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Abstract: The parity space approach to fault detection aothtion (FDI) has been

developed during the last twenty years, and the focus haredsscribe its application

to stochastic systems. A mixed model with both stochastut® and deterministic

disturbances and faults is formulated over a sliding wind@gorithms for detecting and

isolating faults on-line and analyzing the probability fmrrect and incorrect decisions
off-line are provided. A major part of the paper is devotedltecussing properties of
this model-based approach and generalizations to casesarhplete model knowledge,
and non-linear non-Gaussian models. For this purpose, alaion example is used
throughoutthe paper for numerical illustrations, and-fdalapplications for motivations.

The final section discusses the reverse problem: fault tieteapproaches to statistical
signal processing. It is motivated by three applicatiora thsimple CUSUM detector
in feedback loop with an adaptive filter can mitigate the neimé¢ trade-off between

estimation accuracy and tracking speed in linear filters.

Keywords: fault detection, diagnosis, Kalman filteringaptive filters, linear systems,
principal component analysis, subspace identification

1. INTRODUCTION zero residual to pre-computed fault vectors, and the

closest one in a statistical meaning is chosen in an

The parity space approach to fault detection Bassevilleon-line algorithm. The vector approach provides an

and Nikiforov (1993); Chow and Willsky (1984); Ding  analytic approach to compute thieagnosis probabil-

et al. (1999); Gertler (1997, 1998) is an elegant and ity matrix. This contains all probabilites of giving an

general tool for additive faults in linear systems and alarm of fault; given faultj has occured, where also

is based on intuitively simple algebraic projections the non-faulty case is included, ( = 0). Faults that

and geometry. Simply speaking, a residuak a data  are hard or even impossible to diagnose are discovered

projection at this stage, and a system or algorithm re-design can
be performed.

re=P"Z;, Z;= ((}2) : (1) This stochastic theory comes as a consequence of the
model assumptions. Section 4 motivates and general-

where the data vectdf; contains the measured input izes the approach, using a simulated DC motor exam-
(U:) and output ¥;) over a certain time window. The ple and several applications:
parity space approach provides a tool to compiite
that yields a residual vector that is zero when there is
no fault and non-zero otherwise. A vector interpreta-
tion of the residual will be used for faultisolation, with
a direct link to vector quantization in communication
theory. Fault isolation is done by comparing the non-

e An example of how a small measurement error
can severly perturb the standard parity space
residual.

e A motivating application for the Gaussian as-
sumption for the stochastic inputs.



One important alternative approach is the Gen-
eralized Likelihood Ratio (GLR) test, and it is
pointed out that this is actually equivalent to the
stochastic parity space approach for the model
assumptions at hand.

Implications of the length of the time window in
theory and for the example.

Extensions and generalizations of the assump-
tion of an additive single fault of constant mag-
nitude.

A successful application of the theory to a sev-
erly non-linear systems, by linearizing around a
nominal state trajectory.

The relation to data-driven approaches as Princi-
pal Component Analysis (PCA).

The use and fusion of residuals from several
independent models.

The major part of the paper treats statistical signal

processing approaches to fault detection as outlined

above. However, classical statistical signal processing
problems as adaptive filtering can benefit from us-
ing fault detection ideas. Section 5 gives three con-
crete application examples where fault detection ap-
proaches to adaptive filtering are applied with very
good results.

The model and basic parity space relations are given
in Section 2. Section 3 provides the stochastic parity

space theory, and Section 4 the motivations and exten-

sions. The reverse problem of using fault detection for
stochastic signal processing is exemplified in Section
5, and Section 6 concludes the paper.

2. PARITY SPACE NOTATION AND MODELS

The theory of parity space detection can be found
in standard references as Basseville and Nikiforov
(1993); Chow and Willsky (1984); Ding et al. (1999);
Gertler (1997, 1998). The outline and notation below
follows Chapter 11 in Gustafsson (2001).

2.1 Model

The linear system is here defined as the state space

model
Tip1 =Aixe + By gur + Bady + By o fi + By vy
(29)
Yt =Crxy + Dy gus + Daidi + Dy o fr + ey
(2b)

The matricesA;, B;, C;, D; depend on the system,
while the signals belong to the following categories:

e Deterministic known input:;, as is common in
control applications.

e Deterministic unknown disturbande, as is also
common in control applications.

e Deterministic unknown fault inpuf;, which is
used in the fault detection literature. We here
assume thaf; is either zero (no fault) or propor-
tional to the unit vectoy; = me’, wheree? is alll

zero except for elementwhich is one. Exactly
which part of the system faultaffects is deter-
mined by the corresponding columnsiif ; and

Dy . Thatis, we haveBy ; f = B}mt, where

Bj , is columni in By, and similarly forDj .
This fault model covers offsets in actuators and
sensors for instance. The fault magnitude is
assumed constant magnitugg = m, but the
time-varying fault case will also be discussed.
Stochastic unknown state disturbancge and
measurement noise, as used in a Kalman fil-
ter setting. There is an ambiguity of the inter-
pretations ofv, andd;. We might treatv; as a
deterministic disturbance, but in many cases this
leads to an infeasible problem where no parity
space exists. Both; ande; are here assumed to
be independent with zero mean and covariance
matrices); and R;, respectively.

