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Abstract

This work investigates how stochastic sampling jitter noise affects the result of system identification, and proposes a modification
of known approaches to mitigate the effects of sampling jitter, when the jitter is unknown and not directly measurable. By just
assuming conventional additive measurement noise, the analysis shows that the identified model will get a bias in the transfer
function amplitude that increases for higher frequencies. A frequency domain approach with a continuous-time model allows
an analysis framework for sampling jitter noise. The bias and covariance in the frequency domain model are derived. These
are used in bias compensated (weighted) least squares algorithms, and by asymptotic arguments this leads to a maximum
likelihood algorithm. Continuous-time output error models are used for numerical illustrations.
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1 Introduction

Consider a deterministic signal model s(t; θ), which may
depend on an observed or known input. This work stud-
ies the problem of identifying the unknown parameter
vector θ, when the discrete time observations yk re-
quested at time t = kT (T denotes the sampling inter-
val) are subject both to the usual additive measurement
noise and also stochastic unmeasurable jitter noise τk
as part of the sampling process. That is, the observa-
tion includes the term s(kT + τk; θ), which becomes a
stochastic variable.

This type of non-uniform sampling may occur when uni-
form sampling is requested, but the sensor for one or
several reasons cannot measure exactly at that time in-
stant, and the true sampling time is either unmeasur-
able, or the communication protocol does not allow to
transport time stamps to each measurement. Sampling
jitter may also occur due to imperfect hold circuits, syn-
chronization or other hardware problems. Not even high-
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performance digital oscilloscopes are free from sampling
jitter as demonstrated in Verbeyst et al. [2006]. There, a
dedicated system identification experiment is developed
to estimate jitter effects. The result, when a sampling
time of 1.22 ps is used, is that a commercial sampling
oscilloscope has a sampling jitter standard deviation of
around 1 ps, that is ≈ 80 % of the sampling time.

The general problem of non-uniform sampling is exten-
sively treated in literature, see Bilinskis and Mikelsons
[1992] and Marvasti [2001]. In most publications, the
sampling times are known, and the problem is to an-
alyze leakage and alias effects. Another twist is to de-
sign sampling times to minimize aliasing. For stochastic
sampling jitter, the distribution of s(t + τk) is derived
in Eng and Gustafsson [2005, 2006] and Souders et al.
[1990]. These results will be used and extended in this
paper. In the context of jitter estimation, the sampling
oscilloscope has been extensively studied, the methods
include averaging over several measurements, as in Ver-
specht [1995], and Taylor series expansions, in Verbeyst
et al. [2006], in order to estimate the variance of the jit-
ter and use this to compensate for the jitter effects. In
this paper, we consider a model based approach, where
the main goal is to find an underlying continuous-time
system, and the jitter density can be seen as known or
given in the estimation as a bi-product.

The basic idea is as follows. The frequency domain ap-
proach is to minimize the distance between the measure-
ment and signal model discrete time Fourier transforms
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(DTFT), ‖DTFT(yk)−DTFT(s(kT + τk; θ))‖ with re-
spect to the parameters θ in some suitable norm. This
frequency domain approach is standard in system iden-
tification [Ljung, 1999, Pintelon and Schoukens, 2001].
A continuous-time model for s(t) is used to be able to
analyze the sampling jitter effects. The analysis shows
that by neglecting the jitter, the Fourier transform (FT)
of the signal model will suffer from an amplitude bias
in |FT(s(t))| = |S(f)| that increases for higher frequen-
cies. Further, the larger jitter noise variance, the larger
bias. The remedy is to compensate for the bias, and the
closed form solution involves a frequency weighting in
the norm, ‖DTFT(yk)−

∫
S(ψ; θ)w(f, ψ)dψ‖.

The outline is as follows. The system identification prob-
lem and main notation are presented in Section 2. In Sec-
tion 3, the bias effect of sampling jitter noise on the fre-
quency transform is derived, and the bias compensated
least squares estimator is proposed. Section 4 derives the
second order properties of the frequency transform due
to jitter noise, and a weighted least squares algorithm
as well as an asymptotic maximum likelihood estimator
are presented. Section 5 illustrates these algorithms for
several simulated numerical examples. The work is con-
cluded in Section 6.

