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SE-581 83 Link̈oping, Sweden

fredrik@isy.liu.se

Abstract: The parity space approach to fault detection and isolation (FDI) has been
developed during the last twenty years, and the focus here isto describe its application
to stochastic systems. A mixed model with both stochastic inputs and deterministic
disturbances and faults is formulated over a sliding window. Algorithms for detecting and
isolating faults on-line and analyzing the probability forcorrect and incorrect decisions
off-line are provided. A major part of the paper is devoted todiscussing properties of
this model-based approach and generalizations to cases of incomplete model knowledge,
and non-linear non-Gaussian models. For this purpose, a simulation example is used
throughout the paper for numerical illustrations, and real-life applications for motivations.
The final section discusses the reverse problem: fault detection approaches to statistical
signal processing. It is motivated by three applications that a simple CUSUM detector
in feedback loop with an adaptive filter can mitigate the inherent trade-off between
estimation accuracy and tracking speed in linear filters.
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1. INTRODUCTION

The parity space approach to fault detection Basseville
and Nikiforov (1993); Chow and Willsky (1984); Ding
et al. (1999); Gertler (1997, 1998) is an elegant and
general tool for additive faults in linear systems and
is based on intuitively simple algebraic projections
and geometry. Simply speaking, a residualrt is a data
projection

rt = PT Zt, Zt =

(
Yt

Ut

)

, (1)

where the data vectorZt contains the measured input
(Ut) and output (Yt) over a certain time window. The
parity space approach provides a tool to computeP
that yields a residual vector that is zero when there is
no fault and non-zero otherwise. A vector interpreta-
tion of the residual will be used for fault isolation, with
a direct link to vector quantization in communication
theory. Fault isolation is done by comparing the non-

zero residual to pre-computed fault vectors, and the
closest one in a statistical meaning is chosen in an
on-line algorithm. The vector approach provides an
analytic approach to compute thediagnosis probabil-
ity matrix. This contains all probabilites of giving an
alarm of faulti given faultj has occured, where also
the non-faulty case is included (i, j = 0). Faults that
are hard or even impossible to diagnose are discovered
at this stage, and a system or algorithm re-design can
be performed.

This stochastic theory comes as a consequence of the
model assumptions. Section 4 motivates and general-
izes the approach, using a simulated DC motor exam-
ple and several applications:

• An example of how a small measurement error
can severly perturb the standard parity space
residual.

• A motivating application for the Gaussian as-
sumption for the stochastic inputs.



• One important alternative approach is the Gen-
eralized Likelihood Ratio (GLR) test, and it is
pointed out that this is actually equivalent to the
stochastic parity space approach for the model
assumptions at hand.

• Implications of the length of the time window in
theory and for the example.

• Extensions and generalizations of the assump-
tion of an additive single fault of constant mag-
nitude.

• A successful application of the theory to a sev-
erly non-linear systems, by linearizing around a
nominal state trajectory.

• The relation to data-driven approaches as Princi-
pal Component Analysis (PCA).

• The use and fusion of residuals from several
independent models.

The major part of the paper treats statistical signal
processing approaches to fault detection as outlined
above. However, classical statistical signal processing
problems as adaptive filtering can benefit from us-
ing fault detection ideas. Section 5 gives three con-
crete application examples where fault detection ap-
proaches to adaptive filtering are applied with very
good results.

The model and basic parity space relations are given
in Section 2. Section 3 provides the stochastic parity
space theory, and Section 4 the motivations and exten-
sions. The reverse problem of using fault detection for
stochastic signal processing is exemplified in Section
5, and Section 6 concludes the paper.

2. PARITY SPACE NOTATION AND MODELS

The theory of parity space detection can be found
in standard references as Basseville and Nikiforov
(1993); Chow and Willsky (1984); Ding et al. (1999);
Gertler (1997, 1998). The outline and notation below
follows Chapter 11 in Gustafsson (2001).

2.1 Model

The linear system is here defined as the state space
model

xt+1 =Atxt + Bu,tut + Bd,tdt + Bf ,tft + Bv,tvt

(2a)

yt =Ctxt + Du,tut + Dd,tdt + Df ,tft + et.
(2b)

The matricesAt, Bt, Ct, Dt depend on the system,
while the signals belong to the following categories:

• Deterministic known inputut, as is common in
control applications.

• Deterministic unknown disturbancedt, as is also
common in control applications.

• Deterministic unknown fault inputft, which is
used in the fault detection literature. We here
assume thatft is either zero (no fault) or propor-
tional to the unit vectorft = mte

i, whereei is all

zero except for elementi which is one. Exactly
which part of the system faulti affects is deter-
mined by the corresponding columns inBf ,t and
Df ,t. That is, we haveBf ,tft = Bi

f ,tmt, where
Bi

f ,t is columni in Bf ,t and similarly forDi
f ,t.

