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ABSTRACT and new safety systems. The automotive executives share

The amount of software in general and safety systems inthis view [39], as summarized in the conclusion “safety is
particular increases rapidly in the automotive industiye T ~ @ basic tenet to the industry now and will continue to be
trend is that functionality is decentralized, so new safety &1 0ngoing major focus for consumers and manufacturers
functions are distributed to common shared computer hard-2like”. Further, “new technology will be as important as
ware, sensors and actuators using central data buses. Thigew models in attracting customers”. _ .
paper overviews recent and future safety systems, and high- The research community also has to contribute to this

lights the big challenges for researchers in the signal pro-Shift, and the purpose of this paper is to point out certain di
cessing area. rections in signal processing where research is needed. The

underlying theme isensor fusionto utilize existing and af-
fordable sensors as efficiently as possible for as many pur-
poses as possible. We point out certain more or less open
problems in spectral analysis, non-uniform sampling, sys-
tem identification, change detection, diagnosis and faa#lt d
tection and model-based filtering and prediction to mention
a few.

The outline of the paper is as follows. Section 2 overviews

1. INTRODUCTION

Henry Ford revolutionized the automotive industry morentha
100 years ago with his new production ideas. We are now
facing another major shift in automotive production, when
an increasing part of the value of the car comes from elec-
tronic systems. The introduction of more automotive safety .
systems plays an important role in this shift. For instance, existing and some future control systems, where accurate

one expert predicts that the value of software will increase information of th? own and surrpund|ng veh|cles_ state Is
from 4% in 2003. to 13% in 2010. This of course affects needed. Then, with this as a motivation, the following chal-
the engineering community in many ways. The automotive lenges are discussed:
industry has always been dominated by mechanical engi-Challenge I: Wheel speed analysissing wheel speed as a
neers, but today we see an increasing need for engineers generic multi-purpose sensor, is discussed in Section
specialized in signal processing, automatic control, -elec 3.
tronics, communication and computer hardware. o

A key reason for this trend is the rapid development of Challenge II: \ﬁrtua! sensorsf_or monitoring and control
safety systems. As the number of vehicles on our public systems are discussed in Section 4.
roads increases, the requirement on safety is also in@ease cpgajlenge I11: Navigationas dynamic state estimation for
There has been a tre_men_dous progress in this area over the monitoring and control systems is discussed in Sec-
last two decades as is evident from accident statistics. For tion 5.
instance, the number of fatalities in Sweden [22] suddenly
started to drop around 1990. According to this report, the Challenge IV: Situational awarenedsy target tracking and
car fleet becomes safer for each year and the trend is that road prediction for collision avoidance systems is dis-
the fatality risk in a new car is reduced 5% each year. A cussed in Section 6.

research report by an insurance company [21], partly ac- . . . .
. Challenge V: Sensor-near signal processinfpr improv-
knowledges on-board safety systems for this trend change, ; . A
: X . - . ing and supplementing the sensor fusion, is discussed
and for instance it ranks an electronic stability systenti{an in Section 7

skid control) as important as safety belts to prevent severe

injuries on skiddy roads. The requirements on the safety Section 8 discusses various implementation aspects ofa sen
systems will continue to increase in the future, motivating sor fusion system, and Section 9 summarizes how sensor
the continued development on improved versions of existing fusion may be structured in the future.



2. AUTOMOTIVE SAFETY SYSTEMS other basic information from sensor signals available at th

CAN bus. Future control systems are likely to a higher ex-

In this section, we will list and briefly present some difiere  tent take their information from existing sensors, or stare
examples of new functions or systems being developed forsensors. As was pointed out in the previous section, the
or already in use in modern, high-end vehicles. The idea isactuators are already there, and probably they will in the

to highlight that a rather small number of actuators and sen-future all be by-wire, which means that new control func-
sors would cover all functions, and any further new function tions are easily added. The same will be true with the sen-

