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Abstract: The Kalman filter is known to be the optimal linear filter for linear
non-Gaussian systems. However, non-linear filters such as Kalman filter banks and
more recent numerical methods such as the particle filter are sometimes superior
in performance. Here a procedure to a priori decide how much can be gained using
non-linear filters, without having to resort to Monte Carlo simulations, is outlined.
The procedure is derived in terms of the Cramér-Rao lower bound. Explicit results
are shown for a number of standard distributions and models in practice.
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1. INTRODUCTION

Consider a linear non-Gaussian system with state
vector xt, process noise wt, and measurement
noise et:

xt+1 = Ftxt + Gtwt, wt ∼ pw (1a)
yt = Hxt + et, et ∼ pe. (1b)

The Kalman filter (Kalman, 1960; Kailath et
al., 2000) minimizes the covariance matrix among
all linear filters. The resulting covariance matrix
Pt = cov(xt) is given by the Riccati equation,
which obeys the functional recursion:

P kf
t+1 = κ(Pt, Ft, Gt,Ht, Qt, Rt). (2)

There might, however, exist non-linear filters that
perform better. For instance, in target tracking
literature, the state noise models pilot maneu-
vers, and the interactive multiple model (imm)
algorithm (Blom and Bar-Shalom, 1988; Black-
man and Popoli, 1999) has become a standard
tool in this context. Other examples include a
multi-modal measurement noise distribution for
radar sensors used in for instance (Bergman et
al., 1999), in which case the particle filter (Gordon
et al., 1993; Doucet et al., 2001) has proven to
yield good performance.

Using results in (Bergman, 2001) it will here be
shown that the Cramér-Rao lower bound (crlb)
obeys the same functional form as the Riccati
equation

P crlb
t+1 = κ

(
Pt, Ft, Gt,Ht, I−1

wt
, I−1

et

)
, (3)

where Iwt and Iet are the Fisher information of
the noises wt and et, respectively.

The Gaussian distribution act as a worst case
distribution, in that P crlb

t � P kf
t with equality

if and only if both process and measurement
noise are Gaussian. For all other cases, a non-
linear filter might perform better, depending on
the implementation. For instance, the particle
filter with sufficiently many particles will always,
in theory, reach the crlb, at the price of high
computational complexity.

The subject of this paper is to derive formulas
to decide how much better performance we can
hope for by resorting to non-linear filtering. If
the gain is very small, is it hard to motivate not
using the Kalman filter. In other cases, the noise
distribution may reveal much more information
than a Gaussian second order equivalent, and the
performance can be improved considerably. The
results can also be used in practice for tuning,



since when the achieved filter performance has
reached, or come close to, the crlb further tuning
is useless.

Though more general results for the crlb ex-
ist (Tichavský et al., 1998; Bergman, 1999) for
non-linear non-Gaussian systems, studying the
linear non-Gaussian case simplifies the crlb ex-
pression to something that is easy to comprehend
and use in practice. It furthermore allows a direct
comparison to the best linear filter (the Kalman
filter).

The paper will first discuss information of dis-
tributions before going on to find the crlb for
linear systems. Simulations are then used to exem-
plify the theory and finally draw some conclusions
about the findings.

2. INFORMATION IN DISTRIBUTIONS

This section first defines the Fisher Information
(fi) and Relative Information (ri) of distribu-
tions, and then presents some results regarding
distributions of different kinds.

2.1 Fisher Information (FI)

The Fisher Information is defined (Kay, 1993),
under mild conditions on p, as

Ix = I(x) := −E

(
∂2 log p(ξ|x)

∂x2

)
, (4)

and is closely tied to the crlb through the rela-
tion

cov(x) � I−1(x) = P crlb, (5)
with equality if and only if x is Gaussian.

