsxσvx σ2
vx 0 0

0 0 σ2
vy 0

0 0 0 σ2
vz









. (4)

Without loss of generality we have assumed cross-correlation only
betweensx(0) andvx(0). In general this is not true, but through uni-
tary transformations it is straightforward to obtain aP (0) according
to (4). We assume the tracking filter output is normally distributed,
i.e.

x(0) ∼ N (x̂(0), P (0)), (5)

Note that we will only deal with a relative time scale, represented by
t = 0 as the current time on an absolute time scale. At each new
time instant on the absolute time scale the tracking filter provides
updated estimates ofx(0) andP (0).

To be able to computeP
(

NMAC(0,T )

)

in (1) we need a mo-
tion model which describes how the relative position propagates over
time. Here we assume the trajectory is a straight path given by

ṡi(t) = vi(t), v̇i(t) = 0 for i = x, y, z, (6)

i.e. only the initial conditions influence the probability of NMAC.

3. CROSSING OF THE SAFETY ZONE

Under the assumption that the path is straight, a geometric interpre-
tation of a NMAC is given by Figure 1. The collision scenario is
here projected such that the⊥ − axis is given by the direction of the
vector

[

0 vy(0) vz(0)
]T

.
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Fig. 1. Exact geometry for the limit of NMAC as seen when pro-
jected onto the plane spanned byv⊥(0) =

√

v2
y(0) + v2

z(0) and
vx(0).

It is straightforward to show, ignoringt = 0 for notational con-
venience, that

P(NMAC(0,T )) = P
(

C1 ∩ C2 ∩ C3

)

, (7)

where∩ denotes logical ’and’, and

C1 = sx sin β< R,

C2 =
sx cos β −

√

R2 − s2
x sin2 β

(v2
x + v2

⊥)1/2
< T,

C3 = sx > R ∩ vx < 0.

(8)

C1 in (7) and (8) is a condition on the direction of the relative veloc-
ity, whereβ = arctan v⊥

|vx| . C2 is a condition on the magnitude of
the relative velocity.C3 is needed because otherwise ifsx(0) < R
it is already too late or ifvx(0) > 0 there will never be a NMAC.

4. MONTE-CARLO APPROXIMATION

The probability according to (7) is in general very difficultto com-
pute. A straightforward approximative solution is to use a Monte-
Carlo method, i.e. to drawN samples ofx(0) from (5) and approx-
imate the probability with the outcome of the sampling. Denote the
true value of the sought probability withp. The set of samples is
binomially distributed, Bin(N, p), but for a large enough N, usually
Np(1 − p) > 20 is adequate, the probability is approximated well
by [5]

1

N

N
∑

i=1

C
(i)
1 ∩ C

(i)
2 ∩ C

(i)
3 ∼ N (p, σ2), σ2 =

p(1 − p)

N
. (9)

For a relative mean square errorε ≤ σ
p

we can write needed number
of samples according to

N ≥ 1 − p

ε2p
≈ 1

ε2p
, (10)

where the last approximation is valid for smallp. Assumep = 0.01
and3ε ≤ 0.1, i.e a relative error smaller than10% with probability
0.997. These values plugged into (10) suggests that we must use
N ≥ 90000. For many on-line applications this means a too high
computational load.

5. SOLUTION BASED ON APPROXIMATION OF
GEOMETRY

5.1. Geometric Approximation

A good approximation for a NMAC to occur is to say the relative
position must cross a plane surface instead of a curved surface. Here,
the plane surface is given by a circle orthogonal to line of sight and
with radiusR, see Figure 2.
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Fig. 2. Approximate geometry for the limit of NMAC as seen when
projected onto the plane spanned byv⊥(0) =

√

v2
y(0) + v2

z(0) and
vx(0).

An approximate probability of NMAC then becomes

P̂(NMAC(0,T )) = P
(

C′
1 ∩ C′

2 ∩ C′
3

)

, (11)

where

C′
1 = sx tan β< R,

C′
2 =

sx

|vx|
< T,

C′
3 = sx > 0 ∩ vx < 0.

(12)



Define a random variableτ according to

τ =

{ sx

|vx| if C′
3 is true,

∞ otherwise,
(13)

whereτ represents the time it takes for the distance between the two
objects along line of sight to decrease to0. The distribution forτ is
given by Lemma 1.