could thus often be added as a pure software module. sors. It is only a matter of time until all intertial sensors
(accelerometers and gyroscopes in three dimensions, ver-
2.1. Safety system overview tical accelerometers at all wheetsic) are required by at

least one sub-system. That means that any further control
Automotive safety systems can be grouped in many ways.functions can be implemented in just software.
The traditional way separatestive safetydriving safety) Here we would like to stress the following underlying
systems that prevent accidents gadsive safetfcrash pro-  statements for this survey:
tection) systems that protect humans at an accident.
For passive safety, the signal processing opportunities 1. Accurate state information is more important than ad-

are mainly in collision and roll-over detection for firing-in vanced control algorithms (many of them are simple
ternal airbags and seat-belt pre-tensioners. Adaptibags P()D controllers). That is, often it is more important
for the passengers can fire at two or more levels. These what to feedback than how to feedback

systems require quite advanced signal processing and sen-
sors mainly for classifying the passenger size and position
In the future, also external airbags and bonnet lifting for
pedestrian protection systems [41, 25] may need advanced

2. Using sensor fusion techniques, virtual sensors can be
derived that compute information that would be either
too costly or even impossible to measure in practice.

situational awareness. 3. Model-based control systems are in their infancy, and
future generations may include model-based filters and
2.2. Dynamic control systems controllers.

However, the main challenges lie in active safety systems.The following five sections explain how this can be achieved
These can be grouped infeventive system@ncluding by improved signal processing.

driver information and driver drowsiness monitoringy;-

namic control systermrendcollision avoidance systemSome 3. CHALLENGE I: WHEEL SPEED ANALYSIS
functions in the latter two categories, sometimes referred

to as advanced driver assistance systems (ADAS, or justwithout doubt, the wheel speed sensor is the potentially
DAS) are summarized in Table 1. We here distinguish lon- most informative sensor in the car. Today, the wheel speed
gitudinal control systems mainly used when driving straigh is measured in all cars equipped with an anti-locking brak-
ahead, lateral systems for cornering and maneuveringsituaing system (ABS) system on at least one but often all four
tions and rate control systems. wheels. Since the introduction of ABS control, wheel speed

Table 1 illustrates that the main actuators are enginesignal has found many other uses. The different potential
torque and brakes. The regulations currently say that theapplications presented in scientific literature and paterg
steered wheels must be physically connected to the steeringliscussed in this section.
wheel, thus steering is not currently used as an actuator. If
these regulations change, several of the lateral contnatfu
tions as yaw and roll control can be improved.

Besides the primary sensors listed above, other sensoil he wheel speed sensor works as follows. A cogged wheel
information may be included when available as tire pres- with N, cogs is mounted on each measured wheel. There
sure, road friction, road conditior.g.gravel roads), road  are two ways currently used to measure the speed. The mag-
inclination and bankingtc. Such information may in some  netic field varies dynamically as a sinusoid when the cogged
cases be communicated to the driver in monitoring systemswheel rotates, which can be measured by electromagnetic
sensors. Both the frequency and the amplitude change with
angular speed. Because of diminishing signal amplitude,
low velocities cannot be measured with this principle. The
All control systems rely on accurate state information,alhi  so called Hall effect gives a pulse of constant magnitude for
implies a high requirement on sensor quality. Existing con- each cog, where the pulse frequency is proportional to an-
trol systems come with their own inertial sensor kit, andtak gular speed of the wheel. For both principles, the absolute

3.1. Wheel speed sensors

2.3. Sensor fusion demands



Actuator

Primary sensors

System Brake | Acc. | Steering[ Driver

Speed| IMU | DME [ Brake [ Vision

Anti-locking Brake Systems (ABS) X - -
Brake Assistance Systems (BAS) X
Cruise Control -
Adaptive Cruise Control (ACC)
Stop and Go

Anti-spin control ¢ < 20 km/h)
Traction control ¢ > 20 km/h)
Forward Collision Warning (FCW)
Forward Collision Mitigation (FCM)
Parking aid systems -