This fault model covers offsets in actuators and
sensors for instance. The fault magnitudemt is
assumed constant magnitudemt = m, but the
time-varying fault case will also be discussed.

• Stochastic unknown state disturbancevt and
measurement noiseet, as used in a Kalman fil-
ter setting. There is an ambiguity of the inter-
pretations ofvt anddt. We might treatvt as a
deterministic disturbance, but in many cases this
leads to an infeasible problem where no parity
space exists. Bothvt andet are here assumed to
be independent with zero mean and covariance
matricesQt andRt, respectively.

• The initial state is treated as an unknown vari-
able, so no prior information is needed.

The dimension of any signalst is denoted asns =
dim(st). Traditionally, either a stochastic (dt = 0) or
a deterministic (vt = 0, et = 0) framework is used
in the literature, but here we aim to mix them and
combine the theories.

2.2 Parity space

There are many different derivations of the parity
space. We here use one based on the discrete time state
space model in (2) using data from a sliding window.
In this case, the measurements over a sliding window
of sizeL can be expressed explicitly in matrix form
(without recursions) as:

Yt = Oxt−L+1+HuUt+HdDt+HvVt+HfFt+Et.
(3)

whereYt =
(
yT

t−L+1 . . . yT
t

)T
and

Hs =








Ds 0 . . . 0
CBs Ds . . . 0

...
. . .

...
CAL−2Bs . . . CBs Ds








, O =








C
CA

...
CAL−1








.

(4)

Here H is defined for all signalss ∈ {u, d, f, v}.
The covariance matrix of the measurement vector is
S = Cov(HvVt + Et).

Without loss of generality, the residual generating
matrix in (1) can be defined as

rt = WT (Yt − HuUt) =

P T

︷ ︸︸ ︷

WT (I, −Hu)Zt (5a)

= WT (Oxt−L+1 + HdDt + Hf Ft + HvVt + Et)
(5b)

The first equation is what can be computed on-line,
and the second expression is what will be used in the
analysis.

The parity space is defined to be insensitive to the
input (yielding the factorization in (5a)), the initial



state and deterministic disturbances, which implies
that rt = 0 for any initial statext−L+1 and any
disturbance sequencedk, k = t − L + 1, . . . , t,
provided that there is no stochastic term present (ek =
0, vk = 0). This is achieved if the projection matrix
satisfies the following condition:

Parity space condition:

WT (O Hd) = 0 ⇔ W ∈ N[O Hd]. (6)

Here,NA denotes the null space for the matrixA. The
maximal dimension of the residual vector is given by
(see equation (11.12) in Gustafsson (2000)):

L(ny − nd) − nx ≤ nr ≤ Lny − nx (7)

The inequalities become an equality in casend = 0,
that is, no disturbance. Equality with the lower bound
holds if the matrix(O Hd) has full column rank. This
shows that a parity space always exists (nr > 0), if
there are more observations than disturbances and ifL
is chosen large enough.

3. STOCHASTIC PARITY SPACE THEORY

3.1 Residual distribution

From (5.b) we get

E(rt) = WT Hf Ft, (8a)

Cov(rt) = WT SW. (8b)

For hypothesis testing and evaluation of detection
probabilities, we need the distribution for the residual
conditioned on that faulti has occurred. Assuming a
constant fault magnitudem for a while, the fault term
ft = mei in (2) can be writtenHfFt = Hi

f1Lm in
(5). This notation will be used in the sequel.

Further, if the residual distribution is assumed Gaus-
sian, then

(rt|mf i) ∈ N(m WT Hi
f 1

︸ ︷︷ ︸

µi

, WT SW ). (9)

The Gaussian distribution can be motivated in two
ways:

• It is Gaussian if bothVt andEt are Gaussian.
• It is approximately Gaussian by the central limit

theorem whendim rt ≫ dimVt+dimEt, which
happens if the data windowL is large enough.
That is, asymptotically inL, it is Gaussian.

The parity space is unique up to a multiplication with
a unitary matrix, so the projection matrix can be pre-
multiplied with any full rank matrix. One solution is
to take anyWT ∈ N[OHd], but the main alternatives
are the following ones:

Structured residual:

WT = N[OHd] : WT Hi
f 1 = ei, (10)

Normalized residual:

WT = N[OHd] : WT SW = I. (11)

Structured residuals are the suggested approach in
many publications, as Keller (1999); White and Speyer
(1987). The normalized residual can be derived from
any parity space in the following way:

Normalized parity space:

r̄t = W
T
(Yt − HuUt),

W
T

= (WT SW )−1/2WT ,
(12)

for any parity spaceWT , whereS = Cov(Et +
HvVt).

We call ‖WT
Hi

f 1L‖ = ‖(WT SW )−1/2WT Hi
f 1L‖

theFault to Noise Ratio(FNR).