2.2 Relative Information (RI)

Define Relative Information, Ψ, as

Ψx = Ψ(x) := cov−1(x) I−1(x). (6)

The ri is then a measure of how much information
is available in moments higher than the second
one of the distribution. Another interpretation of
ri is as a measure of how much more informative
the distribution of x is compared to a Gaussian
distribution with the same variance. It also follows
that ‖Ψ(x)‖ ≤ 1 with equality if and only if x is
Gaussian.

2.3 Bi-Gaussian Distribution

One type of non-Gaussian noise that occurs nat-
urally is bi-Gaussian noise, that can be observed
in e.g., radar applications (Bergman et al., 1999;

Bergman, 1999; Dahlgren, 1998) or as an descrip-
tion of outliers.

All bi-Gaussian distributions can be parameter-
ized using the parameters α1 > 0, α2 > 0, µ1, µ2,
R1 > 0, and R2 > 0, with αi > 0 and

∑
i αi = 1,

yielding

p(x) = α1N (x;µ1, R1) + α2N (x;µ2, R2). (7)

There is no closed expression for fi or the ri for bi-
Gaussian distributions, but it can nevertheless be
computed using Monte Carlo integration (Robert
and Casella, 1999).

Other statistical properties of a bi-Gaussian dis-
tribution is its skewness, γ1, and kurtosis, γ2,

γ1 =
2∑

i=1

αiµ̄(3Ri + µ̄2
i ) ·R− 3

2 (8a)

γ2 =
2∑

i=1

αi(3R2
i + 6µ̄2

i Ri + µ̄4
i ) ·R−2 − 3, (8b)

with R the variance of the distribution, µ its
mean, and µ̄i = µi − µ. Compare this with the
Gaussian distribution where γ1 = γ2 = 0.

Example: Bi-Gaussian Noise This section ex-
emplifies the bi-Gaussian distributions by looking
at a subset of them where µ1 and R1 are used
as parameters, α = 0.9, and µ2 and R2 are used
to obtain zero mean and unit variance. These
distributions can be expressed as

p(e) = 9
10 N (e;µ,R)

+ 1
10 N (e; 9µ, 10− 18µ2 − 9R),

(9)

with obvious restrictions on µ and R to obtain
valid distributions.

The ri of the distributions in (9) has been calcu-
lated and a contour plot of the result is found in
Fig. 1. The parameter pair µ = 0.2 and R = 0.3
is marked with an × in the figure, and its pdf
is on displayed in Fig. 2. This distribution has
Ψ = 0.37, γ1 = −5.1, and γ2 = 9.7, mainly due to
its one heavy tail.

2.4 Tri-Gaussian Distribution

Tri-Gaussian distributions are made up of three
Gaussian contributions,

p(x) =
3∑

i=1

αiN (x;µi, Ri), (10)

with
∑

i αi = 1, αi > 0, and Ri > 0.

Just as for the bi-Gaussian is it possible to numer-
ically compute the relative information for this
type of distributions and skewness and kurtosis
follows analogously to (8) by summing to 3 instead
of 2.
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Fig. 1. The ri, Ψ(e), for the bi-Gaussian (9).
(Levels: [0.99, 0.98, 0.97, 0.95, 0.92, 0.87,
0.78, 0.64, 0.40, 0], 0 being the outermost
level. × denotes the studied distribution.)
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Fig. 2. pdf of (11) with µ = 0.2 and R = 0.3.
var(e) = 1 and Ψ(e) = 0.3. (The dashed curve
is the Gaussian approximation.)

Example: Tri-Gaussian Noise A subset of the
tri-Gaussian distribution can be obtained by let-
ting α2 and µ1 be parameters and further enforc-
ing α1 = α3, µ3 = −µ1, µ2 = 0, R = Ri and then
use the remaining degrees of freedom to achieve
unit variance. This parameterization yields

p(w) = 1−α
2 N (w;−µ, 1− µ2(1− α))
+αN (w; 0, R)

+ 1−α
2 N (w; +µ, 1− µ2(1− α)).

(11)

Some restrictions apply to the values of α and µ
in order to get proper distributions.

