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1. INTRODUCTION

A characteristic industrial signal processing prob-
lem is vibration analysis using tachometer mea-
surements on rotating axles. Motivated by recent
advances in system identification in the frequency
domain (Pintelon and Schoukens, 2001; Ljung,
1999), a frequency domain approach for such anal-
ysis was outlined in an earlier paper (Gillberg and
Gustafsson, 2005) by the authors and compared
at a theoretical level to the time domain algo-
rithm proposed in (Persson, 2002; Persson and
Gustafsson, 2001). Among other things, the new
method involved vibrational modelling using a
continuous-time AR model and the restriction of
the frequency interval to be used in the estima-
tion. Interpolation was also performed in order to
counter the effect of non-uniform sampling.

In the same paper the main specifications on
a procedure aimed at high-sensitivity vibration
analysis were listed:

(1) Being based on parametric physical models
of the vibration.

(2) Operate on short data batches in a prespec-
ified speed interval where the data pass sev-
eral quality checks.

(3) Potential to reject wide band disturbances
that are non-interfering with the vibration.

(4) Potential to reject narrow band disturbances
that are interfering with the vibration.

The methods given in (Persson, 2002; Persson
and Gustafsson, 2001) and (Gillberg and Gustafs-
son, 2005) successfully solves the first three spec-
ifications, but not the last one.

The problem of narrow-band disturbances occurs
in several applications. For instance in an automo-
tive drive-line , see Figure 1, where the vibrations
can be due to engine knock or gear shifts. In
robotics there are vibrations from the load, just
to mention a few. In this paper the focus will
therefore be on robustness against these narrow
band disturbances.
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Fig. 1. Smoothed spectrum for vibrations ex-
tracted from ABS system signals

2. OUTLINE

The outline of the paper will be the follow-
ing. First in Section 3 the frequency domain
continuous-time ARMA (CARMA) modelling and
identification approach will be described. Then in
Section 4 the identification criterion is modified in
order to facilitate rejection of frequency domain
outliers. The concept of M-estimators and the
influence function are also introduced. In Section
5 the asymptotic variance and gross sensitivity
of the estimator are calculated, and measures are
taken in order to assure consistency in the case of
correct modelling. A certain choice of criterion is
also proved to make an optimal tradeoff between
decreased bias due to outliers and increased vari-
ance due to a more insensitive method. Finally
in Section 6 the algorithm is illustrated by a
numerical example.

3. FREQUENCY DOMAIN CARMA
ESTIMATION

In this paper we shall consider continuous-time
ARMA models represented as

y(t) = Gc(p)e(t) (1)

where e(t) is continuous time white noise such
that

E[e(t)] = 0

E[e(t)e(s)] = σ2δ(t− s)

The operator p is here the differentiation operator.
We assume that G(p) is strictly proper, so y(t)
itself does not have a white-noise component, but
is a well defined second order, stationary process.
Its spectrum (spectral density) can be written as

Φc(ω) = σ2|Gc(iω)|2 (2)

We shall consider a general model parameteriza-
tion

Gc(p, θ) (3)

where the model parameter vector θ includes the
noise variance λ (whose true value is σ2). The
transfer function G can be parameterized by θ in
an arbitrary way, for example by the conventional
numerator and denominator parameters:

G(p, θ) =
B(p)
A(p)

A(p) = pn + a1p
n−1 + a2p

n−2 + · · ·+ an

B(p) = pm + b1p
m−1 + · · ·+ bm

θ = [a1 a2 . . . an b1 b2 . . . bm λ]T .

(4)

Let us define the truncated Fourier transformation
of the continuous time output {y(t) : t ∈ [0, T ]}
in expression (1) as

YT (iω) =
1√
T

∫ T

0

y(t)e−iωtdt.