The initial state is treated as an unknown vari-
able, so no prior information is needed.

The dimension of any signal; is denoted as,;, =
dim(s;). Traditionally, either a stochastid{= 0) or

a deterministic{, = 0,e; = 0) framework is used
in the literature, but here we aim to mix them and
combine the theories.

2.2 Parity space

There are many different derivations of the parity
space. We here use one based on the discrete time state
space model in (2) using data from a sliding window.

In this case, the measurements over a sliding window
of size L can be expressed explicitly in matrix form
(without recursions) as:

Y = Oxy_p 1 +H Ui+ Hg D+ H, Vi + Hy Fy + By

. (3
whereY; = (y{_;., ... y{) and
D, 0 0 C
CBs D, 0 CA
H, = . ., O=
CA* 2B, ... CBs D, cA!
4)

Here H is defined for all signals € {u,d, f,v}.
The covariance matrix of the measurement vector is
S =Cov(H,V; + Ey).

Without loss of generality, the residual generating
matrix in (1) can be defined as
PT
—_—~
re = WH (Y, — HU) = WH(I, —H,) Z (5a)

=W (Oxy_1 11 + HaDy + Hy F, + H,V, + Ey)
(5b)

The first equation is what can be computed on-line,
and the second expression is what will be used in the
analysis.

The parity space is defined to be insensitive to the
input (yielding the factorization in (5a)), the initial



state and deterministic disturbances, which implies Structured residuals are the suggested approach in

that r, = 0 for any initial statex;_r., and any
disturbance sequencé, ¥k = ¢t — L + 1,...,t,
provided that there is no stochastic term preseptf

0, v = 0). This is achieved if the projection matrix
satisfies the following condition:

Parity space condition:
WT(OHy)=0&W e Nop,. (6)

Here, V4 denotes the null space for the matdxThe
maximal dimension of the residual vector is given by
(see equation (11.12) in Gustafsson (2000)):

()

The inequalities become an equality in case= 0,
that is, no disturbance. Equality with the lower bound
holds if the matrix(© H,) has full column rank. This
shows that a parity space always exisis (> 0), if
there are more observations than disturbances aind if
is chosen large enough.

L(ny —ng) —ng <n, < Ln, —n,

3. STOCHASTIC PARITY SPACE THEORY
3.1 Residual distribution

From (5.b) we get
E(Tt) = WTHth,
Cov(r;) = WIsw.

(8a)
(8b)

For hypothesis testing and evaluation of detection

probabilities, we need the distribution for the residual
conditioned on that fault has occurred. Assuming a
constant fault magnitude: for a while, the fault term

ft = me’ in (2) can be writtenf{; F;, = H{1y,m in
(5). This notation will be used in the sequel.

many publications, as Keller (1999); White and Speyer
(1987). The normalized residual can be derived from
any parity space in the following way:

Normalized parity space:

Tt :WT(}/t *HuUt% (12)
W' = (WIsw)~2wT,
for any parity spacéV’, whereS = Cov(E; +
H,V,).

We call [W' Hily| = |(WSW) " 2WTHi1)|
the Fault to Noise RatidFNR).

3.2 lllustrative example

As an illustrative example throughout the paper, we
consider a DC motor subject to faults in input voltage
(equivalent to a torque disturbance) or a velocity sen-
sor offset:

_(103207) . (0.0703
Te+1 =10 0.6703 ) “t " \0.3297 ) “t
0.08 0.0703 0
+ (0.16) Vet (0.3297 0) Jo
10 00
yt:(o 1)l‘t+(0 1)ft+et7

Q =0.012, R=0.1% 1.

With L = 2, the parity space residual becomes two-
dimensional and easy to visualize graphically. There
are also two possible faults to isolate. Figure 1 illus-
trates the distribution of the structured and normalized

Further, if the residual distribution is assumed Gaus- parity space residual, respectively, for the cases of no

sian, then

(relmf*) € N(mWTH{1, WHSW).
N—_——

ut

9)

The Gaussian distribution can be motivated in twc
ways:

e |tis Gaussian if both; and E; are Gaussian.

o Itis approximately Gaussian by the central limit
theorem wheim r; > dim V;+dim E;, which
happens if the data window is large enough.
That is, asymptotically irL, it is Gaussian.

The parity space is unigue up to a multiplication with
a unitary matrix, so the projection matrix can be pre-
multiplied with any full rank matrix. One solution is
to take anyiWw 7’ ¢ Nom,), but the main alternatives
are the following ones:

Structured residual:

W' = Now, : WHf1=¢', (10)

Normalized residual:
W' =Nom, : WHSW =1. (11)
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(a) Structured residual (b) Normalized residual

Fig. 1. Structured and normalized residual fault pat-
tern with uncertainty ellipsoids for fault 1 and 2,
respectively.