This type of distributions can be used to model
certain kinds of multiple model systems. As an
example, suppose w is process noise in a mo-
tion model, then the different modes represent
a change in speed or acceleration with approx-
imately the same probability as the matching
Gaussian component. Other similar examples ex-
ist.

Fig. 3 shows the ri of (11) using α and µ as
parameters. The plot displays an important differ-
ence between the studied bi-Gaussian noises and
this tri-Gaussian noise. For the latter, most of the

parameter space has ri close to 1, and then falls
off very rapidly when approaching the boarder of
the allowed parameter region, whereas the former
has a slower behavior, especially in R. Hence, the
exact parameter values in the bi-Gaussian case is
less important for the information content in this
case (for most of the parameter space) than in the
tri-Gaussian case where a slight change may cause
all extra information to disappear.
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Fig. 3. The ri, Ψ(w), for the tri-Gaussian (11).
(Levels: [0.99, 0.98, 0.97, 0.95, 0.92, 0.87,
0.78, 0.64, 0.40, 0], 0 being the outermost
level. ◦ denotes the studied distribution.)

The position in Fig. 3 marked with an ◦ represents
the parameter values α = 0.85 and µ = 2.5 that
result in the pdf in Fig. 4. This tri-Gaussian is
distinctly tri-modal, and does this way get Ψ =
0.065, γ1 = 0, and γ2 = 3.4. Note also how steep
the Relative Information curve is around these pa-
rameter values. A minor change in any parameter
will change the result considerably, most likely to
make the distribution less informative.
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Fig. 4. pdf of (11) with α = 0.85 and µ = 2.5.
var(w) = 1 and Ψ(w) = 0.065. (Dashed curve,
the Gaussian approximation.)

3. CRLB FOR FILTERING

This section first presents a general expression for
the crlb for dynamic systems and then derive



expressions for linear systems which are then
further discussed.

3.1 General Systems

Consider a general system described by{
xt+1 = f(xt, wt)

yt = h(xt, et)
←→

{
p(xt+1|xt)

p(yt|xt)
. (12)

The crlb for this system, P crlb
t|t = Pt|t, is given

in (Bergman, 1999, Theorem 4.5) by the recursion
P−1

t+1 = Q̃t − S̃T
t (P−1

t + R̃t + Ṽt)−1S̃t, (13)
where

Q̃t = E
(
−∆

xt+1
xt+1 log p(xt+1|xt)

)
,

R̃t = E
(
−∆xt

xt
log p(yt|xt)

)
,

S̃t = E
(
−∆

xt+1
xt log p(xt+1|xt)

)
,

Ṽt = E
(
−∆xt

xt
log p(xt+1|xt)

)
and the iteration is initiated with

P−1
0 = E

(
−∆x0

x0 log p(x0)
)
.

The quantities Ṽt, R̃t, S̃t, Q̃t, and P−1
0|0 are

all closely related to the Fisher Information of
different aspects of the the system.

3.2 Linear Systems

In the case of a linear system,
xt+1 = Ftxt + wt, cov wt = Qt (14a)

yt = Hxt + et, cov et = Rt, (14b)
the parameters are given by (Bergman, 1999)

Q̃t = Iwt R̃t = HT
t Iet Ht

S̃t = −F T
t Iwt Ṽt = F T

t Iwt Ft.

Using these relations the equivalent to (13) be-
comes

P−1
t+1 = Iwt −Iwt Ft

(
P−1

t +

+ HT
t Iet Ht + FT

t Iwt Ft

)−1
FT

t Iwt . (15)
By inverting this expression (using the matrix in-
version lemma 1 repeatedly) the standard Riccati
equation appears,

Pt+1 = FT
t (P−1

t + Ht Iet HT
t )−1Ft + I−1

wt
=

= FT
t PtF − FT

t PtHt·
· (HT

t PtHt + I−1
et

)−1HT
t PtFt + I−1

wt
. (16)

If Iwt is singular this can be solved by using
Gt I(w̄t)−1GT

t instead of I(wt)−1 where Gt and
w̄t are such that wt = Gtw̄t and I(w̄1) non-
singular (Bergman, 1999).