3.2 Illustrative example

As an illustrative example throughout the paper, we
consider a DC motor subject to faults in input voltage
(equivalent to a torque disturbance) or a velocity sen-
sor offset:

xt+1 =

(
1 0.3297
0 0.6703

)

xt +

(
0.0703
0.3297

)

ut

+

(
0.08
0.16

)

vt +

(
0.0703 0
0.3297 0

)

ft,

yt =

(
1 0
0 1

)

xt +

(
0 0
0 1

)

ft + et,

Q =0.012, R = 0.12 · I.

With L = 2, the parity space residual becomes two-
dimensional and easy to visualize graphically. There
are also two possible faults to isolate. Figure 1 illus-
trates the distribution of the structured and normalized
parity space residual, respectively, for the cases of no
fault and fault.
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Fig. 1. Structured and normalized residual fault pat-
tern with uncertainty ellipsoids for fault 1 and 2,
respectively.

For the special case of known fault magnitudem, the
decision boundary for the structured residual becomes
a non-linear curve, while diagnosis for normalized
residuals is based on the straight decision lines dashed
in Figure 1(b). For the general case of unknownm,
fault isolation is based on which fault vector has the
smallest angle to the observed stochastic residual.



3.3 On-line algorithm

For normalized residuals(r̄t|f = 0) ∈ N(0, I), we
have(r̄T

t r̄t|f = 0) ∈ χ2(nr). Theχ2 test provides
a thresholdh for detection, and fault isolation is per-
formed by taking the closest fault vector in the sense
of smallest angle difference (since the magnitudem of
µ̄ is unknown in general).

Algorithm 1. On-line diagnosis
1. Compute a normalized parity spaceW , e.g.(12).
2. Compute recursively:

Residual: r̄t = W
T
(Yt − HUUt)

Detection: r̄T
t r̄t > h

Isolation: î = arg min
i

∥
∥
∥
∥

r̄t

‖r̄t‖
− µ̄i

‖µ̄i‖

∥
∥
∥
∥

2

= arg min
i

angle(r̄t, µ̄
i)

where r̄T
t r̄t ∈ χ2(nr) and angle(r̄t, µ̄

i) denotes
the angle between the two vectorsr̄t and µ̄i. A de-
tection may be rejected if no suitable isolation is
found (mini angle(r̄t, µ̄

i) is too large) to improve
false alarm rate.

For diagnosabilityof single faults, the only require-
ment is that all faults are mapped to different direc-
tionsµ̄i.

In a two-dimensional normalized residual space, as in
the example in Figure 1(b), the probability for false
alarm, PFA, (incorrect detection) can be computed
explicitly as

PFA =

∫

rT
t

rt>h

1

2π
e−

rT
t

rt

2 drt

=

∫ 2π

0

∫ ∞

h

x

2π
e−

x2

2 dxdφ = e−
h2

2 .

This means that the detection circle in Figure 1(b) has
a radiush that can be directly computed from the
desired false alarm rate. A more precise analysis is
given below.

3.4 Off-line analysis

We can interpret the fault isolation step as a classifica-
tion problem, and compare it to modulation in digital
communication. Performance depends on the SNR,
which here corresponds to FNRm‖µ̄i‖. In vector cod-
ing in communication theory, using an additive Gaus-
sian error assumption, it is straightforward to compute
the risk for incorrect symbol detection. We will here
extend these expressions from regular 2D (complex
plane) patterns to general vectors inRnr .

The risk of incorrect diagnosis can be computed ex-
actly in the case of only two faults as follows. It
relies on the symmetric distribution of̄rt, where the
decision region becomes a line, as illustrated by the
dashed lines in Figure 1(b). The first step is a change

of coordinates to one where one axis is perpendicular
to the decision plane. Because of the normalization,
the Jacobian of this transformation equals one. The
second step is to marginalize all dimensions except
the one perpendicular to the decision plane. All these
marginals integrate to one. The third step is to evaluate
the Gaussian error function. Here we use the definition

erfc(x) =

∫ ∞

x

1√
2π

e−x2/2dx

The result inR2 (cf. Figure 1) can be written

P(diagnosis i|fault mf j) =

erfc

(

m‖µ̄j‖ sin(
αi − αj

2
)

)

. (13)

In the general case, the decision line becomes a plane,
and the line perpendicular to it is given by the projec-
tion distance to the intermediate linēµ1 + µ̄2 as

m

(

µ̄1 − (µ̄1, µ̄1 + µ̄2)

(µ̄1 + µ̄2, µ̄1 + µ̄2)
(µ̄1 + µ̄2)

)

, (14)

where(a, b) = aT b denotes a scalar product, and we
get the following algorithm:

Algorithm 2. Off-line diagnosis analysis
1. Compute a normalized parity spaceW , e.g.(12).
2. Compute the normalized fault vectors̄µi in the
parity space.
3. The probability of incorrect diagnosis is approxi-
mately

P(diagnosis i|fault mf j)

= erfc

(

m

∥
∥
∥
∥
µ̄j − (µ̄j , µ̄j + µ̄i)

(µ̄j + µ̄i, µ̄j + µ̄i)
(µ̄j + µ̄i)

∥
∥
∥
∥

)

(15)

Herem denotes the magnitude of the fault. If this is

not constant, replacēµi = W
T
Hi

f 1Lm with µ̄i =

W
T
Hi

f Mt.