A complicating element in a practical estimation
procedure is that we do not have access to the
entire continuous time realization of the output.
Instead we have a finite number of samples of
y(t) at time instances {t1, t2, . . . , tN}. This is an
important issue which have been dealt with in
the case of equidistant sampling in a previous
paper by the first author (Gillberg and Ljung,
2005b). The case of non-uniform sampling we refer
the reader to a technical reports associated with
two other papers submitted to this conference
(Gillberg and Ljung, 2005a) (Gillberg and Ljung,
2004a).

However, if we have an estimate of the continuous-
time Fourier transform, the continuous-time peri-
odogram is

ˆ̂Φ(iωn) = |YT (iωn)|2 ∈ Exp Φ(ωn, θ0) (5)

and the transform will be asymptotically indepen-
dent at the frequencies ωk, k = 1, . . . , Nω where
ωk = 2πk/T, k ∈ N . In this paper we will focus
treat the continuous-time periodogram estimates
as our ”measurements” and will consider them to
be completely uncorrelated.

When an estimate of the power spectrum is avail-
able a model can be identified by the following
Maximum-Likelihood (ML) procedure described
in (Gillberg and Ljung, 2004b) and (Gillberg,
2004)

θ̂ = arg min
θ

Nω∑

k=1

ˆ̂Φ(iωk)
Φ(iωk, θ)

+ log Φ(iωk, θ). (6)

where the asymptotic Fisher information at the
true parameters θ0 is

J(θ0) =
Nω∑
n=1

Φ′θ0
(ωn, θ0)

Φ(ωn, θ0)
Φ′θ(ωn, θ0)T

Φ(ωn, θ0)
. (7)

This approach forms the basis for the work pre-
sented in the remaining part of the paper.



The method in (6) can also be described as the θ
which is the solution to the vector equation

Nω∑
n=1

Φ′θ(ωn, θ)
Φ(ωn, θ)

( ˆ̂Φ(ωn)
Φ(ωn, θ)

− 1

)
= 0.

where Φ′θ(ωn, θ) is the gradient of the spectrum
with respect to the parameters.

4. M-ESTIMATORS AND OUTLIER
REJECTION

If the model is the correct one, the maximum-
likelihood method is known to be the best possible
(optimal) estimator with consistency and asymp-
totic efficiency (Wald, 1949)(Cramér, 1046). If
there, on the other hand, are unmodelled outliers
present, the method might not be optimal. This
may lead us to consider robust estimators which
give up efficiency at the true model in exchange
for reasonable performance if the model is not
the true(Casella and Berger, 2002). Therefore we
introduce the following method

Ψ(ˆ̂Φ, θ) =
Nω∑
n=1

Φ′θ(ωn, θ)
Φ(ωn, θ)

ψ

( ˆ̂Φ(ωn)
Φ(ωn, θ)

)
= 0. (8)

inspired by the M-estimators introduced by Huber
(Huber, 1981). The unknown here is the function
ψ which will be found using the influence function
approach introduced by Hampel (Hampel et al.,
1986). Certain measures must however be taken in
order to assure that the estimates are consistent
when periodogram originate from the assumed
model in (5). This implies that

∫
ψ

( ˆ̂Φ(iωn)
Φ(iωn, θ0)

)
dFn

( ˆ̂Φ(iωn)
)

= (9)

∫
ψ (x) dG (x) =0 (10)

where we from now on define the distributions

Fn ∼Exp Φ(iωn, θ0) (11)
G ∼Exp 1 (12)

In this context we define the solution to equa-
tion (8) as a vector valued stochastic variable
T (F ) with a distribution dependent on F =
(F1, . . . , FNω ), the distribution of the periodogram
ˆ̂Φ(iωn). The so called influence function intro-
duced by Hampel is then defined as

IF ( ˆ̂Φ; T, F ) = lim
h→0

T ((1− h)F + hδ ˆ̂
Φ
)− T (F )

h

and measures the asymptotic bias caused by con-
tamination in the data. Here δ ˆ̂

Φ
is the multi-

variable measure which puts the mass 1 at ˆ̂Φ =
(ˆ̂Φ(iω1), . . . ,

ˆ̂Φ(ωNω ).