2 Problem Formulation

The general problem formulation looks as follows. The
sensor is requested to sample uniformly, but delivers dis-
crete time measurements corrupted by amplitude noise
and sampling time jitter according to

yk = s(kT + τk; θ) + v(kT + τk; θ). (1a)

The signal term, noise term and jitter distribution can
all be dependent on the unknown parameter θ and given
by

s(t; θ) = (gθ ? u)(t), (1b)
v(t; θ) = (hθ ? e)(t), (1c)

τk ∈ pθ(τ). (1d)

Here u(t) is a known input, e(t) is white noise with
known characteristics, gθ(t) denotes the system impulse
response and hθ(t) the noise dynamics. The jitter sam-
pling noise is a sequence of independent stochastic vari-
ables with probability density function (pdf) pθ(τ). Both
the signal, noise and sampling models can be parame-
terized in the unknown parameter vector θ. We will pri-
marily focus on continuous-time systems here.

The system identification problems under consideration
can be stated as estimating the parameter θ in a model

structure

MOE : gθ(t), hθ(t) = δ(t), pθ(τ) = p(τ), (2a)
MBJ : gθ(t), hθ(t), pθ(τ) = p(τ), (2b)
MJOE : gθ(t), hθ(t) = δ(t), pθ(τ), (2c)
MJBJ : gθ(t), hθ(t), pθ(τ). (2d)

Here, OE denotes the output error and BJ the Box-
Jenkins model structure, respectively, where the jitter
distribution is known. JOE and JBJ are the correspond-
ing problems where also the jitter noise distribution is
parameterized.

Using previous knowledge about the sampling jitter ef-
fect in the frequency domain indicates that the frequency
domain approach [see for example Ljung, 1999, Pintelon
and Schoukens, 2001] is suitable for identification in this
case. Denote the Fourier transform of the measurements
and signal model, respectively,

Yd(f) =
N−1∑
k=0

yke
−i2πfkT , (3)

S(f ; θ) = G(f ; θ)U(f). (4)

The general problem formulation is now to minimize the
distance between the measurement, Yd(f), and model,
S(f ; θ), in the frequency domain.

θ̂ = arg min
θ

∫ ∞

−∞
λ(f ; θ)|Yd(f)− S(f ; θ)|2 df, (5)

for some suitable weighting function, λ. Normally, the
weights, λ(f ; θ) are given by the inverse noise spectrum
[Ljung, 1999, Pintelon and Schoukens, 2001]. We will
show a few other examples later.

Given a continuous-time signal model Sc(f), a well
known property of the Fourier transform gives that the
discrete Fourier transform, Sd(f), becomes

Sd(f) =
∫ ∞

−∞
Sc(ψ)dN (f − ψ) dψ. (6)

Here dN (f) is the normalized Dirichlet kernel (also
known as the aliased sinc function), defined as

dN (f) = e−iπf(N−1)T sin(πfNT )
sin(πfT )

. (7)

The local behavior of the normalized Dirichlet kernel
(see Figure 1 on p. 4) describes the effects of leakage
and its 1/T periodicity describes aliasing. For the reg-
ular case, with no sampling jitter, the correct way is to
compare Yd(f) with Sd(f ; θ), and using the unweighted
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least squares (LS) norm in (5) over a discrete set of fre-
quencies yields the parameter vector θ as

θ̂LS

= arg min
θ

∑
f

|Yd(f)−
∫ ∞

−∞
Sc(ψ; θ)dN (f − ψ) dψ|2.

(8)

Similarly to Pintelon and Schoukens [2005] and Gillberg
and Gustafsson [2005], the frequency set under consider-
ation is arbitrary, in order to have the freedom to high-
light certain frequency regions of interest.

This problem is closely related to the approach in Gill-
berg and Ljung [2005a,b] for the special case of no jit-
ter noise, and in Gillberg and Gustafsson [2005] for the
case of non-uniform sampling (but deterministic known
sampling times). Note also that the leakage can also be
interpreted as originating from a transient in the signal
model caused by an unknown initial state. An alterna-
tive dual approach based on estimating this initial state
is studied in Schoukens et al. [2005] and Pintelon and
Schoukens [2001].

The main idea with bias compensation is to mitigate the
bias effects in Yd(f) by replacing the deterministic dis-
crete time signal model

∫
Sc(ψ; θ)dN (f − ψ)dψ in (8)

with a term, that besides sampling effects also includes
the jitter noise. This term is denoted µY (f), and is de-
rived from E[Yd(f)]. The purpose of this work is to ana-
lyze the bias and variance contribution from jitter sam-
pling noise on the signal model Sc(f ; θ), and modify the
criterion (8) accordingly.

3 Bias Compensation

First, the bias in Yd(f) due to sampling jitter is derived.
Then, the bias compensated LS (BCLS) estimate is de-
fined. Equation (8) is here replaced with the more gen-
eral expression

θ̂ = arg min
θ

∑
f

|Yd(f)− µY (f ; θ)|2, (9)

where µY (f ; θ) is to be derived. In the following two
subsections, the dependence on the parameter vector θ
will be implicit.