For more than two faults, this expression is an approx-
imation but, just as in the case of vector coding, gen-
erally quite a good one. The approximation becomes
worse when there are several conflicting faults, which
means that there are three or more fault vectors in
about the same direction.

We can now define the diagnosability matrixP as

P(i,j) = P(diagnosis i|fault f j), i 6= j

P(j,j) = 1 −
∑

i6=j

P(i,j). (16)

It tells us everything about fault association probabili-
ties for normalized faultsm = 1, and the off-diagonal
elements are monotonically decreasing functions of
the fault magnitudem.

Furthermore, in the classification we should allow the
non-faulty class (0), wheref = 0, to decrease the
false alarm rate by neglecting residual vectors, though
having large amplitude, being far from the known
fault vectors. Consider for instance the residualrt =



(−1,−1)T in Figure 1(b). This would most likely be
caused by noise, not a fault. The missed detection
probabilities are computed in a similar way as

P(diagnosis 0|fault f j) =
1

2
erfc

(
m‖µ̄j‖

2

)

(17a)

P(0,0) = 1 −
∑

j

P(0,j) < PFA. (17b)

For the DC motor residuals with residuals distributed
according to Figure 1, the diagnosis probability matrix
is

P (1:2,1;2) =

(
0.995 0.005
0.005 0.995

)

. (18)

4. STOCHASTIC PARITY SPACE FAQ

We now have the basic tools for fault detection and
isolation, and it remains to conclude if this approach
is useful in practice. There are many natural questions,
and the following subsections contain partial answers
to some of them.

4.1 Why bother about noise?

If the fault is large enough, any diagnosis approach
will work. The critical case is when the fault to noise
ratio is rather small. Figure 2 shows how a two-
dimensional parity space residual reacts to the two
simulated faults in the DC motor. The upper plot in
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Fig. 2. Parity space residual for a DC motor for the
residual distribution in Figure 1. The motor is
subject to first an input voltage offset and then
a sensor offset. The two residuals are designed
to be non-zero for only one fault each. The lower
plot illustrates extremely high sensitivity in resid-
uals to measurement noise (SNR=221).

2 shows the case with no measurement noiseei(t) =
0. The transient in the residual filter can be avoided
with a slightly different design, otherwise the residual
response is perfect, and the correct diagnosis can be
made.

The lower plot in Figure 2, however, reveals that the
design is rather sensitive to noise. Diagnosis based on

these residuals becomes more or less random. There
are two approaches to robustify FDI:

• Pre-filter the system inputs and outputs, or post-
filter the residuals. The post-filter can be a linear
low-pass filter, non-linear threshold counter or
CUSUM test.

• Make a stochastic analysis of the problem and an
appropriate design.

The former approach is probably the dominating one
in practice. The second approach is the soundest one
if the model assumptions are plausible. More on these
assumption follows below.

4.2 Does Gaussian noise exist in practice?

An often heard criticism to stochastic approaches to
control and signal processing is that Gaussian noise is
a theorectical concept which is seldom useful in prac-
tice. While there certainly are many diagnosis prob-
lems where a Gaussian model is not plausible, there
are others where this a very well founded assumption.

Here, we illustrate the Gaussian assumptions with
measurements from the IMU in Figure 3 as presented
in Törnqvist (2006). The sensor and application are
described in Chandaria et al. (2006).

Fig. 3. Miniature Inertial Measurement Unit (IMU)
by xsens.com with 3D measurements of acceler-
ation, angular speeds and magnetic field as well
as a built in camera.

Figure 4 shows the histogram of the nine available
measurements from this unit. Clearly, the Gaussian
bell fits well to the observations. The correlation func-
tion plots presented in Törnqvist (2006) confirm inde-
pendence in time. However, as shown in Figure 5, the
measurements from the magnetometer is not spatially
white, so the covariance matrix is full. This is also true
for accelerometers and gyroscope measurements.

4.3 Which are the design parameters?

The principal design parameter is the sizeL of the
sliding window. WhenL is increased, more infor-
mation is used in the diagnosis and a better result
is expected. Figure 6 illustrates how the confidence
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Fig. 4. Histograms of measurement errors from the
IMU in Figure 3.
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Fig. 5. Scatter plot of magnetometer measurements
when the IMU is lying on a table. The projections
using equal axis scaling indicates spatial correla-
tion.

circles of the residuals become more separated when
L is increased. A largerL means that it takes a longer
time to get a complete window with faulty data, so the
delay for detection should increase withL. This is the
basic performance trade-off.
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Fig. 6. Similar to Fig. 1, but withL increased from2 to
3. The circles are now more separated, decreasing
the risk of incorrect decisions.