[ |
I X | X X X |
|

x | X |

X

| X X X X X X X |

I X< x|

x|

Forward Collision Avoidance (FCA) X - X
Lane Keeping Aid systems (LKA) - - x)
Lane Change Aid systems - - -
Adaptive steering

|
|
x

| X X |

| X X X||xX X X |

I X x|

Yaw control
Roll stability control
Roll-over detection (airbag)

| X X
|
|

X X XX | X X

X X X

Table 1. Advanced driver assistance systems (ADAS) grouped byitietigal control,

lateral

control

and rate control,

respectively. Driver is here considered an actuator ctlattdy a haptic warning (dashboard lamp, sound, vibratitv)J

means an inertial measurement unit, comprising at leastiooelerometer or gyroscope. Distance measuring equipment

(DME) includes radar, lidar and sonar measuring range aghkdao objects. Vision includes camera and IR sensors.

angular speed (the direction of rotation is not observable)
measured in the cog domain, not the time domain. That is,
angular speed is computed as

21

th) = ————
w( k) Ncog(tk *tk71)7

1)
wheret; denotes the time stamp delivered by the sensor
each time a cog passes it. More on this particular multi-
domain sampling problem is found in Section 3.3. We can
for the discussion here assume that the wheel angular speec
w;(t) is available in continuous time for each wheel

The wheels can also be equipped with additional sen-
sors for strain measurements [44] or tire pressure [14], for
instance.

3.2. Applications

First, the angular speeds relate to the vehicle speed at this
tire by the tire radius. The speed content is a low frequency
component. The tire dynamics can be modelled by three
springs for torsional and radial forces in the tire rim, and
the radial forces in the tire tread. Table 2 indicates the

Angular velocity difference:
yaw rate

Angular velocity: Road
surface and tire characteristi
overlayed on vehicle velocit

S

Angular velocity correlation
road surface and velocity

Angular velocity model: depends on engine torquized
line, steering angle, friction relations and so on

Fig. 1. Wheel speed applications.
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spring-damper system. Further, narrow-band disturbances_Pamper

as harmonics of the different rotating parts in the drive i

can sometimes be observed. Figure 2.a shows an approxlable 2. Frequency spectrum for the wheel speed signal,

imation of the Fourier transform for a short batch of data with approximate limits in Hz.

with approximately constant speed. Compared to Table 2,

there are no narrowband disturbances in this case, and the

high frequency mode is not visible.
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Fig. 2. Example of Fourier transform approximation (FTA) of whepéed signal. (a) FTA @f(¢;) after cog error correction.
(b) FTA of w(t;) before cog error correction. (c) FTA of, after cog error correction. (d) FTA af, before cog error
correction. A smoothed curve is added in (a) and (b) for pstiknation purposes.



Examples of applications of the wheel speed informa-
tion found in the literature are illustrated in Figure 1 and
include the following approaches:

e Temporal information (Fourier transformed velocity)

af) = [wve " at

reveals, in the different frequency bands, information
about tire-road friction, tire pressure, tire condition,
surface texture and wheel balance information as well
as wheel suspension information (spring-damper con-
dition). A model-based alternative to the Fourier trans-
form to analyze tire characteristics is motivated by
a damper-spring model of the tire modes. Such a
model corresponds to an AR(2) model, which in the
frequency domain is

(2)

1
(27 )2 + 2nfo(i2n f) + f3

wheren is the damper constant atfglthe eigen-freq-
uency of the spring, respectively. This model holds
only locally in the frequency band according to Ta-
ble 2, so frequency selective estimation algorithms
are needed.