For the special case of known fault magnitudethe
decision boundary for the structured residual becomes
a non-linear curve, while diagnosis for normalized
residuals is based on the straight decision lines dashed
in Figure 1(b). For the general case of unknown
fault isolation is based on which fault vector has the
smallest angle to the observed stochastic residual.



3.3 On-line algorithm

For normalized residualg:|f = 0) € N(0,I), we
have (7! 7|f = 0) € x?(n,). The x? test provides

a thresholdh for detection, and fault isolation is per-
formed by taking the closest fault vector in the sense
of smallest angle difference (since the magnitudef

i is unknown in general).

Algorithm 1. On-line diagnosis L
1. Compute a normalized parity spdég e.g.(12).
2. Compute recursively:

Residual: 7 =W (Y; — HyUy)
Detection: 7.7 > h
7 i
Isolation: ¢ = argmin —t l_LZ
il At

= arg min angle(7, i)
?

where 717, € x%(n,) and angle(7, i) denotes
the angle between the two vectatsand ‘. A de-
tection may be rejected if no suitable isolation is
found (min; angle(7, ii') is too large) to improve
false alarm rate.

For diagnosabilityof single faults, the only require-
ment is that all faults are mapped to different direc-
tionsj’.

In a two-dimensional normalized residual space, as in
the example in Figure 1(b), the probability for false
alarm, Pr 4, (incorrect detection) can be computed
explicitly as

1 _7‘2“7}
PFA: 2—6 2 d?“t
7‘?7‘1,>h ™
h2
2 .

2m © L2 2
:/ / —e 2dxdp =e
0 ho2m

This means that the detection circle in Figure 1(b) has
a radiush that can be directly computed from the
desired false alarm rate. A more precise analysis is
given below.

3.4 Off-line analysis

We can interpret the fault isolation step as a classifica-
tion problem, and compare it to modulation in digital
communication. Performance depends on the SNR,
which here corresponds to FNRJ|ji¢|. In vector cod-

ing in communication theory, using an additive Gaus-
sian error assumption, it is straightforward to compute
the risk for incorrect symbol detection. We will here
extend these expressions from regular 2D (complex
plane) patterns to general vectorsiri-.

The risk of incorrect diagnosis can be computed ex-
actly in the case of only two faults as follows. It
relies on the symmetric distribution @f, where the
decision region becomes a line, as illustrated by the

of coordinates to one where one axis is perpendicular
to the decision plane. Because of the normalization,
the Jacobian of this transformation equals one. The
second step is to marginalize all dimensions except
the one perpendicular to the decision plane. All these
marginals integrate to one. The third step is to evaluate
the Gaussian error function. Here we use the definition

erfe(x) = /:0 L

Ver

The result inR? (cf. Figure 1) can be written

e 24y

P(diagnosis i|fault m f7) =
ere (sl sin(*5)) .- @3

In the general case, the decision line becomes a plane,
and the line perpendicular to it is given by the projec-
tion distance to the intermediate lipe + % as

=1 =1 4 =2
1 (' p+p%) —2)

- + , (14
m<“ @@ ) 4
where(a,b) = a™'b denotes a scalar product, and we
get the following algorithm:

@

Algorithm 2. Off-line diagnosis analysis

1. Compute a normalized parity spddé e.g.(12).

2. Compute the normalized fault vectof$ in the

parity space.

3. The probability of incorrect diagnosis is approxi-
P(diagnosis i|fault m f7)

mately
RN
erfc<m (@, @ + i) D
(15)

(7 + @, @ 4 fat)
Herem denotes the magnitude of the fault. If this is
not constant, replacg’ = WTH;‘le with it =
W' HIM,.

W= (' + i)

For more than two faults, this expression is an approx-
imation but, just as in the case of vector coding, gen-
erally quite a good one. The approximation becomes
worse when there are several conflicting faults, which
means that there are three or more fault vectors in
about the same direction.

We can now define the diagnosability matfixas
P9 = P(diagnosis i|fault f7),i # j
PUd) — 1 — ZP(M)'
i#j
It tells us everything about fault association probabili-
ties for normalized faults» = 1, and the off-diagonal

elements are monotonically decreasing functions of
the fault magnituden.

(16)

Furthermore, in the classification we should allow the
non-faulty class (0), wher¢ = 0, to decrease the
false alarm rate by neglecting residual vectors, though
having large amplitude, being far from the known

dashed lines in Figure 1(b). The first step is a changefault vectors. Consider for instance the residyai=



(—1,—-1)T in Figure 1(b). This would most likely be these residuals becomes more or less random. There
caused by noise, not a fault. The missed detectionare two approaches to robustify FDI:

probabilities are computed in a similar way as e Pre-filter the system inputs and outputs, or post-
. . 4 1 m| || filter the residuals. The post-filter can be a linear
P(diagnosis Ofault f7) = erfe ( ) (17a) low-pass filter, non-linear threshold counter or
; CUSUM test.
00 1 _ (0.9) . .
P =1 Z P < Ppa. (17b) e Make a stochastic analysis of the problem and an
J appropriate design.