Figure 7 shows a systematic evaluation of the de-
sign parameterL. The miss-classification probabilities
decrease quickly inL. For the DC motor, we have
limL→∞ P = I.

The diagnosis probability matrix can also be used for
sensor choice and system design in general.

4.4 Why not using the GLR test?

Once the distribution of the stochastic inputs is known,
Gaussian or not, the Generalized Likelihood Ratio
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Fig. 7. Miss-classification probabilities in diagnosis as
a function of sliding window length, where 18
gives the full matrix forL = 2.

(GLR) test is the natural approach, since it has many
appealing properties. For instance, it is the Uniformly
Most Powerful (UMP) test under certain conditions
Kay (1998). The GLR test statistic for faulti for data
in the sliding window considered here is given by

gi
t =

maxx,m p(Yt|xt−L+1, m, fault i)
maxx p(Yt|xt−L+1, no fault)

(19)

for fault i.

However, it is shown in Törnqvist (2006) that the GLR
test and stochastic parity space tests are equivalent.
That is, which approach is used does not matter in the
end, since they both lead to the same algorithms.

4.5 How many faults can be detected?

In the case thatone or morefaults may be present,
a necessary condition for diagnosability isnr ≥ nf .
That is, there must be at least as many residuals as
faults. A sufficient condition is thatWT [H1

f 1, . . . , H
nf

f 1]
has full column rank.

For single faults, these conditions can be relaxed.
Similar to vector coding techniques, there can be
arbitrarily many faults that are diagnosable ifnr ≥ 2.
To illustrate this, a more complex system is used (F16
pitch dynamics with five states, three inputs, three
outputs and six faults). See Hagenblad et al. (2003) for
details. Figure 8 illustrates a four dimensional residual
(L = 2).

The residual indicates that fault four is not detectable,
and faults two and five are hard to distinguish. This is
also revealed in the diagnosis probability matrix from
Algorithm 2:

P =










1.0000 0.0000 0.0000 0 0.0000 0.0000
0.0000 0.5980 0.0000 0 0.4020 0.0001
0.0000 0.0000 0.9999 0 0.0001 0.0000

0 0 0 0 0 0
0.0000 0.4020 0.0001 0 0.5415 0.0564
0.0000 0.0001 0.0000 0 0.0564 0.9436










(20)
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Fig. 8. Illustration of the residuals from parity space
for no fault (0) and fault 1–6, respectively, but
here in another basis. The decision lines for fault
isolation for knownm are indicated.

4.6 What happens if the fault magnitude is time-varying

In the analysis, it was assumed that the fault ismf i,
where m is the magnitude andf i the direction of
the fault. The original model (5) allows for general
fault profiles in the fault termHfFt. However, let-
ting Ft be arbitrary gives too much freedom and any
noise influence can be interpreted as a fault, sinceHf

generally spans the whole measurement space forYt.
A natural model-based approach to model incipient
faults that grows gradually in time or fluctuates slowly
is to use a dedicated model for the fault magnitudemt.
For instance, a low order polynomial model is used
in Hendeby and Gustafsson (2006); Törnqvist (2006).
This will reduce the span ofHf to a low dimensional
space, where noise and fault can be better separated.

4.7 What happens if the model is non-linear?

Possible approaches for non-linear stochastic systems
include:

• Linearize the model in the same spirit as the ex-
tended Kalman filter. Here, the linearized model
is used over a time horizon of sizeL, which puts
a further requirement on this design variable. It
cannot be chosen arbitrarily large, since in that
case the linearized model becomes poorer.

• Use non-linear filters as the particle filter, see
Azimi-Sadjadi and Krishnaprasad (2002); Kadirka-
manathan et al. (2002); Vaswani (2004); Hen-
deby and Gustafsson (2006).

The first approach is suitable for the stochastic parity
space approach. The IMU in the previous section
is here re-visited. The intended task is to estimate
orientation based on the IMU in Figure 3. This is done
by dead-reckoning gyroscope measurements. To avoid
drift in time, supporting information with resepct to
the earth frame is needed. The magnetometer gives
two degrees of freedom, and when the IMU is still, the
accelerometer vector can be used as an inclinometer,
once the gravity field is subtracted. This is state of
the art, as described in for instance Roetenberg et al.
(2005).

The orientation dynamics as used in Törnqvist (2006)
is based on quaternions as state vectorxt. The process
modelxt+1 = f(xt, ut, vt) is quite non-linear, and
so are the measurement equationsyt = h(xt, et).
The dynamics is quite fast, so a fixed linearization
state cannot be used. The orientation may change
too much during the sliding window. Instead, the
model is linearized around the nominal trajectory in
the sliding window, which is obtained by integrating
the gyroscope signals (here considered as inputsut).
This leads to an error state model, with much slower
dynamics. The size of the residual computed from the
accelerometers and magnetometers, respectively, is 26
(L = 10, ny = 3, nx = 4, nd = 0 in (7)), so the test
statistic should be distributed asχ2(26) in theory.