5. INFLUENCE FUNCTION AND
ASYMPTOTIC VARIANCE

In the case of the estimator in (8) it is possible to
show that (see p.101 in (Hampel et al., 1986))

IF ( ˆ̂Φ; T, F ) = M(Ψ, T (F ))−1Ψ(ˆ̂Φ, T (F ))

where

M(Ψ, F ) = −
∫ (

Ψ(ˆ̂Φ, θ)
)′

θ=T (F )
dF ( ˆ̂Φ).

It is also possible to show (see p.85 in (Hampel
et al., 1986)) that the asymptotic variance of the
parameter estimates will be

V (T, F ) =
∫

IF ( ˆ̂Φ; T, F )IF ( ˆ̂Φ; T, F )dF ( ˆ̂Φ)

=M(ψ, F )−1Q(ψ, F )M(ψ, F )−T

where

Q(Ψ, F ) =
∫

Ψ(ˆ̂Φ, T (F ))ΨT ( ˆ̂Φ, T (F ))dF ( ˆ̂Φ)

Here

M(Ψ, F ) = −
∫ (

Ψ(ˆ̂Φ, θ)
)′

θ=θ0

dF ( ˆ̂Φ)

= −
Nω∑
n=1

∫ (
Φ′θ(ωn, θ)
Φ(ωn, θ)

ψ

( ˆ̂Φ(ωn)
Φ(ωn, θ)

))′

θ=θ0

dF ( ˆ̂Φ)

and

−
(

Φ′θ(ωn, θ)
Φ(ωn, θ)

ψ

( ˆ̂Φ(ωn)
Φ(ωn, θ)

))′

θ=θ0

=

(
Φ′θ(ωn, θ0)
Φ(ωn, θ0)

Φ′θ(ωn, θ0)T

Φ(ωn, θ0)
− Φ′′θ (ωn, θ0)

Φ(ωn, θ0)

)
ψ

( ˆ̂Φ(ωn)
Φ(ωn, θ0)

)

+
Φ′θ(ωn, θ0)
Φ(ωn, θ0)

Φ′θ(ωn, θ0)T

Φ(ωn, θ0)

ˆ̂Φ(ωn)
Φ(ωn, θ0)

ψ′
( ˆ̂Φ(ωn)

Φ(ωn, θ0)

)
.

Because of (9) and (10) the expected value of first
expression on the right hand side of the equation
above will be zero. Therefore we will have

M(Ψ, F ) = J(θ)
∫

xψ′(x)dG(x).

Since the periodogram at different frequencies are
assumed independent we also have

Q(Ψ, F ) =
∫

Ψ(ˆ̂Φ, T (F ))ΨT ( ˆ̂Φ, T (F ))dF ( ˆ̂Φ)

=J(θ)
∫

ψ2(x)dG(x)

where J is the Fischer information in (7) and the
asymptotic variance will be

V (T, F ) =
∫

ψ2(x)dG(x)(∫
xψ′(x)dG(x)

)2 J−1(θ)



5.1 Optimal B-Robust Estimator

Assume now that we want to find a function ψ
that limits the gross sensitivity measured as

γ∗u(T, F ) = sup
ˆ̂
Φ

{|IF ( ˆ̂Φ; T, F )|} (13)

where |.| means taking the absolute value of each
vector component, while at the same time mini-
mizes the trace of the variance Tr V (T, F ). In our
case we will have

Tr V (T, F ) =Tr

∫
ψ2(x)dG(x)(∫

xψ′(x)dG(x)
)2 J−1(θ)

=
∫

ψ2(x)dG(x)(∫
xψ′(x)dG(x)

)2 Tr J−1(θ)

and

|IF ( ˆ̂Φ; T, F )| = |M(Ψ, T (G))−1Ψ(ˆ̂Φ, T (F ))|

=

∣∣∣∣∣
J(θ)−1

∫
xψ′(x)dG(x)