For the DC motor residuals with residuals distributed
according to Figure 1, the diagnosis probability matrix
is

The former approach is probably the dominating one
in practice. The second approach is the soundest one
if the model assumptions are plausible. More on these

pl2.1:2) _ (8882 8882) . (18)  assumption follows below.

4.2 Does Gaussian noise exist in practice?
4. STOCHASTIC PARITY SPACE FAQ
An often heard criticism to stochastic approaches to
control and signal processing is that Gaussian noise is

!SOIat'?r?’. and |ttrem$|r:15 to conclude |ftth|s| appr(:_ach a theorectical concept which is seldom useful in prac-
IS US€tulin practice. 1hereé are many natural QUESHONS ;- “\yije there certainly are many diagnosis prob-

?nd the foflltohwmg subsections contain partial answers lems where a Gaussian model is not plausible, there
0 some ot them. are others where this a very well founded assumption.

We now have the basic tools for fault detection and

Here, we illustrate the Gaussian assumptions with
4.1 Why bother about noise? measurements from the IMU in Figure 3 as presented

in Torngvist (2006). The sensor and application are
If the fault is large enough, any diagnosis approach described in Chandaria et al. (2006).
will work. The critical case is when the fault to noise
ratio is rather small. Figure 2 shows how a two-
dimensional parity space residual reacts to the two
simulated faults in the DC motor. The upper plot in

Structured residuals for L = 2
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Structured residuals for L = 2 with measurement noise (SNR=221)
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Fig. 3. Miniature Inertial Measurement Unit (IMU)

A 4 A by xsens.com with 3D measurements of acceler-
ation, angular speeds and magnetic field as well
as a built in camera.

70 80
Figure 4 shows the histogram of the nine available

Fig. 2. Parity space residual for a DC motor for the measurements from this unit. Clearly, the Gaussian
residual distribution in Figure 1. The motor is bell fits well to the observations. The correlation func-
subject to first an input voltage offset and then tion plots presented in Tornqvist (2006) confirm inde-
a sensor offset. The two residuals are designedpendence in time. However, as shown in Figure 5, the
to be non-zero for only one fault each. The lower measurements from the magnetometer is not spatially
plot illustrates extremely high sensitivity in resid- white, so the covariance matrix is full. This is also true
uals to measurement noise (SNR=221). for accelerometers and gyroscope measurements.

2 shows the case with no measurement nejég =

0. The transient in the residual filter can be avoided
with a slightly different design, otherwise the residual
response is perfect, and the correct diagnosis can b
made.

4.3 Which are the design parameters?

%he principal design parameter is the sizeof the
sliding window. WhenL is increased, more infor-
The lower plot in Figure 2, however, reveals that the mation is used in the diagnosis and a better result
design is rather sensitive to noise. Diagnosis based oris expected. Figure 6 illustrates how the confidence
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gives the full matrix forL = 2.

(GLR) test is the natural approach, since it has many
appealing properties. For instance, it is the Uniformly
Most Powerful (UMP) test under certain conditions

Kay (1998). The GLR test statistic for faulfor data

in the sliding window considered here is given by

maxy m p(Ye|zi—r+1, m, faultq)
maXg p(Y;f|xt—L+1, no fault)

(19)

Fig. 4. Histograms of measurement errors from the
IMU in Figure 3. 10
2
g9i =
Fig. 5. Scatter plot of magnetometer measurements;y, tault ;.

when the IMU is lying on a table. The projections
using equal axis scaling indicates spatial correla-
tion.
circles of the residuals become more separated whe
L is increased. A largef means that it takes a longer
time to get a complete window with faulty data, so the
delay for detection should increase with This is the
basic performance trade-off.

Structured Residual , L=3 Normalized Structured Residual L=3
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(a) Structured residual (b) Normalized residual

Fig. 6. Similar to Fig. 1, but witl increased from to

However, it is shown in Torngvist (2006) that the GLR
test and stochastic parity space tests are equivalent.
prhatis, which approach is used does not matter in the
end, since they both lead to the same algorithms.

4.5 How many faults can be detected?

In the case thabne or morefaults may be present,

a necessary condition for diagnosabilityris > 7.

That is, there must be at least as many residuals as
faults. A sufficient conditionis thaV’ " [H} 1, ..., H;"1]
has full column rank.

For single faults these conditions can be relaxed.
Similar to vector coding techniques, there can be
arbitrarily many faults that are diagnosable:jf > 2.

To illustrate this, a more complex system is used (F16
pitch dynamics with five states, three inputs, three

3. The circles are now more separated, decreasing?UtPuts and six faults). See Hagenblad et al. (2003) for

the risk of incorrect decisions.