3.1 Bias in Yd(f)

The DTFT (3) of the sequence yk using the sampling
jitter model (1) can be written

Yd(f) =
N−1∑
k=0

yke
−i2πfkT

=
N−1∑
k=0

(s(kT + τk) + vk)e−i2πfkT

= Ŝd(f) +
N−1∑
k=0

vke
−i2πfkT

︸ ︷︷ ︸
V̂ (f)

. (10)

We will restrict this investigation to OE structures and
therefore vk = v(kT + τk) = e(kT + τk) are zero-mean
independent stochastic variables. Using the inverse FT
s(t) =

∫∞
−∞ Sc(f)ei2πftdf , the signal term becomes

Ŝd(f) =
N−1∑
k=0

s(kT + τk)e−i2πfkT

=
N−1∑
k=0

∫ ∞

−∞
Sc(ψ)ei2πψ(kT+τk) dψ e−i2πfkT

=
∫ ∞

−∞
Sc(ψ)W (f, ψ) dψ, (11)

where

W (f, ψ) ,
N−1∑
k=0

ei2π(ψ−f)kT ei2πψτk . (12)

The term W is a stochastic frequency window, com-
pletely describing the jitter, leakage and aliasing effects
in the signal term Sd(f) of Yd(f). Note that W (f, ψ) =
dN (f−ψ) in the special case of no jitter, τk = 0. It should
be stressed that this continuous-time frequency domain
approach is perhaps the only way to explicitly separate
the signal amplitude noise, captured in V̂ , and sampling
jitter noise, captured in W , in a model-based approach.

3.2 First Moment of W

The moments of the transform Yd(f) have an explicit
dependence on the signal transform Sc(f). The mean
value of Yd(f) in (3) is

µY (f) = E[Yd(f)] = E[Ŝd(f)]

=
∫ ∞

−∞
Sc(ψ) E[W (f, ψ)] dψ

=
∫ ∞

−∞
Sc(ψ)µW (f, ψ) dψ (13)
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and µW = E[W ] is given by the following lemma.

Lemma 1 (Mean Value of W ) The mean value, µW ,
with respect to τk, of the stochastic window, W (f, ψ),
defined in (12), is

µW (f, ψ) = ϕ(−ψ)dN (f − ψ),

where ϕ(f) is the characteristic function 3 , ϕ(f) =
E[e−i2πfτ ], of τ and dN (f) is the normalized Dirichlet
kernel (7).

PROOF.

µW (f, ψ) = E[W (f, ψ)] =
N−1∑
k=0

ei2π(ψ−f)kT E[ei2πψτk ]

= ϕ(−ψ)
1− ei2π(ψ−f)NT

1− ei2π(ψ−f)T︸ ︷︷ ︸
dN (f−ψ)

,

where we recognize the characteristic function, ϕ(f) =
E[e−i2πfτ ] and the normalized Dirichlet kernel, dN .

The characteristic function ϕ(f) = ϕ(f ; θ) models
damping corresponding to the sampling jitter noise. It
will include possible distribution parameters from pθ(τ)
in (2). Its properties include [see for example, Papoulis,
1991]:

• The definition gives, |ϕ(f)| ≤ ϕ(0) = 1, ∀f .
• From the series expansion we know that if ϕ(f) = 1,

for all f , all moments E[(τk)n] = 0, so there is no jitter
noise,

• The series expansion also shows that the decay rate of
|ϕ(f)| increases with the jitter noise variance, given a
class of distributions and zero-mean jitter.

The second property implies that µW (f, ψ) = dN (f−ψ)
for the case of no jitter noise.

3.3 Bias Compensated Least Squares Estimate

Since now µY (f) = E[Yd(f)] is completely known, we
can compensate for both the leakage and jitter effect on
the measurement DTFT. We include this in the param-
eter estimation as, cf. (9),

θ̂BCLS = arg min
θ

∑
f

|Yd(f)− µY (f ; θ)|2 (14a)

3 The usual definition from probability theory, ϕ(u) =
E[eiuτ ], is slightly modified for notational convenience.
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Fig. 1. Example of the normalized Dirichlet kernel (ampli-
tude), |dN (f)| (thick), (7) with T = 2, and the two charac-
teristic functions, ϕτ (f) in (15), (a) thin and (b) dashed.

where

µY (f ; θ) =
∫ ∞

−∞
Sc(ψ; θ)ϕ(−ψ; θ)dN (f − ψ) dψ. (14b)

Both the signal Sc(f ; θ) and jitter pdf p(τ ; θ), and thus
the characteristic function ϕ(f ; θ), may depend on the
unknown parameter vector θ.