Q(f) = 3)

Spatial information (correlation of velocities) reveals
absolute velocity when comparing two wheels on dif-
ferent axles and same side, and yaw rate information
comparing two wheels on the same axle. More specif-
ically, absolute velocity can be computed from the
wheel axle distancé and time delay between distur-
bances passing both front and rear wheel according tc
the following principle:

7 =argmax E [weont (t)wrear (t — 7)] , (4a)
) :5. (4b)
7

This works when the velocity is constant over the es-
timation time of the correlation. Open problems are
how to make it velocity adaptive and to get sufficient
resolution (better than the uncertainty in wheel radius,
which is about a few percent).

Further, yaw rate), as defined in Figure 6, at the cen-
ter point of the rear axle can be computed from

; Vg _
U=2= =y, R},

= (52)

leading to
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That is, yaw rate can for a front-wheel driven car be
computed as

w3 r3
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§ w83 ;w47“4 2

(5d)

provided that the wheel radii are known and that the
angular speeds of the rear wheels are measured.

Model-based approaches to friction estimation (lon-
gitudinal and lateral slip models), including handling
conditions as aqua planning and rough road detector.
Further, dynamic state estimation and navigation us-
ing dead-reackoning are based on wheel speeds.

1d by
Iblica-

Fig. 3. Notation for the curve radius relations.

3.3. Multi-domain signal processing

As pointed out in Section 3, wheel speed sensors are per-
haps the single most important sensor in a wheeled vehicle.
These sensors are integrated in the ABS system, which con-
verts raw cog time measurements to wheel speeds and com-
municate this refined information on a databus to dependent
sub-systems. However, this pre-processing destroys-infor
mation and in high-precision applications where very accu-
rate wheel speed information is needed, more sophistacated
signal processing is required. For instance, just intetpol

ing the wheel speed in (1) without pre-processing, and then
the discrete Fourier transform would give the curve in Fig-
ure 2.b. Here, the disturbance is clearly visible as narrow-
band peaks. For larger batches of data, velocity variations

where the inverse curve radius should be used to avoigWill cause a leakage phenomenon, so the interesting infor-

singularities on straight roads. From Figure 3, we
have

vy Ry R+ BJ2

vs Ry R-B/2 (5b)

mation would no longer be visible. Figure 2.c shows the dis-
crete Fourer transform of the cog time stamp# (1), and

with appropriate pre-processing [49, 59], Figure 2.d is ob-
tained. These corrected time stamps can then be tranformed
to wheel speeds by (1), and Figure 2.a is finally obtained.



This is a general multi-domain sampling problem. Here Model-based slip estimation approaches still contain sev-
the sensor samples uniformly in the amplitude domain (the eral challenging open signal processing problem, and will
time for each angular change®f /N, is measured), while  be described in some detail in the following.
all consequent algorithms are based on uniform sampling in
the time domain. Note that there is a similar sensor in the4.1.1. Longitudinal slip
engine control system, where similar algorithms can be uti-

lized. The longitudinal dynamics of a car depends non-linearly on
the friction via the so called wheel slip, defined as
4. CHALLENGE II: VIRTUAL SENSORS g Tl W (6)
Vg Vg

A virtual sensor [30] is here defined as a physical quan- 1 gptained friction force normalized by the normal force
tity not directly measured, which is computed from existing ., 4 certain wheel

sensors. The reason could be to avoid costly sensors, as

in the tire pressure monitoring system in Section 4.2, or to [ :&7 @)

compute abstract quantities as tire road friction as iniSect N

4.1, where practically feasible sensors do not exist. is given by a non-linear function known as the slip curve.
This relation is illustrated in Figure 4.a for some differ-

4.1. Road friction monitoring ent surfaces for positive friction forces (wheel spin), and

a similar relation holds for braking. For friction estinaii
and control purposes, the slip curve should be considered as
time-varying, and adaptive estimation methods are desired

A friction information system would be central for all dy-

namic control systems in Table 1, and would provide valu-
able information for the driver. The literature on this sub-
ject is quite rich, see the survey [46], and a multitude of

approaches have been investigated: 4.1.2. Slip models

The so calledhagic tire formuld[7] is the best known and
most cited parametric model of the slip curve. It is defined
as

e Slip based approaches, utilizing the noticable change
in wheel slip (both lateral and longitudinal) with tire
road friction [27].