Also, note that (16) is the standard Riccati equa-
tion for the Kalman filter for I−1

wt
= Qt and

I−1
et

= Rt.

1 (A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1

given that A−1 and C−1 are well defined.

Stationary Properties When t→∞ (stationary
state),

Pt = Pt+1 =: κ̄
(
I−1(wt), I−1(et)

)
,

the following simple rules hold for κ̄ (the system
is here kept out of the notation for clarity).

For general matrices Q and R and scalar γ:

(i) κ̄(γQ, γR) = γκ̄(Q,R)
(ii) κ̄(Q, γR) = γκ̄( 1

γ Q,R)
(iii) κ̄(γQ,R) = γκ̄(Q, 1

γ R)
(iv) Q1 � Q2 ∧ R1 � R2 ⇒ κ̄(Q1, R1) �

κ̄(Q2, R2) with equality if and only if Q1 =
Q2 and R1 = R2.

The properties (i)–(iii) are equivalent so it is
enough to show one of them, e.g., (i).

If P̄ is a solution to (15), then γP̄ is a solution to

P−1 = 1
γ Ψwt − 1

γ Ψ−1
wt

FT
t (P−1+

+ Ht
1
γ Ψet HT

t + Ft
1
γ Ψwt FT

t )−1Ft
1
γ Ψwt ,

and hence κ̄(γQ, γR) = γκ̄(Q,R).

Property (iv) follows from the fact that the
Kalman estimate always improves when either of
the noises decreases, i.e., Q1 � Q2 and R1 � R2,
and that (15) is the same Riccati equation as in
the Kalman filter with just a different interpreta-
tion of the included matrices.

4. SIMULATIONS

In this section the theory previously presented will
be illustrated using the simulations.

4.1 System

The following system will be used in the simula-
tions,

xt+1 =
(

1 1
0 1

)
xt +

(
1
2
1

)
wt, cov wt = Q (17a)

yt =
(
1 0

)
xt + et, cov et = R (17b)

with wt and et mutually independent, white noise
with unit variance. The system represents a sec-
ond order random walk, or a double integrator.
The best stationary estimation variance of x(1)

(the observed state) using a linear (Kalman) filter
is κ̄(1,1)(1, 1) = 3.0.

Since in this case both wt and et are scalar it
is possible to, in a regular contour plot (looking
at x(1) only), show how the optimal performance
varies as the information in the noise changes,
i.e., how non-Gaussian noise affects the filter
performance. In Fig. 5 the filtering performance
κ̄(1,1)(Ψwt Q,Ψet R)/κ̄(1,1)(Q,R) is presented as a
function of the ri involved (Q = 1, R = 1). Note,



however that it is impossible to in this plot see
how to obtain this optimal performance or how
difficult it is.
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Fig. 5. Optimal filter performance,
κ̄(1,1)(Ψwt ,Ψet)/κ̄(1,1)(1, 1) as a function
of Ψwt and Ψet . (× denotes the noise in the
first example and ◦ the noise in the second
example.)

4.2 Bi-Gaussian Measurements

The first example uses non-Gaussian measure-
ment noise

et ∼ 9
10 N (0.2, 0.3) + 1

10 N (−1.8, 3.7).

This specific noise was discussed in Sec. 2.3 and
has one heavy tail. From the Fig. 5, or by solving
the appropriate Riccati equation, (16), the crlb
for this system with this specific measurement
noise can be found to be κ̄(1, 0.37) = 1.8, i.e.,
the optimal variance is 60% of what is obtainable
with any linear filters. Hence, this seems to be a
candidate for a non-linear filter.

Therefore the system was simulated, and both a
Kalman filter and a particle filters (using the sir
algorithm and 50 000 particles) was applied. The
mean square error (mse) of these estimates was
then computed for 1000 Monte Carlo simulations.
The mse together with the theoretical stationary
limits are plotted in Fig. 7.