Figure 9 shows how the two test statistics vary in
time. There is a perfect match between theory and
experiment, which validates the involved assumptions:

• The model is correct.
• The linearization error is negligible.
• The Gaussian assumption, and all other stochas-

tic assumptions, hold.
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Fig. 9. Sum of squared residualsrT
t rt in case of no

fault.

Just to illustrate detection performance, the test statis-
tic in Figure 10 shows what happens during an incipi-
ent magnetic field disturbance.

4.8 What happens if the fault is not additive?

Multiplicative faults as changes in system parameters
are generally considered to be harder to detect than
additive faults. To apply the stochastic parity space ap-
proach, the linearization technique around a nominal
state trajectory in the previous section can be applied.
The use of linearized error models is for instance stan-
dard in aircraft navigation applications. The success
of diagnosis depends on the linearization error, and,
of course, on the fault to noise ratio.

A further alternative is to include system parameters in
the state vector. This can sometimes be done for sub-
models on the ARX form, leading to a linear model
with additive changes in the system parameters.
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Fig. 10. Sum of squared residualsrT
t )rt in case of

fault disturbance in magnetic field caused by a
metallic object passing by. The axes are set equal
to illustrate the spatial correlation.

4.9 What happens if the noise is non-Gaussian?

The stochastic parity space approach is model-based,
and its result depends heavily on the accuracy of the
model. If the model is incorrect, the performance of
the diagnosis can be expected to degrade. This is true
in general, but not for the Gaussian assumption on
noise.

If the dynamic part of the model is correct, and the
first and second order moments of the noise are also
correct, the central limit theorem indicates that the
residual rt is still Gaussian distribution when the
sliding window sizeL is large enough. That is, even
if the model of the system is incorrect, the model of
the residual satisfies all assumptions and Algorithm 1
applies.

However, one can sometimes do much better! As de-
scribed in Hendeby and Gustafsson (2006) in an infor-
mation theoretic setting, the Gaussian distribution is
worst case. That is, of all true systems with the same
linear dynamics and first and second order moments
of process noise and measurement noise, respectively,
the Gaussian one is the one that gives the worst upper
bound on performance. This upper bound is provided
by the asymptotic GLR test, which is the UMP (uni-
formly most powerful) test.

It turns out that this upper bound depends on some-
thing called the intrinsic accuracy of the probability
density function of the noise process, see Kay and
Sengupta (1993); Hendeby (2005). The more non-
Gaussian noise in terms of intrisic accuracy, the higher
performance bound.

A practical question is whether there is a feasible
algorithm to compute the GLR test, and how far from
the asymptotic assumption the sensor information is.
The upper bound indicates a potential benefit for more
sophisticated algorithms, but gives no promises. One
has to try out on a case to case basis.

Consider again the DC motor example. Figure 11
is taken from Hendeby and Gustafsson (2006). It
shows the ROC (reciever operator characterics) curve

where the trade-off between false alarms and detection
performance is illustrated. It shows four curves:

• The upper bound for a Gaussian system.
• The upper bound for the simulated system (which

has a heavy-tail distribution).
• The performance of an approximate GLR test,

computed by pluggin in the best linear unbiased
(KF) state estimate into (19).

• The performance of the GLR test, computed by
pluggin in the minimum variance state estimate,
approximated by the PF, into (19).

The natural but ad-hoc approximation of the GLR
test, neglecting the distribution of the noises, lead to
ambiguous results. The GLR test gives a substantial
performance gain. That is, in this case it pays off a lot
to use all available information in the fault detector.
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Fig. 11. Plot of probability of detection versus false
alarm rate when the detection threshold is varied
for GLR test on the DC motor.

4.10 What happens if there is no model available?

Approaches to compute the projectionP in (1) include
the following options, starting with the one based on
a physical model and ending with a completely data-
driven approach:

(1) The model-based parity space, whereP (A, B, C, D)
depends on the known state space model, de-
scribed by the quadruple(A, B, C, D).

(2) System identification gives(Â, B̂, Ĉ, D̂), from
which the parity space can be approximated as
P (Â, B̂, Ĉ, D̂). One here needs to know the
structure of the state space model.

(3) Certain subspace approaches to system identifi-
cation, as the one in Verhaegen (1994), provide
a way to directly computêP Zhang and Ding
(2005). Again, one needs to know the structure
of the state space model.

(4) The principal component analysis (PCA) ap-
proach Dunia et al. (1996); Qin and Li (1999),
where one directly estimateŝP from data. Com-
pared to above, one needs to know the state or-
der, but not how the dataZt is split into inputs
and outputs. That is, causality is no concern in



the PCA approach. This is one main reason for
its wide spread in chemical engineering, where
sometimes thousands of variables are measured,
see Chiang et al. (2001).