Figure 7 shows a systematic evaluation of the de-
sign parametek. The miss-classification probabilities
decrease quickly in.. For the DC motor, we have
limy o P =1.

The diagnosis probability matrix can also be used for
sensor choice and system design in general.
4.4 Why not using the GLR test?

Once the distribution of the stochastic inputs is known,
Gaussian or not, the Generalized Likelihood Ratio

details. Figure 8 illustrates a four dimensional residual
(L =2).

The residual indicates that fault four is not detectable,
and faults two and five are hard to distinguish. This is
also revealed in the diagnosis probability matrix from
Algorithm 2:

1.0000 0.0000 0.0000 0 0.0000 0.0000
0.0000 0.5980 0.0000 0 0.4020 0.0001
0.0000 0.0000 0.9999 0 0.0001 0.0000
0 0 0 0 0 0
0.0000 0.4020 0.0001 0 0.5415 0.0564
0.0000 0.0001 0.0000 0 0.0564 0.9436
(20)



pary space theorta sl pary space heoreta residal The orientation dynamics as used in Tornqvist (2006)
29 ' "~.‘ is based on quaternions as state vegtoiT he process
" ! / ' \ modelx;11 = f(xy,ue, v¢) IS quite non-linear, and
so are the measurement equatigns=h(x,e;).
The dynamics is quite fast, so a fixed linearization
o+ ‘\ | state cannot be used. The orientation may change
; too much during the sliding window. Instead, the
X ‘ model is linearized around the nominal trajectory in

: : the sliding window, which is obtained by integrating
(a) Structured residual (b) Normalized residual the gyroscope signals (here considered as inpyts
) ) i i This leads to an error state model, with much slower
Fig. 8. lllustration of the residuals from parity space gynamics. The size of the residual computed from the
for no fault (0) and fault 1-6, respectively, but accelerometers and magnetometers, respectively, is 26
here in another basis. The decision lines for fault (L =10, n, = 3, n, = 4,14 = 0in (7)), so the test

isolation for knownn are indicated. statistic should be distributed &8(26) in theory.

Figure 9 shows how the two test statistics vary in
4.6 Whathappensif the fault magnitude is time-varyingime. There is a perfect match between theory and

experiment, which validates the involved assumptions:
In the analysis, it was assumed that the faulig’,
where m is the magnitude ang* the direction of
the fault. The original model (5) allows for general
fault profiles in the fault termi s F;. However, let-
ting F; be arbitrary gives too much freedom and any
noise influence can be interpreted as a fault, siige
generally spans the whole measurement spac¥for e Testoat
A natural model-based approach to model incipient sor T Theetna
faults that grows gradually in time or fluctuates slowly
is to use a dedicated model for the fault magnitude
For instance, a low order polynomial model is used
in Hendeby and Gustafsson (2006); Térnqvist (2006). s e 20 e aw e ew 70 a0 a0
This will reduce the span aff ; to a low dimensional
space, where noise and fault can be better separated. —

sok — — — Theoretical avg
— -~ Threshold

e The model is correct.

e The linearization error is negligible.

e The Gaussian assumption, and all other stochas-
tic assumptions, hold.

Parity space, Magnetometer
T T

Test stat

Parity space, Accelerometer
T T

60

Test stat

a0t

4.7 What happens if the model is non-linear? 20
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Possible approaches for non-linear stochastic systems . .
include: Fig. 9. Sum of squared residual$r; in case of no

fault.
e Linearize the model in the same spirit as the ex-

tended Kalman filter. Here, the linearized model Just to illustrate detection performance, the test statis-

is used over a time horizon of siZe which puts  tic in Figure 10 shows what happens during an incipi-

a further requirement on this design variable. It ent magnetic field disturbance.

cannot be chosen arbitrarily large, since in that

case the linearized model becomes poorer.
e Use non-linear filters as the patrticle filter, see

Azimi-Sadjadi and Krishnaprasad (2002); Kadirka4.8 What happens if the fault is not additive?

manathan et al. (2002); Vaswani (2004); Hen-

deby and Gustafsson (2006). Multiplicative faults as changes in system parameters
are generally considered to be harder to detect than
additive faults. To apply the stochastic parity space ap-
proach, the linearization technique around a nominal

Erigr?{:tigi-\éslstggbg?ﬁe IIrEIEEJnidnelgi ti?g éSTtﬁisﬁzthﬁtee state trajectory in the previous section can be applied.
9 ‘ The use of linearized error models is for instance stan-

by_ dgad_—reckonmg gyroscope measurements. To avo'ddard in aircraft navigation applications. The success
drift in time, supporting information with resepct to

the earth frame is needed. The magnetometer givesOf diagnosis depends on the linearization error, and,

two degrees of freedom, and when the IMU is still, the of course, on the fault to noise ratio.

accelerometer vector can be used as an inclinometerA further alternative is to include system parameters in
once the gravity field is subtracted. This is state of the state vector. This can sometimes be done for sub-
the art, as described in for instance Roetenberg et almodels on the ARX form, leading to a linear model
(2005). with additive changes in the system parameters.