Lemma 1 (Probability distribution for τ ) For a stochastic process
{sx(t), t ∈ R}with assumption (6) the probability of a down-crossing
within T sec is given by

P(τ < T ) =

∫ ∞

0

∫ − s
T

−∞
psx,vx(s, v)dvds, (14)

where psx,vx(s, v) is the joint probability function for sx and vx.
Proof: See Appendix A.

Now we can formulate the approximate probability of NMAC(0,T )

in (11) according to

P̂(NMAC(0,T )) = P(τv⊥ < R ∩ τ < T ), (15)

i.e. givenτ = t, if v⊥ is not large enough for the distance perpen-
dicular to line of sight to become at leastR aftert seconds there will
be a NMAC. The probability according to (15) is given by Lemma
2.

Lemma 2 (Probability of down-crossing of a given circle) For a
stochastic process {s(t) =

[

sx(t) sy(t) sz(t)
]T

, t ∈ R} with
assumptions (2), (4) and (6) the probability of a down-crossing within
T sec of a circle with x−axis as its normal and radius R is given by

P̂(NMAC(0,T )) = P
(

τv⊥ < R ∩ τ < T
)

=

P(τ < T ) −
∫ ∞

R2

T2

pv2
⊥

(v)

(

P(τ < T ) − P(τ <
R√
v
)

)

dv,
(16)

where P(τ < T ) is given by Lemma 1.
Proof: See Appendix B.

Assuming the involved random variables are normally distributed
the approximate probability for NMAC is given by (16) with the cor-
responding expressions forpv2

⊥
(v) andP

(

τ < T
)

inserted. The

random variablev2
⊥ is a weighted sum of two non-centralχ2− dis-

tributed variables, i.e. withλi =
v̂2

i

σ2
vi

for i = y andz

pv2
⊥

(v) = σ2
vyσ2

vz

∫ v

0

pχ2
y
(ξ)pχ2

z
(v − ξ)dξ,

pχ2
i
(ξ) =

e−
ξ+λi

2

(2ξ)
1
2

∞
∑

k=0

(λiξ
4

)k

k! Γ(k + 1
2
)

for i = y andz.

(17)

The distributionP
(

τ < T
)

is given by

P
(

τ < T
)

=
1

2π(1 − η2)
1
2

∫ ∞

k

∫ ∞

h

e
− u2−2ηuv+v2

2(1−η2) dvdu, (18)

wherek = − ŝx

σsx
and

h =
ŝx + v̂xT

√

σ2
vxT 2 + 2ρσsxσvxT + σ2

sx

,

η = − ρσvxT + σsx
√

σ2
vxT 2 + 2ρ σsxσvxT + σ2

sx

.

(19)

5.2. Numerical Approximation

A simple and effective way of evaluating the outer integral in (16) is
to apply Simpson’s rule, i.e.

∫ v(2M)

v(0)

f(v)dv =
h

3

(

f(v(0)) + 4
M
∑

i=1

f(v(2i−1))

+ 2
M−1
∑

i=1

f(v(2i)) + f(v(2M))

)

+ RM ,

(20)

whereh = v(2M)−v(0)

2M
, v(i) = v(0) + ih andRM < Mh5

90
|f (4)(ξ)|

for v(0) ≤ ξ ≤ v(2M).
To compute a one-dimensional normal distributionΦ(·) a very

accurate result is given by [6]

Φ(a) =

∫ a

−∞
φ(x)dx =

1√
2π

∫ a

−∞
e−

x2

2 dx ≈
√

1

4
− 7e−

a2

2 + 16ea2(
√

2−2) + (7 + πa2

4
)e−a2

120
+

1

2
,

(21)

for a ≥ 0. According to [6] the relative error in (21) is less than
3×10−4. This is used in order to compute an approximation of (18)
according to [7]. The probability from (18), withk, h andη taken
from (19), is written according to

P
(

τ < T
)

= Φ(−h) − Φ(k)E

[

Φ

(

ηu − h
√

1 − η2

)

|u < k

]

. (22)

The approximation consists of replacingu under the expectation in
(22) with its conditional expectationE[u|u < k] = − φ(k)

Φ(k)
. This

means that (22) is approximated with

P̂
(

τ < T
)

= Φ(−h) − Φ(k)Φ

(

−
η φ(k)

Φ(k)
+ h

√

1 − η2

)

. (23)

From [8] we know we can approximate the density in (17) with
a single centralχ2 according to

p̂v2
⊥

(v) =

√
2f

σ(v2
⊥)

pχ2

(

v − m(v2
⊥)

σ(v2
⊥)

√

2f + f

)

, (24)

where

pχ2(ξ) =
1

2
f
2 Γ( f

2
)
ξ

f
2
−1e−

ξ
2 ,

m(v2
⊥) =

z
∑

i=y

σ2
vi + v̂2

i ,

σ(v2
⊥) =

(

2
z

∑

i=y

σ4
vi + 2v̂2

i σ2
vi)

)1/2

,

f =

(

σ(v2
⊥)

)6

8
(
∑z

i=y σ6
vi + 3v̂2

i σ4
vi

)2 .