Nω∑
n=1

Φ′θ(ωn, θ)
Φ(ωn, θ)

ψ

( ˆ̂Φ(ωn)
Φ(ωn, θ)

)∣∣∣∣∣

≤
∣∣∣∣

b∫
xψ′(x)dG(x)

∣∣∣∣
Nω∑
n=1

∣∣∣∣J(θ)−1 Φ′θ(ωn, θ)
Φ(ωn, θ)

∣∣∣∣

According to Theorem 1 and Equation (2.4.10) on
p. 122 in (Hampel et al., 1986) a version of the so
called Huber function

ψ(x) =[x− 1− a]b−b (14)

=





b if b < x− 1− a

x− 1− a if − b < x− 1− a ≤ b

−b if x− 1− a ≤ −b

minimizes ∫
ψ2(x)dG(x)(∫

xψ′(x)dG(x)
)2

among all mappings ψ that satisfy
∫

ψ(x)dG(x) =0

sup
x

∣∣∣∣
ψ(x)∫

xψ′(x)dG(x)

∣∣∣∣ ≤
b∣∣∫ xψ′(x)dG(x)

∣∣

Therefore, using the function in (14) in

Nω∑
n=1

Φ′θ(ωn, θ)
Φ(ωn, θ)

ψ

( ˆ̂Φ(ωn)
Φ(ωn, θ)

)
= 0 (15)

will minimize

Tr V (T, F ) =
∫

ψ2(x)dG(x)(∫
xψ′(x)dG(x)

)2 Tr J−1(θ)

while

sup
ˆ̂
Φ

|IF ( ˆ̂Φ; T, F )| ≤b

∑Nω

n=1

∣∣∣J(θ)−1 Φ′θ(ωn,θ)
Φ(ωn,θ)

∣∣∣
∣∣∫ xψ′(x)dG(x)

∣∣

5.2 Computing a

The parameter b in (14) can be considered a tun-
ing factor which is selected by the user in order to
strike a balance between the asymptotic bias and
variance of the parameter estimates. The factor a
is then selected such that the estimator is asymp-
totically unbiased when the data is produced by
the model. That is

∫
ψ(x)dG(x) =

∫ ∞

0

[x− 1− a]b−be
−xdx = 0.

This means that three different cases have to be
considered.

5.3 Case 1

The first, when b ≤ −1− a which is trivial since
∫ ∞

0

[x− 1− a]b−be
−xdx = b = 0 (16)

yields b = 0.

5.4 Case 2

The second case is when −b < −1− a ≤ b. Here
∫ ∞

0

[x− 1− a]b−be
−xdx =

∫ 1+a+b

0

(x− 1− a)e−xdx

+
∫ ∞

1+a+b

(x− 1− a)e−xdx.

The first integral in this expression will be
∫ 1+a+b

0

(x− 1− a)e−xdx =
[−e−x − xe−x + (1 + a)

]1+a+b

0

=
[
(a− x)e−x

]1+a+b

0

= (−1− b)e−be−(1+a) − a

The second integral is
∫ ∞

1+a+b

be−xdx

=
[−be−x

]∞
1+a+b

= be−be−(1+a)

This means that given b we have to chose a(b)
such that

(−1− b)e−be−(1+a) − a + be−be−(1+a) =

−e−be−(1+a) − a = 0

This means that in this case
{

e−be−(1+a) + a = 0
1 + a ≤ b



5.5 Case 3

In the third case we have −1− a ≤ −b and
∫ ∞

0

[x− 1− a]b−be
−xdx = −

∫ 1+a−b

0

be−xdx

∫ 1+a+b

1+a−b

(x− 1− a)e−xdx +
∫ ∞

1+a+b

(x− 1− a)e−xdx.