The first approach is suitable for the stochastic parity
space approach. The IMU in the previous section



Pariy space, Magnetometer where the trade-off between false alarms and detection
Test st performance is illustrated. It shows four curves:

— — — Theoretical avg
—-—- Threshold

e The upper bound for a Gaussian system.

e The upper bound for the simulated system (which
has a heavy-tail distribution).

e The performance of an approximate GLR test,
computed by pluggin in the best linear unbiased

Test stat

L L L L L L L L
0 100 200 300 400 500 600 700 800 900

10 : : ety space, pecelomerer (KF) state estimate into (19).
] et g e The performance of the GLR test, computed by
pluggin in the minimum variance state estimate,
Bl ] approximated by the PF, into (19).

| The natural but ad-hoc approximation of the GLR

o w0 o a0 a0 o w0 70 w0 oo test, neglecting the distribution of the noises, lead to
ambiguous results. The GLR test gives a substantial
performance gain. That is, in this case it pays off a lot
to use all available information in the fault detector.

Fig. 10. Sum of squared residual)r, in case of
fault disturbance in magnetic field caused by a
metallic object passing by. The axes are set equal
to illustrate the spatial correlation. =

4.9 What happens if the noise is non-Gaussian?

The stochastic parity space approach is model-based, o7}
and its result depends heavily on the accuracy of the 06l
model. If the model is incorrect, the performance of
the diagnosis can be expected to degrade. This is true
in general, but not for the Gaussian assumption on

noise. L

ool ~ GLR bound
If the dynamic part of the model is correct, and the [ —OGLR -
first and second order moments of the noise are also ~ *f .~ s O
correct, the central limit theorem indicates that the % 01 02 03 04 05 06 o7 08 05 1
residual r; is still Gaussian distribution when the Pea

sliding window sizeL is large enough. That is, even - )
if the model of the system is incorrect, the model of Fig. 11. Plot of probability of detection versus false

the residual satisfies all assumptions and Algorithm 1~ @larm rate when the detection threshold is varied
applies. for GLR test on the DC motor.

However, one can sometimes do much better! As de-
scribed in Hendeby and Gustafsson (2006) in an infor-
mation theoretic setting, the Gaussian distribution is

worst case. That is, of all true systems with the same h h S includ
linear dynamics and first and second order moments’PProachesto compute the projectibrin (1) include

of process noise and measurement noise, respectively1€ following options, starting with the one based on
the Gaussian one is the one that gives the worst uppef Physical model and ending with a completely data-
bound on performance. This upper bound is provided drven approach:

by the asymptotic GLR test, which is the UMP (uni- (1) The model-based parity space, wheiel, B, C, D)
formly most powerful) test. depends on the known state space model, de-

It turns out that this upper bound depends on some- _ Scribed by the quadruplel, B, C, D).

thing called the intrinsic accuracy of the probability (2) System identification givegA, B, C', D), from
density function of the noise process, see Kay and which the parity space can be approximated as
Sengupta (1993); Hendeby (2005). The more non- P(A,B,C,D). One here needs to know the
Gaussian noise in terms of intrisic accuracy, the higher structure of the state space model.

performance bound. (3) Certain subspace approaches to system identifi-
cation, as the one in Verhaegen (1994), provide
a way to directly computé® Zhang and Ding
(2005). Again, one needs to know the structure

4.10 What happens if there is no model available?

A practical question is whether there is a feasible
algorithm to compute the GLR test, and how far from
the asymptotic assumption the sensor information is. of the state space model.

The upper bound indicates a potential benefit for more (4) The principal component analysis (PCA) ap-

sophisticated algorithms, but gives no promises. One proach Dunia et al. (1996); Qin and Li (1999),

has to try outon a case to case basis. where one directly estimaté? from data. Com-

Consider again the DC motor example. Figure 11 pared to above, one needs to know the state or-
is taken from Hendeby and Gustafsson (2006). It der, but not how the datd, is split into inputs
shows the ROC (reciever operator characterics) curve and outputs. That is, causality is no concern in



the PCA approach. This is one main reason for
its wide spread in chemical engineering, where

sometimes thousands of variables are measured,

see Chiang et al. (2001).
All cases can be unified in the following algorithm:

(1) Determine the projection matriR as outlined
above.

(2) Estimate the residual covariance matrix from
training data from a fault-free system, and nor-
malize the residuals:

1

S=N_I

N
E Tt’l"?

t=L+1
Ty = 5_1/27",5.

(21a)

(21b)

(3) Get learning data from each faulty mode and
compute the normalized fault vector as

Nt
=1
>

t=L+1

1
Ni—L

Hi =

(22)

Figure 12 shows how the probability of detection for

each fault in the DC motor example depends on the
fault magnitude using Monte Carlo simulations. The

same data sets are used for all three approaches.