(25)

To summarize, the expression to numerically compute
P̂(NMAC(0,T )) in (16) is

P̂(NMAC(0,T )) ≈ P̂(τ < T ) −
∫ ∞

R2

T2

p̂v2
⊥

(v)

(

P̂(τ < T ) − P̂(τ <
R√
v
)

)

dv,
(26)



whereP̂(τ < T ) is given by (23) and̂pv2
⊥

(v) by (24). The integral
in (26) is solved by applying Simpson’s rule according to (20) with
v(2M) = m(v2

⊥) + 6σ(v2
⊥).

6. SIMULATION RESULTS

Figure 3 showsP(NMAC(0,50)) computed according to (26) with

M = 50 as a function ofβ = arctan
v̂y

v̂x
compared to the Monte-

Carlo solution from (9) when̂sx = 2000, v̂x = 120, σsx = 400,
σvx = 30, ρ = 0.8, v̂y = v̂x tan β, v̂z = 0, σvy =

(

v̂2
yσ2

sx/ŝ2
x +

ŝ2
x10−6

)1/2
andσvz = ŝx10−3.
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Fig. 3. The left plot showsP(NMAC(0,50)) according to (26) using
M = 50 (solid line) and the Monte Carlo solution given by (9)
(≈ 0.01 at β = 9.5) using 500000 samples (dashed line). The
right plot shows the difference between the two solutions (solid line)
including the 3-σ confidence interval for the Monte Carlo solution
(dotted lines).

Table 1 shows the relative error forP(NMAC(0,50)) given by
(26) evaluated atp = 0.01 whenσsx andσvx vary. If the require-
ment on the relative error is less than0.1 at p = 0.01 we deduce
from Table 1 that ifσsx < 400, i.e. σsx

ŝx
< 0.2, the requirement is

met. The reason for the worse accuracy for larger variances is pri-
marily due to the approximation according to (24). For better result
in cases with large variances a better approximation is needed.

Table 1. Relative errorε atp = 0.01 for the algorithm given by (26).
σsx 666 500 500 400 400 333 333
σvx 40 40 30 30 24 24 20
ε 0.5 0.22 0.22 0.12 0.12 0.06 0.07

7. CONCLUSIONS

In this paper we have presented a method to compute the probability
of near midair collision between two vehicles flying along straight
trajectories. Near midair collision is defined as the event of the rel-
ative position crossing the safety zone boundary. By appropriate
geometric and numerical approximations the probability ofcrossing
the boundary becomes computationally tractable. Through simula-
tions we have shown that for a certain collision scenario themethod
meets the given accuracy requirement as long as the varianceof esti-
mated relative position is not too large. Compared to a Monte-Carlo
approximation at the same level of accuracy the method decreases
computational load by approximately two orders of magnitude.

A. PROOF OF LEMMA 1

Due tov(t) = v(0), for a down-crossing to occur we must have
sx(0) > 0 andvx(0) < 0. For a down-crossing to occur within the
time frame0 < t < T the velocity needs to be

−∞ ≤ vx(0) ≤ −sx(0)

T
, (27)

The probability for this to happen is

P(τ < T ) =

∫ ∞

0

∫ − s
T

−∞
psx,vx (s, v)dvds. (28)

B. PROOF OF LEMMA 2

Using the density for the mutually independentv⊥ andτ we have

P(τv⊥ < R ∩ τ < T ) = P(v2
⊥ <

R2

τ 2
∩ τ < T )

=

∫ T

0

∫ R2

t2

0

pv2
⊥

(v)pτ (t)dvdt.

(29)

Changing the order of computation in (29) yields

P(τv⊥ < R ∩ τ < T ) =

∫ ∞

R2

T2

∫ R√
v

0

pv2
⊥
(v)pτ (t)dtdv +

∫ R2

T2

0

∫ T

0

pv2
⊥
(v)pτ (t)dtdv =

P(τ < T ) −
∫ ∞

R2

T2

pv2
⊥

(v)

(

P(τ < T ) − P(τ <
R√
v
)

)

dv

(30)
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