The first integral will in this case be

−
∫ 1+a−b

0

be−xdx =
[
be−x

]1+a−b

0

= bebe−(1+a) − b

while the second is
∫ 1+a+b

1+a−b

(x− 1− a)e−xdx =

=
[
(a− x)e−x

]1+a+b

1+a−b

= (a− 1− a− b)e−be−(1+a) − (a− 1− a + b)ebe−(1+a)

= ((−b− 1)e−b − (b− 1)eb)e−(1+a)

The third integral is the same as previously
∫ ∞

1+a+b

(x− 1− a)e−x = be−be−(1+a)

This means that we have∫ ∞

0

[x− 1− a]b−be
−xdx =

bebe−(1+a) − b + ((−b− 1)e−b − (b− 1)eb)e−(1+a)

+ be−be−(1+a)

= (eb − e−b)e−(1+a) − b = 0

and the solution is



a = ln
eb − e−b

b
− 1

1 + a ≥ b

5.6 Equations

This means that a(b) is defined by the equations




e−be−(1+a) + a = 0 if 1 + a ≤ b

e1+a = ln
eb − e−b

b
if 1 + a ≥ b

In Figure 2 the parameter a is presented as
a function of the parameter b. The breakpoint
between the two sets of solutions occurs when
b ≈ 0.7968.

6. NUMERICAL EXAMPLE

In this section we will compare the efficiency and
robustness of the proposed estimation method in
(8) and (14) with that of the ML approach in (6).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.3
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−0.05

0

b

a

Fig. 2. The parameter a as a function of the
parameter b. The breakpoint between the two
solution occurs at b ≈ 0.7968

The objective is to estimate the parameters of the
continuous-time spectrum

Φ(iω) =
λ

|(iω)2 + a1(iω) + a2|2
(17)

where a1 = 3 and a2 = 2. The underly-
ing continuous-time system is the autoregressive
model

y(t) =
σ

p2 + a1p + a2
e(t) (18)

where e(t) is continuous-time Gaussian white
noise.

In Figure 3 we have computed the standard
deviation for the parameter estimates of the
continuous-time model found in (18). Both the
new and the original ML method have been used.
Simulations have been performed using NMC =
1000 Monte-Carlo runs for each value of b. As
expected the standard deviation of the robust
method will increase as b decrease, but it is inter-
esting to note that it only approximately double
for such a small value as b = 0.1. In the estimation
we have used frequencies w = {0 : 0.01 : 2π}
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Fig. 3. The standard deviations of the parameter
estimates. Robust (dotted) and ML method
(dashed).

In Figure 4 we have estimated the same param-
eters as in the example problem above. In order
to simulate outliers, we have also introduced an



additive, random and exponentially distributed
disturbance at 5 % of all frequencies, with a vari-
ance which is twice the maximum value of the
power spectrum in (17). From the figure one can
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Fig. 4. The bias for the parameter estimates.
True (solid), ML method (dashed) and robust
(dotted).

see that the outliers cause bias in the parameter
estimates when the ML method is utilized. This
bias is then reduced by approximately 50 % with
the use of the more robust criterion.

7. CONCLUSIONS

In this paper a method for the rejection of fre-
quency domain outliers is proposed. The algo-
rithm is based on the work by Huber on M-
estimators and the concept of influence function
introduced by Hampel. The estimation takes place
in the context of frequency domain continuous-
time ARMA modelling, but the method can be
also be applied to the discrete time case. It is
also proved that a certain choice of criterion will
produce an optimal tradeoff between bias and
variance under certain assumptions. Finally the
method is illustrated by a numerical example
which shows that the bias can be reduced by
approximately 50%.
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gineering, Linköping University. SE-581 83
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Linköping, Sweden.

Gillberg, J. and L. Ljung (2005a). Frequency-
domain identification of continuous-time
ARMA models from non-uniformly sam-
pled data. Technical Report LiTH-ISY-R-
2693. Department of Electrical Engineering,
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