3.4 Illustrations

Let us consider the implications of Lemma 1 in more
detail. The Dirichlet kernel that appears as the window
function in the jitter-free case is illustrated in Figure 1
(solid black). As two concrete examples of characteristic
functions, consider

τ ∈ U(−1, 1) ⇒ ϕ(f) =
sin(2πf)

2πf
(15a)

τ ∈ N(0, 1/3) ⇒ ϕ(f) = e−2π2f2/3, (15b)

which have the same variance. The amplitudes of these
functions are also illustrated in Figure 1.

According to Lemma 1, the jitter noise will attenuate
the amplitude of Yd(f). The attenuation is inversely lin-
ear in frequency for uniform jitter and exponentially de-
caying for Gaussian jitter noise. This also implies that
frequencies above the Nyquist frequency are attenuated,
suppressing alias. This attenuation is compensated for
in the BCLS estimate.

To illustrate the jitter effects we use an academic exam-
ple. Consider a single frequency signal with known am-
plitude and phase, but unknown frequency, f0, s(t) =
sin(2πf0t), such that Sc(f) = (δ(f −f0)−δ(f +f0))/2i.
We compare uniform sampling, T = 2, and jitter sam-
pling, τ ∈ U(−T/2, T/2), for two different frequencies
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Fig. 2. |E[Yd(f)]| given in (16) are shown, (a) and (b) (thick
line) overlap, while (c) (thin) and (d) (dashed) are different.
The sampling jitter noise in the last two cases is given by
(15a), and the damping could be found directly by studying
ϕτ (f) in Figure 1, note the two dots.

f0, and get the following expressions on the positive fre-
quency axis. Uniform sampling gives

Yd(f) =
1
2i
dN (f − 0.14), f0 = 0.14 (16a)

Yd(f) =
1
2i
dN (f − 0.64), f0 = 0.64, (16b)

where dN (f −0.14) = dN (f −0.64). When the sampling
times are corrupted by jitter noise, (13) and Lemma 1
give

E[Yd(f)] =
ϕ(−0.14)

2i
dN (f − 0.14), f0 = 0.14, (16c)

E[Yd(f)] =
ϕ(−0.64)

2i
dN (f − 0.64), f0 = 0.64. (16d)

The result is still periodic, but with different damping
depending on the frequency.

This is also shown in Figure 2, where |Yd(f)| and
|E[Yd(f)]| are plotted for the different cases in (16). The
sampling jitter noise is given by (15a). From Figure 1,
we know that the amplitude bias is larger for higher
frequencies f0, 0 < ϕ(−0.64) < ϕ(−0.14) < 1, which is
why we can separate the two frequencies in this jitter
sampling case.

4 Covariance Compensation

Bias compensating Yd(f) implies unbiased estimates of
Sc(f ; θ). To reach asymptotic efficiency, also the vari-
ance of Yd(f) is needed. In this section, both Weighted
Least Squares (WLS) and Maximum Likelihood (ML)
estimates are stated based on this covariance.

4.1 Covariance of Yd(f)

To use these two estimators we need the covariance of
Y , RY , which we get from the expressions in (10) as

RY (f, ψ) = RŜ(f, ψ) +RV̂ (f, ψ), (17)

with

RŜ(f, ψ) , Cov(Ŝd(f), Ŝd(ψ))

=
∫∫

Sc(η) Cov(W (f, η),W (ψ, ζ))Sc(ζ)∗ dη dζ,

=
∫∫

Sc(η)RW (f, η, ψ, ζ)Sc(ζ)∗ dη dζ. (18)

Here, RW (f, η, ψ, ζ) , Cov(W (f, η),W (ψ, ζ)) is the co-
variance of the stochastic frequency window in (12). The
contribution from the measurement noise is

RV̂ (f, ψ) = Cov(V̂ (f), V̂ (ψ))) = σ2
N−1∑
k=0

e−i2π(f−ψ)kT ,

since we restricted the investigation to white Gaussian
measurement noise.

4.2 Covariance of W (f)

The covariance of W (f) is

RW (f, η, ψ, ζ)
= E[W (f, η)W ∗(ψ, ζ)]− µW (f, η)µW (ψ, ζ)∗ (19)

and the second order moment is given by the following
lemma.

Lemma 2 (Second Order Moment of W ) The sec-
ond order moment of W is given as

E[W (f, η)W ∗(ψ, ζ)] = ΦT (η, ζ)DN (f − η, ψ − ζ).

where

Φ(f, ψ) =


ϕ(−f)ϕ(ψ)

ϕ(ψ − f)

ϕ(−f)ϕ(ψ)


and

DN (f, ψ) =


N−1∑
k=0

k−1∑
l=0

e−i2π(fk−ψl)T

dN (f − ψ)
N−1∑
k=0

k−1∑
l=0

e−i2π(−ψk+fl)T

 .