All cases can be unified in the following algorithm:

(1) Determine the projection matrixP as outlined
above.

(2) Estimate the residual covariance matrix from
training data from a fault-free system, and nor-
malize the residuals:

Ŝ =
1

N − L

N∑

t=L+1

rtr
T
t (21a)

r̄t = Ŝ−1/2rt. (21b)

(3) Get learning data from each faulty mode and
compute the normalized fault vector as

µ̄i =
1

N i − L

Ni

∑

t=L+1

r̄i
t. (22)

Figure 12 shows how the probability of detection for
each fault in the DC motor example depends on the
fault magnitude using Monte Carlo simulations. The
same data sets are used for all three approaches.
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Fig. 12. Comparison of residuals from parity space
on known model, parity space using estimated
model, and PCA residuals. The identified model
and PCA analysis were performed on the same
data set, thus using the same information.

The difference in performance is not very significant,
despite the large difference in prior information. In an
attempt to understand the relation between PCA and
parity space, consider the following split of our model:

Zt =

(
O
0

)

xt−L+1 +

(
Hf , Hu, Hv, I
0, I, 0, 0

)






F
U
V
E






= Pxxt−L+1 + Prrt. (23)

PCA splits the covariance matrix of dataZt based
on its eigenvalues into two parts: the model and the
residuals. This results in an expression of the same
form as (23). We conclude the following relations:
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Fig. 13. Structure of residual generation in a tire
pressure monitoring system (TPMS) based on
multiple physical models.

• The split of eigenvalues should giverank(Px) =
nx.

• The inputs in the data are revealed by zero rows
in Px, so causality is cleared out.

• The residual part must also explain dynamics in
the input data, and changes in input dynamics
can be mixed up with system changes.

• It cannot be guaranteed that the eigenvalues of
the system are larger than the other ones, so the
PCA split based on sorted eigenvalues can be
dubious.

Despite the two last points, the example demonstrates
excellent performance, though these points should be
kept in mind.

4.11 What happens if there are many models?

In some applications, there might be many models
that relate to the fault. One example is road-friction
estimation in Section 5.1 where a change in friction
can be detected from sound, visual information, longi-
tudinal and lateral dynamic behaviour of the vehicle,
tire vibrations, or even from the driver behaviour, see
Müller et al. (2003); Gustafsson (1997).

Another currently hot topic in automotive safety is
Tire Pressure Monitoring Systems (TPMS), which
is proposed to be mandatory on the US market by
NHTSA. State of the art for software systems that do
not use sensors mounted in the tire is that a warning
can be given if 1-3 wheels have low tire pressure, but
not isolate the fault. Thus, they cannot detect the case
of diffusion, when all four tires loose the same amount
of pressure over time.

To overcome these limitations, a system based on
many different models is proposed in Gustafsson et al.
(2001), see Figure 13. Each model delivers one resid-
ual that can be used for detection but only partial
isolation of 15 different faults (each tire can be faulty
or non-faulty, giving 16 different combinations). For
instance, model 1 may provide the residualr = p1 −
p2, which is the difference of pressure in two wheels,
based on vehicle dynamics. A non-zero residual indi-
cates a fault in tire 1 or 2. A positive residual gives a
vote for isolating a fault in tire 2 (the pressure cannot
increase), and so on. Another residual may ber =
p3 − p4, so two residuals would suffice to isolate all
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generalization of the approach in Figure 13.

single faults. Even more models are needed to isolate
all combinations in a robust way.

Similar multi-model based diagnosis units utilizing
residual fusionare natural to introduce in vehicles, as
the number of sensors for driver assistance and safety
systems increases, and the sensor fusion software be-
comes more integrated over the different sub-systems,
see Figure 14 and Gustafsson (2005).

5. DETECTION FOR ADAPTIVE FILTERING

The aim of diagnosis is usually either to warn an
operator, or to feedback the fault message to a con-
troller that adapts itself to the new faulty conditions
to make the best of the situation. Another well-known
principle is to feedback the alarm to adaptive filters, as
illustrated in Figure 15. This is a structure with good
practical potential in applications. It enables a method
to design non-linear filters in a systematic way to over-
come the inherent trade-off between tracking speed
and noise suppression in linear adaptive filters. These
include algorithms as Recursive Least Squares (RLS),
Least Mean Square (LMS) and its normalized ver-
sion as well as the Kalman filter for state estimation.
We here show three completely different applications
based on essentially the same principle.
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Fig. 15. The estimation algorithm delivers residuals,
which are used in the detector to decide whether
a change has occurred or not. If a change is
detected this information is fed back for use in
the estimation algorithm.