The figure shows a significant gain from using the
particle filter (approximately 18% lower variance),
but the crlb is not reached. This is a combination
of at least two factors.

One reason is that the actual et and the second
order Gaussian equivalent differs first in the third
moment. The Gauss has γ1 = 0 whereas et has
γ1 = −5.1. This means that the noise distribution
must be kept accurate to at least third order
moments in order to be able to extract the extra
information about the state. This requires a large
amount of particles in the particle filter to reach
the crlb. Due to computational complexity and
numerical issues, especially in the resampling step,
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Fig. 6. mse of 1000 Monte Carlo simulations
with a Kalman filter and a particle filter
(sir, 50 000 particles) on the system with
bi-Gaussian measurement noise. (Theoretical
limits are include as reference.)

it is not surprising that the optimum is not
obtained.

Furthermore, since all extra information is car-
ried by the noise, many noise instances must be
evaluated in order for the improved variance to
show up in Monte Carlo simulations. With few
simulations the simulated noise could as well come
from a Gaussian distribution and the improved
performance does not show to its full extent.

4.3 Tri-Gaussian Process Noise

In this example the measurements will be kept
Gaussian whereas the system is driven by tri-
modal noise,

wt ∼ 0.075N (−2.5, 0.065)
+0.85N (0, 0.065)

+0.075N (+2.5, 0.065),

with var(wt) = 1, Ψwt = 0.065, γ1 = 0, and
γ2 = 3.4. This tri-Gaussian was discussed in
Sec. 2.4.

Since the Gaussian approximation here is the
same as above, κ̄(1, 1) = 3.0. However, the crlb
for this system is different, κ̄(0.065, 1) = 1.77.
Once again, consult Fig. 5 or solve (16).

Simulating this system and applying a Kalman fil-
ter and a particle filter (sir algorithm with 50 000
particles) yields for 1000 Monte Carlo simulations
the result in Fig. 7.

Here the particle filter is not significantly better
than the Kalman filter (time mean shows a 3%
improvement for the particle filter).

The reason for this seems to be the same as for
the last example, just with more serious effects.
The Gauss approximation and wt differs first in
the kurtosis, and even there γ2 = 3.4 for wt is not
very much. This indicate that even more particles
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Fig. 7. mse of 1000 Monte Carlo simulations
with a Kalman filter and a particle filter
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are necessary for good results. Approximately the
same argumentation calls for many Monte Carlo
simulations as well.

Another difficulty with this example shows in
Fig. 3. It was noted already in Sec. 2.4, that due
to the steep ri curve, distributions close to the
chosen one could be much less informative. With
few samples in the particle filter or noise instances
in the Monte Carlo simulations the actual distri-
butions are hard to distinguish between, and this
should result in higher estimation variance.

All these explanations motivate the poor perfor-
mance of the particle filter in these examples. This
not to say that the crlb is not reachable, but
other filtering methods than the particle filter,
and probably in combination with other evalua-
tion methods than Monte Carlo simulations would
probably be preferable.

5. CONCLUSIONS

In this paper, starting from general crlb expres-
sions, an expression for the crlb in linear systems
is derived in terms of Relative Information (ri) of
the included noises. ri is defined as a measure
of the information available in higher moments
than the second one of a stochastic variable. This
results in a method to, given a system and its
ri, calculate the crlb by solving a few Riccati
equations. The crlb can then e.g., be used to
decide if it is worthwhile to try non-linear filtering
or decide when no more tuning is needed, all this
without resorting to time consuming Monte Carlo
simulations.

Simulations are also presented to support the the-
oretical results. The examples indicate improved
performance using a particle filter on linear sys-
tems with non-Gaussian noise, but do also point
out the difficulty of reaching the crlb. Basically,

it is a combination of properties of the noise, the
system, and the evaluation method used.
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