The functions were defined in Lemma 1
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PROOF. The second moment of the stochastic win-
dow, W , is by definition

E[W (f, η)W ∗(ψ, ζ)]

=
∑
k,l

ei2π(η−f)kT E[ei2π(ητk−ζτl)]e−i2π(ζ−ψ)lT

=
∑
k

∑
l<k

. . .+
∑
k

∑
l=k

. . .+
∑
k

∑
l>k

. . .

= Σ1 + Σ2 + Σ3.

The first term of the second moment above is

Σ1(f, ψ, η, ζ)

= ϕ(−η)ϕ(ζ)
N−1∑
k=0

ei2π(η−f)kT
k−1∑
l=0

e−i2π(ζ−ψ)lT

since ϕ(f) = E[e−i2πfτk ] was the CF of τk and τk are
i.i.d. The second term is the sum over l = k,

Σ2(f, ψ, η, ζ) =
N−1∑
k=0

ei2π(η−f−ζ+ψ)kTϕ(ζ − η)

= ϕ(ζ − η)dN (f − η − ψ + ζ)

and, finally, the third term is

Σ3(f, ψ, η, ζ)

= ϕ(−η)ϕ(ζ)
N−1∑
l=0

e−i2π(ζ−ψ)lT
l−1∑
k=0

ei2π(η−f)kT

Identification of terms gives the result of the lemma.

The two factors, Φ and DN , correspond to parts de-
pending on the sampling noise and on the finite sam-
pling, respectively, cf. ϕ(f) and dN (f) in Lemma 1. It
is also quite straightforward to verify RW (f, η, ψ, ζ) = 0
when there is no sampling jitter present, since in that
case, E[W (f, η)W ∗(ψ, ζ)] = dN (f − η)dN (ψ − ζ)∗ =
µW (f, η)µW (ψ, ζ)∗, and (19) evaluates to zero.

4.3 Weighted Bias Compensated Least Squares

The jitter noise will perturb some frequencies more than
others, which can be mitigated with the Weighted Least
Squares (WLS) approach [see for example Kailath et al.,
2000, Ch. 2], where the weights, λ(f), are given by the
covariance. Furthermore, the correlation between differ-
ent frequencies needs to be taken into account. That is,
(9) is here extended to

θ̂WBCLS

= arg min
θ

{
(Y − µY(θ))∗RY(θ)−1(Y − µY(θ))

}
,

(20)

where RY = I corresponds to (9). Here

Y = (Yd(f1), . . . , Yd(fn))T ,

µY = E[Y] from (13) and Lemma 1, and RY = Cov(Y)
as given in (17)—(19) and Lemma 2. The dependence
on the parameter θ is given from the model, cf. (4).

4.4 Maximum Likelihood

The central limit theorem together with the fact that
the sampling noise τk and the measurement noise vk are
i.i.d., Equations (10) and (11) indicate that both V̂ and
Ŝd are asymptotically Gaussian, and hence

Y ∈ AsN (µY,RY), (21)

where AsN denotes the asymptotic Gaussian distribu-
tion. When this holds, the asymptotic Maximum Like-
lihood (ML) estimator, see for example, Ljung [1999,
Ch. 7] or Fisher [1922], can be defined as

θ̂AsML

= arg min
θ

{
(Y − µY(θ))∗RY(θ)−1(Y − µY(θ))

+ ln detRY(θ)
}
,

(22)

with the vector Y, the mean µY and covariance RY

given in Section 4.3.

4.5 Implementation Issues

In the upcoming examples in Section 5, a grid based
search is implemented to avoid problems with local min-
ima. However, a promising alternative would be to use
numerical methods to minimize the estimators in (20)
and (22), like gradient or Gauss-Newton searches as de-
scribed in Ljung [1999]. To avoid potential problems with
local minima in this case, the parameter vector can be
initialized by standard methods for OE models [Ljung,
1999] neglecting the jitter noise. This should work fine
for moderate levels of jitter noise.

One way to avoid the matrix inversion of RY is to con-
sider only frequencies f = n/NT for integer valued n.
The idea is that the Fourier transform Yd(f) is asymp-
totically uncorrelated [Ljung, 1999] for these frequen-
cies, which would simplify the estimators considerably.
For instance, the asymptotic ML estimator from (22)
becomes

θ̂AsML

= arg min
θ

∑
n

{ |Yd(n/NT )− µY (n/NT ; θ)|2

RY (n/NT, n/NT ; θ)

+ lnRY (n/NT, n/NT ; θ)
}
.