5.1 Tire-road friction estimation

Road-friction estimation can be based on comparing
the wheel slipst (how much faster a driven wheel
rotates relative to its absolute speed) and normalized
tractions forceµt. A phenomenon noticable in practice
Dieckmann (1992) is that the linear relation between
these computable quantities depend on friction, see

Figure 16. This would suggest a linear model with an
offset,

st = θ1µt + θ2 + et. (24)

This model cannot be found in the tire literature, but
is still a model that gives promising results for friction
estimation Gustafsson (1997, 1998).
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Fig. 16. Principle for slip-based tire-road friction esti-
mation: The scatter plot of normalized tire force
versus wheel slip indicates the linear relation
(24).

The excitation in this model can be very poor during
normal driving, since the tire force to overcome air
drag is relatively constant. Obviously, it is not easy to
estimate a straight line to a cluster of data in Figure 17.
That means that a linear adaptive filter must be tuned
to be quite slow. Figure 17(a) shows one slow adaptive
filter that gives sufficient accuracy, and one faster filter
that is too noisy to base driver alerts on, but still not
quick enough to warn in time. The CUSUM supported
Kalman filter proposed in Gustafsson (1997, 1998)
solves this problem as illustrated in Figure 17(b).

The system has been extensively tested, and used by
several road authorities to monitor road conditions.
The current status is that further residuals are needed
to make the system robust to (1) all tire and road com-
binations (2) without the need for special calibration
procedures and (3) to be used by ordinary drivers not
educated on the system.
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5.2 Combined road and vehicle tracking

In collision avoidance algorithms, it is important to
predict both the road ahead and other vehicles relative
position and lane assignments. Road prediction is in
current systems solved by computer vision systems
inside the camera, while vehicle tracking is an algo-
rithm that takes input from both radar, lidar and cam-
era Gustafsson (2005). One approach based on joint
tracking and road prediction is suggested in Schön
et al. (2006). The state vector contains lateral devi-
ation from the own lane center of all cars and two
road parameters: curvature and clothoid (derivative
of curvature). These states are central for emergency
lane assist systems warning the driver that the host
car is leaving its lane, and collision avoidance sys-
tems, respectively. The idea of joint estimation is to
(1) utilize the lateral movements of leading vehicles
for road tracking and (2) to use road prediction to
detect lane changes of leading vehicles. The exchange
of information between these two estimation tasks is
thus crucial, and it is important to know if the observed
lateral movements in Figure 18 depend on a change in
curvature or lane.

(a) Change in curvature (b) Lane change

Fig. 18. Two different changes to detect and isolate.

Figure 19 shows curvature tracking, when the leading
vehicle initiates the lane change in Figure 18(b) at
time 4272 s. The curvature estimate for two Kalman
filters is shown in Figure 19(a). The fast KF is not
accurate enough, and the slow filter has a very long re-
covery time after a lane change. The CUSUM boosted
adaptive filter combines the good features of fast and
accurate tracking. Further, the plots shows a filter al-
lowing for a smoothing delay, where the estimated
change point is used to re-process measurements after
the change to eliminate the radar measurements from
the Kalman filter.
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Fig. 19. The curvature tracking of different adaptive
filters.

FEEDBACK 
SIMULATOR

Fig. 20. Acoustic guitar feedback simulation.

5.3 Simulated guitar feedback

Acoustic guitar feedback is a roaring phenomenon that
some people like and others not. However, guitarists
who want to practice playing with feedback must play
with loud volume, which might be disturbing. The
idea illustrated in Figure 20 is to simulate this phe-
nomenon in software, so the guitarist can use head-
phones and still practice, or apply post-processing
feedback effects in studio recordings.

The system in Gustafsson and Kilberg (2005) uses
the structure in Figure 15. The adaptive filter contains
a frequency tracker for which string is hit, and its
local variations around the nominal frequency caused
intentionally by the guitarist. A rather advanced model
decides which harmonics that would have survived in
the feedback path. However, to be useful at all, the
latency (time-delay) must be very small. The change
in tone should appear almost instantaneously after the
guitarist hits a new string or blocks the strings with his
hand to turn off feedback as he is used to. A feedback
delay more than 10ms (corresponding to 3 m feedback
path, or 441 samples with 44.1 kHz sampling, or one
period of the tone C) is an upper bound in practice.
This specification is easily achieved with the CUSUM
feedback to the frequency tracker.

6. CONCLUSIONS

The paper has demonstrated how statistical signal
processing theory can bring insight and contribute to
fault detection and isolation problems, andvice versa
how fault detection algorithms can improve statistical
signal processing algorithms. An example was used
to explain the intuition of the stochastic parity space
and the involved model assumptions and algorithms.
Several applications were used to motivate how the
model assumptions can be verified in practice and
how these assumptions can be relaxed to get useful
algorithms for non-linear non-Gaussian models. Three
applications were used to demonstrate how a simple
feedback mechanism from a CUSUM detector can
boost adaptive filters when needed to overcome the
inherent trade-off between tracking speed and estima-
tion accuracy in linear adaptive filters.
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