1
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Fig. 12. Comparison of residuals from parity space
on known model, parity space using estimated
model, and PCA residuals. The identified model
and PCA analysis were performed on the same
data set, thus using the same information.

The difference in performance is not very significant,
despite the large difference in prior information. In an
attempt to understand the relation between PCA and
parity space, consider the following split of our model:

F
o Hy, H,, Hy, I\ [U
Z = (o)x“4*1+'(df I 0 0) %
E

= Pzzt,[A,l + Prrt. (23)

PCA splits the covariance matrix of datg based

on its eigenvalues into two parts: the model and the
residuals. This results in an expression of the same
form as (23). We conclude the following relations:

I

Model 1
Model 2
Model 3

Model 4
Model 5

I

Residuals

Sensor data

<>

I

Fig. 13. Structure of residual generation in a tire
pressure monitoring system (TPMS) based on
multiple physical models.

e The split of eigenvalues should givenk(P,) =

Ny .

The inputs in the data are revealed by zero rows
in P,, so causality is cleared out.

The residual part must also explain dynamics in
the input data, and changes in input dynamics
can be mixed up with system changes.

It cannot be guaranteed that the eigenvalues of
the system are larger than the other ones, so the
PCA split based on sorted eigenvalues can be
dubious.

Despite the two last points, the example demonstrates
excellent performance, though these points should be
kept in mind.

4.11 What happens if there are many models?

In some applications, there might be many models
that relate to the fault. One example is road-friction
estimation in Section 5.1 where a change in friction
can be detected from sound, visual information, longi-
tudinal and lateral dynamic behaviour of the vehicle,
tire vibrations, or even from the driver behaviour, see
Muller et al. (2003); Gustafsson (1997).

Another currently hot topic in automotive safety is
Tire Pressure Monitoring Systems (TPMS), which
is proposed to be mandatory on the US market by
NHTSA. State of the art for software systems that do
not use sensors mounted in the tire is that a warning
can be given if 1-3 wheels have low tire pressure, but
not isolate the fault. Thus, they cannot detect the case
of diffusion, when all four tires loose the same amount
of pressure over time.

To overcome these limitations, a system based on
many different models is proposed in Gustafsson et al.
(2001), see Figure 13. Each model delivers one resid-
ual that can be used for detection but only partial
isolation of 15 different faults (each tire can be faulty
or non-faulty, giving 16 different combinations). For
instance, model 1 may provide the residuat p; —

p2, Which is the difference of pressure in two wheels,
based on vehicle dynamics. A non-zero residual indi-
cates a fault in tire 1 or 2. A positive residual gives a
vote for isolating a fault in tire 2 (the pressure cannot
increase), and so on. Another residual mayrbe

p3 — p4, SO two residuals would suffice to isolate all



Sensor Fusion

Sensors and Diagnosts Applications Figure 16. This would suggest a linear model with an

(control systems

o offset,
— 5
et | st = i + 02 +er. (24)
c. Estimates . . . .
= Cutin warning This model cannot be found in the tire literature, but
Tiar peteer is still a model that gives promising results for friction
Ultrasonic P 9 R .
— estimation Gustafsson (1997, 1998).
Map database
. . 0.35 : :
Fig. 14. Automotive sensor fusion and diagnosis as a L Measuements belore change
generalization of the approach in Figure 13. 01~ Ficton model befor change
single faults. Even more models are needed to isolate =
. . . [ I
all combinations in a robust way. 5
o . . . . I S o2f
Similar multi-model based diagnosis units utilizing g
residual fusiorare natural to introduce in vehicles, as  go.s|
the number of sensors for driver assistance and safety g
systems increases, and the sensor fusion software be- 2 o1r
comes more integrated over the different sub-systems,
see Figure 14 and Gustafsson (2005). i
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5. DETECTION FOR ADAPTIVE FILTERING
Fig. 16. Principle for slip-based tire-road friction esti-

The aim of diagnosis is usually either to warn an mation: The scatter plot of normalized tire force
operator, or to feedback the fault message to a con-  versus wheel slip indicates the linear relation
troller that adapts itself to the new faulty conditions (24).

to make the best of the situation. Another well-known

principle is to feedback the alarm to adaptive filters, as The excitation in this model can be very poor during
illustrated in Figure 15. This is a structure with good normal driving, since the tire force to overcome air
practical potential in applications. It enables a method drag is relatively constant. Obviously, it is not easy to
to design non-linear filters in a systematic way to over- estimate a straight line to a cluster of data in Figure 17.
come the inherent trade-off between tracking speedThat means that a linear adaptive filter must be tuned
and noise suppression in linear adaptive filters. Theseto be quite slow. Figure 17(a) shows one slow adaptive
include algorithms as Recursive Least Squares (RLS) filter that gives sufficient accuracy, and one faster filter
Least Mean Square (LMS) and its normalized ver- that is too noisy to base driver alerts on, but still not
sion as well as the Kalman filter for state estimation. quick enough to warn in time. The CUSUM supported
We here show three completely different applications Kalman filter proposed in Gustafsson (1997, 1998)

based on essentially the same principle. solves this problem as illustrated in Figure 17(b).
The system has been extensively tested, and used by
Yi Tyjp—1 several road authorities to monitor road conditions.
Estimation €t Alarm  The current status is that further residuals are needed
ut | Algorithm Detector to make the system robust to (1) all tire and road com-
Py binations (2) without the need for special calibration

procedures and (3) to be used by ordinary drivers not
educated on the system.