(23)
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Fig. 3. Example of a PRBS signal (u(t) thin) and the output
from G(s) = 1/(s + 2), (s(t) thick), in continuous-time.

5 Examples

Three numerical examples are presented. First, a known
first order OE model is used to illustrate that the jitter
noise distribution is identifiable. Then, a MOE and a
MJOE example, both with second order systems, are
presented to illustrate the main results.

To find the best parameter vector θ the maximum like-
lihood estimator (22) will be used. The DTFT is calcu-
lated for the frequencies

fk = k/NT, k = 0, .., bN/2c − 1, (24)

i.e., we get the DFT. In the examples, we will also use
the bias compensated least squares estimator (14) to
compare with.

The input u(t) is a Pseudo Random Binary Sequence
(PRBS) signal, which jumps between −0.5 and 0.5 at
time intervals of exponentially distributed lengths with
a mean value of 1 s. The measurement noise v(t) is zero-
mean Gaussian with standard deviation 0.01. The num-
ber of measurements, N , is set to 200.

5.1 Known First Order OE Model with Unknown Jitter
pdf

For this example, we chose

M : gθ(t) = L−1

(
1

s+ 2

)
, hθ(t) = δ(t), pθ(τ), (25)

where L denotes the Laplace transform operator. Here,
only pθ(t) is parameter dependent, and the system is
known. The input and measurement noise were defined
above. In Figure 3, an example of the input u(t) and
output y(t) is given for the above settings.

−T/2 0 T/2

0

1/T

2/T

3/T

4/T

 

 

n=0
n=1
n=2
n=5
n=9

Fig. 4. The solid lines show the pdf, pθ(τ), correspond-
ing to different values of θ = (n, T/2)T , when the CF is

ϕ(f) = sinc( fT
n+1

)n+1. For the higher values of n, the dashed
lines show the Gaussian bells with the same variance as the
parameterized pdf. The difference is almost invisible in this
plot for n = 9.

The focus is on finding the distribution of the sampling
noise. We choose a parameterization based on a sum
of n + 1 uniformly distributed variables in the interval
[−a/(n+ 1), a/(n+ 1)]. That is, the support of the pdf,
pθ(τ), is [−a, a], and its parameters are θ = (n, a)T . The
characteristic function of pθ(τ) can be written as

ϕθ(f) =

(
sin( 2πfa

n+1 )
2πfa
n+1

)n+1

= sinc
(

2fa
n+ 1

)n+1

, (26)

since a sum of independent stochastic variables corre-
sponds to convolving their pdfs, which in turns corre-
sponds to multiplying their characteristic functions. The
expected value is 0 and the variance is σ2 = 1

n+1
a2

3 . Set-
ting n = 0 yields a rectangular distribution, n = 1 a tri-
angular distribution, and increasing n makes the distri-
bution converge to a normal distribution, with decreas-
ing variance. Thus, a higher n indicates a more narrow
distribution. See Figure 4 for a few examples of the pdf
and corresponding (of equal variance) Gaussian distri-
bution.

Now, we want to test both jitter covering the whole
interval [−T/2, T/2], as well as only a portion of it;
change the order but keep the variance fixed; and also
look outside the model class. Therefore, we use pθ(τ)
given by the CF in (26), for four sets of true parameters
[n0, a0] = [0, T/2], [0, T/2

√
3], [2, T/2], and [2, T/2

√
3],

with sampling time T = 1. This gives the variance of
the jitter as (σ0)2 = (T/2

√
3)2, (T/6)2, (T/6)2 and

(T/6
√

3)2, respectively. We also let the true pdf be a
zero-mean Gaussian distribution with the same variance
as the two last cases above, namely σ2 = (T/6)2 and
σ2 = (T/6

√
3)2.
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Table 1
Results for identification of model (25). Mean value and stan-

dard deviation of θ̂ = (n̂ â)T and σ̂ = â/
p

3(n̂ + 1) for six

sets of true parameters, θ0. In each of the six blocks, the
top row shows the true parameter values. The following two
rows are the results for BCLS estimation, mean value and
standard deviation. The last two rows are the corresponding
results for ML estimation. The two lowest blocks have true
pdf’s outside the model class, which is why no true values
of n and a are given.

n a σ

θ0 0 0.5 1/
√

12 ≈ 0.289

E[θ̂BCLS] 0.2145 0.4683 0.2599

Std[θ̂BCLS] 0.7360 0.0678 0.0489

E[θ̂AsML] 0.0437 0.4801 0.2719

Std[θ̂AsML] 0.0789 0.0233 0.0170

θ0 0 1/
√

12 ≈ 0.289 1/6 ≈ 0.167

E[θ̂BCLS] 1.1818 0.3759 0.1682

Std[θ̂BCLS] 1.6815 0.1186 0.0649

E[θ̂AsML] 0.7073 0.3660 0.1671

Std[θ̂AsML] 0.8184 0.0662 0.0224

θ0 2 0.5 1/6 ≈ 0.167

E[θ̂BCLS] 1.1386 0.3752 0.1676

Std[θ̂BCLS] 1.6608 0.1088 0.0592

E[θ̂AsML] 0.6420 0.3766 0.1732

Std[θ̂AsML] 0.6439 0.0753 0.0250

θ0 2 1/
√

12 ≈ 0.289 1/(6
√

3) ≈ 0.096

E[θ̂BCLS] 1.6816 0.2618 0.1018

Std[θ̂BCLS] 1.9972 0.1553 0.0607

E[θ̂AsML] 2.4947 0.3015 0.1011

Std[θ̂AsML] 2.1080 0.0866 0.0205

θ0 — — 1/6 ≈ 0.167

E[θ̂BCLS] 1.8175 0.3267 0.1281

Std[θ̂BCLS] 2.0357 0.1607 0.0678

E[θ̂AsML] 1.0115 0.3589 0.1515

Std[θ̂AsML] 1.0415 0.0855 0.0297

θ0 — — 1/(6
√

3) ≈ 0.096

E[θ̂BCLS] 1.8807 0.1958 0.0752

Std[θ̂BCLS] 2.1966 0.1425 0.0530

E[θ̂AsML] 3.4188 0.2696 0.0802

Std[θ̂AsML] 2.4361 0.0877 0.0219

The identification procedure now follows:

• The mean value µY (f) is given by (13) and Lemma 1,
together with the model specifications given in (25)
and (26).

• The covariance, RY (f, f), can be deduced from
Lemma 2.

• The parameter estimates, θ̂, are given from (14) for
the BCLS estimate and from (22) for the asymptotic
ML estimate.

• After minimization, an estimate of the standard devia-
tion of the sampling noise is given by σ̂ = â/

√
3(n̂+ 1)

for each run.

For the six different pdfs, we evaluate the mean value and
the standard deviation of the estimated parameters, θ̂,
based on 128 different realizations of the sampling noise
sequence and the input. The result is shown in Table 1,
for both the AsML and BCLS estimate, using the model
in (25). We also compute the estimate of the standard
deviation σ, implied by n̂ and â. We can conclude the
following:

• The standard deviation σ for the sampling noise is
accurately estimated, while the exact parameter con-
stellation, (n a)T , is harder. Simulations with more
data are not included here. However, for N = 400 the
estimation of σ i slightly better, and for some cases
the AsML estimates of n and a are also improved. For
n = 1000 no further improvement is shown. The pa-
rameterization of ϕθ(f) would have to be improved,
for cases where identification of the exact distribution
is important.

• The distribution with n0 = 0, a0 = 0.5, rectangular
over the whole interval, has best results.

• The AsML estimate has the smallest error for all cases,
indicating that the covariance RY varies significantly
along the frequency axis.

• True pdfs outside the model class (last two tests) pose
no problem to the estimation of σ.

Despite the small number of measurements, the estima-
tion of the jitter noise standard deviation works nice.
The performance is comparable with earlier results
where covariance estimation was the main object [Ver-
beyst et al., 2006, Verspecht, 1995]. The results in this
section are promising for further investigation, when
jitter noise properties are sought. However, we continue
with the focus of this work, model estimation.

5.2 Unknown Second Order OE Model with Known Jit-
ter pdf

Now, let us focus on the linear system, g(t), that is, the
MOE problem in (2a). We illustrate the algorithms for
a second order system, specified by its transfer function

8



Table 2
Results for identification of model (27). Mean value and stan-

dard deviation of θ̂ = (k̂0 ẑ p̂r p̂i)
T for the three estimates

given by (8), (14) and (22).

Model (27) k0 pr pj

θ0 6.25 −1.5 2

E[θ̂LS] 5.8468 −1.5876 1.9508

Std[θ̂LS] 0.1723 0.0448 0.0045

E[θ̂BCLS] 6.2536 −1.4981 2.0019

Std[θ̂BCLS] 0.0479 0.0385 0.0415

E[θ̂AsML] 6.2499 −1.5008 2.0000

Std[θ̂AsML] 0.0480 0.0343 0.0401

G. The model is

M : gθ(t), hθ(t) = δ(t), pθ(τ) = p(τ). (27a)

The system gθ(t) = L−1(Gθ(s)) is parameterized as

Gθ(s) =
k0

(s− (pr + ipi))(s− (pr − ipi))
(27b)

θ = ( k0 pr pi )
T (27c)

with the true parameters being θ0 = ( 6.25, −1.5, 2 )T

during this run. The sampling noise distribution, p(τ),
is known and given by (26) with n = 0 and a = T/2.
The input and measurement noise are the same as in
Section 5.1.