Fig. 15. The estimation algorithm delivers residuals,
which are used in the detector to decide whethe
a change has occurred or not. If a change i"’|=
detected this information is fed back for use inees

the estimation algorithm.
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5.1 Tire-road friction estimation

150
0 50 100 150 200 250 300 Time [samples]

L . . . a) Linear filters b) The non-linear filter in Figure
Road-friction estimation can be based on comparing @ (15) 9

the wheel slips; (how much faster a driven wheel
rotates relative to its absolute speed) and normalizedFig. 17. Comparison of two linear adaptive filters and

tractions forceg:;. A phenomenon noticable in practice the adaptive filter based on the change detection
Dieckmann (1992) is that the linear relation between feedback loop of Figure 15.

these computable quantities depend on friction, see



5.2 Combined road and vehicle tracking

In collision avoidance algorithms, it is important tc
predict both the road ahead and other vehicles relat i = | amoraron
position and lane assignments. Road prediction is

current systems solved by computer vision systel

inside the camera, while vehicle tracking is an alg

rithm that takes input from both radar, lidar and can

era Gustafsson (2005). One approach based on jc...Fig. 20. Acoustic guitar feedback simulation.

tracking and road prediction is suggested in Schon i )

et al. (2006). The state vector contains lateral devi- 2-3 Simulated guitar feedback

ation from the own lane center of all cars and two o ) .

road parameters: curvature and clothoid (derivative Acoustic guitar feedback is a roaring phenomenonthat
of curvature). These states are central for emergencysome people like and others not. However, guitarists
lane assist systems warning the driver that the hostWho want to practice playing with feedback must play
car is leaving its lane, and collision avoidance sys- With loud volume, which might be disturbing. The
tems, respectively. The idea of joint estimation is to idea illustrated in Figure 20 is to simulate this phe-
(1) utilize the lateral movements of leading vehicles "omenon in software, so the guitarist can use head-
for road tracking and (2) to use road prediction to Phones and still practice, or apply post-processing
detect lane changes of leading vehicles. The exchangdeedback effects in studio recordings.

of informgtion bgtyve_en these two estimation tasks is The system in Gustafsson and Kilberg (2005) uses
thus crucial, and itis important to know if the observed he structure in Figure 15. The adaptive filter contains
lateral movements in Figure 18 depend on a change ingy frequency tracker for which string is hit, and its
curvature or lane. local variations around the nominal frequency caused
intentionally by the guitarist. A rather advanced model
decides which harmonics that would have survived in
the feedback path. However, to be useful at all, the
latency (time-delay) must be very small. The change
ﬁ‘ = E o : ) e in tone should appear almost instantaneously after the
: N ML quitarist hits a new string or blocks the strings with his
E e g : - hand to turn off feedback as he is used to. A feedback
£ ﬂL, Pov e I g delay more than 10ms (corresponding to 3 m feedback
(a) Change in curvature (b) Lane change path, or 441 samples with 44.1 kHz sampling, or one
period of the tone C) is an upper bound in practice.
Fig. 18. Two different changes to detect and isolate. ~ This specification is easily achieved with the CUSUM
feedback to the frequency tracker.

Figure 19 shows curvature tracking, when the leading

vehicle initiates the lane change in Figure 18(b) at

time 4272 s. The curvature estimate for two Kalman 6. CONCLUSIONS

filters is shown in Figure 19(a). The fast KF is not

accurate enough, and the slow filter has a very long re-The paper has demonstrated how statistical signal
covery time after a lane change. The CUSUM boosted processing theory can bring insight and contribute to
adaptive filter combines the good features of fast andfault detection and isolation problems, avide versa
accurate tracking. Further, the plots shows a filter al- how fault detection algorithms can improve statistical
lowing for a smoothing delay, where the estimated signal processing algorithms. An example was used
change point is used to re-process measurements afteto explain the intuition of the stochastic parity space
the change to eliminate the radar measurements fromand the involved model assumptions and algorithms.
the Kalman filter. Several applications were used to motivate how the
model assumptions can be verified in practice and
how these assumptions can be relaxed to get useful
algorithms for non-linear non-Gaussian models. Three
applications were used to demonstrate how a simple
feedback mechanism from a CUSUM detector can
boost adaptive filters when needed to overcome the
inherent trade-off between tracking speed and estima-
tion accuracy in linear adaptive filters.
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(a) Linear filters (b) Change detection feedback
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