The parameters are now given by the same identification
procedure as described on p. 8. The result for the AsML
and BCLS estimation is shown in Table 2. We also com-
pare with the results when no bias-compensation is used
(LS in (8)).

The following conclusions can be drawn from the results:

• Estimates from BCLS and AsML are unbiased with
small estimated variances (< 3%).

• The difference between BCLS and AsML is not as ob-
vious as in the former identification setup, although all
parameters are estimated slightly better using AsML.

• As has been seen before, in both analysis and other lit-
erature, the LS estimate introduces a significant bias.

The bias is even more visible when studying the magni-
tude of the identified system. Figure 5 shows |Gθ0(i2πf)|
compared to |Gθ(i2πf)| with θ = E[θ̂LS]. Using the pa-
rameters from BCLS or AsML does not give a visible
difference from the true system.
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Fig. 5. A comparison of |Gθ(i2πf)| (thin line), given by (27)

and θ = E[θ̂LS] from Table 2, with the true |Gθ0(i2πf0)|
(thick line). When using θ = E[θ̂BCLS] or θ = E[θ̂AsML], the
difference from the true system is not visible.

5.3 Unknown Second Order OE Model with Unknown
Jitter pdf

The previous example is extended by letting the jit-
ter noise pdf be unknown. That is, consider the MJOE

problem in (2c). The system gθ(t) is given by (27) and
the sampling noise pdf, pθ(τ), is given by (26), with
θ = ( n a k0 pr pi )T and the true parameters being

θ0 = ( 2, T/2
√

3, 6.25, −1.5, 2 )T . The input and mea-
surement noise are the same as in Section 5.1.

From the two previous sections, we know that n and a
were hard to estimate, whereas k0, pr and pj posed no
problem. We expect to see similar things for the joint
problem. The parameters are now given by the same
identification procedure as described on p. 8. The chosen
parametrization enables full separation of the dynamic
model and the jitter noise, since the true system output,
Sc(f), is only multiplied by the CF of the jitter noise,
ϕ(f), and not mixed.

The identification results are given in Table 3. The two
estimates are good for all parameters, and no significant
difference can be seen between BCLS and AsML in this
case. It is interesting to note that the result is better for
estimating n and a than for the corresponding pdf when
the system was known, Section 5.1. Both here and in the
previous section, the reduced AsML estimate (23) was
used, for computational reasons.

6 Conclusions

The effects of the stochastic jitter noise τk in the model
yk = s(kT + τk; θ) + vk should not be neglected and
modeled as included in the measurement noise vk. The
bias compensated least squares estimator describes the
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Table 3
Mean value and standard deviation of θ̂ = (n̂ â k̂0 ẑ p̂r p̂i)

T in the model (27) with jitter noise as defined in (26).

n a k0 pr pj σ

θ0 2 T

2
√

3
≈ 0.2887 6.25 −1.5 2 1

6
√

3
≈ 0.0962

E[θ̂BCLS] 1.8281 0.2960 6.2609 −1.4980 2.0044 0.1061

Std[θ̂BCLS] 1.0357 0.0324 0.0331 0.0262 0.0289 0.0179

E[θ̂AsML] 2.2578 0.2918 6.2513 −1.5045 1.9964 0.0947

Std[θ̂ASML] 0.8534 0.0329 0.0334 0.0221 0.0278 0.0072

remedy for the jitter effects:

θ̂BCLS = arg min
θ∑

f

|Yd(f)−
∫ ∞

−∞
S(ψ; θ)ϕ(−ψ; θ)dN (f − ψ) dψ|2.

This criterion minimizes the LS distance between mea-
surement DTFT and the model’s FT, taking leakage and
alias effects into account via a convolution with the nor-
malized Dirichlet kernel dN (f − ψ). The characteristic
function ϕ(−ψ; θ) of the jitter noise implies a scaling of
the signal model Sc(f). Neglecting this scaling factor re-
sults in a bias.

A second order compensation of jitter effects leads to
the WBCLS estimator (20) and the asymptotic maxi-
mum likelihood estimator (22). The estimators were il-
lustrated on simulated examples for continuous-time OE
system identification, with known or with parametrized
jitter distribution. The results are very promising and
a clear motivation for developing dedicated algorithms
for the case of jitter noise. For example, efficient Gauss-
Newton algorithms would be useful, where also unknown
noise models (Box-Jenkins structures) could be targeted.
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