E
_ . —1 —1
e Spectral analysis of wheel speeds, as discussed in sect!(s) = Dsin(Ctan™ (B((1 — E)s + & tan™ " (Bs)))).

tion 3. (8)

e Audio-based classification based on microphones lis- This modelis W|de|y accepted forits ﬂeX|b|I|ty, and used fo
tening’ to each tire [60]. simulation and curve fitting to test bench data. A suitable

set of initial values isB = 14, C = 1.3, D = 4, and
e Vision-based classification based on surface texture £ = —0.2. The initial slope is given by3CDE and to
and reflection properties [19]. affects,, ., one can tune3, C.

Many other alternative slip functions have been sug-
éested [32, 61, 42, 3]. For instance, the rational function
p = ks/(as® + bs + 1) is suggested in [36, 37] for estima-
tion during ABS braking. A theoretical model for friction,
aimed for control purposes, is developed in [16] based on
fundamental friction relations as described in for ins&anc

e Sensor-based approaches where the sensors are moulftkdl he model was later applied to slip curves in [17, 15].
in the tires’ tread for measuring stress [19]. The dynamiq.—s model (compared to the static one in Fig-
ure 4) they propose is
Despite these efforts, no friction monitoring system exist

e Behavioural approaches analysing the driver behaviou
[19], assuming the driver is aware of the friction and
adapts his driving style. This is of course not an ap-
proach for monitoring, but can be used for initializing
ABS control for instance.

O'()|S’Uz|

on the market. Friction is a complicated physical phenomeno Z=uv, — z, 9)
and the variety of tire models and possible combination of 9(svq)
makes and wear has delayed the introduction of large scale F, = (00z 4+ 012 + 020,) F, (10)
cheap commerical friction estimators substantially. Accu —|svg 050

P y 9(svs) = po + (n — po)e” ==/ (11)

rate and robust friction estimation may require multiple ap
proaches with an over-all information fusion. Basically, a Herez is the state in the model ant], s¢, v, are parame-
the approaches listed above can be used to obtain a moréers. They refer to the original model (which has a power 2
robust estimate. instead of 0.5 above) as theGremodel.



4.1.3. Adaptive estimation of slip models constant during cruising and the paramefesds are not

identifiable.
Some problems associated with these models are that the ;o< also been suggested to extend (12) with a dynam-

feasability region in the parameter space is hard to define .o model of the drive-line and an observer for estimating
the parameters are not easily interpreted in the terms-of ini 4(1), see [50, 66].

tial slope, maximum friction force, stationary frictioa
o0) and the parameters in the magic tire formula have no
physical meaning. This together makes the models less suit

able for adaptive filtering, and research for better stmastu To Support the ideas presented above based on the |0ngitu_
is needed. dinal slip, the lateral slip can be used as well. The lateral
Figure 4.b showgs, ;1) measurements from a test drive  slip o is defined in Figure 6, and can be computed from
on an area with a skid pad that is reached at time 170-2104ateral dynamics if the steering wheel anglg and yaw
At the skid pad, a braking and spinning maneuver are per-ratey are measured. The relation between lateral force and
formed, and adaptively estimated friction curves to both re sjde slip angle follows the same principal non-linear rela-
gions (skid and asphalt) are depicted in the lower plot. The tion as the longitudinal friction curve in Figure 4.a. Thet i
fit on asphalt during low slip is quite good, but on the skid the same type of algorithms as discussed above can be ap-
pad the fit is poor and one can imagine different friction plied. Though the dynamics is somewhat more complicated,
curves in different regions. This illustrates that frictics the excitation might be better than, or a good Comp|ement
a highly dynamic phenomenon, where a good fit over time to, the excitation in lateral dynamics. One idea to estimate
cannot be reached even under quite controlled external consjdeslip is to include satellite navigation in the senssidn
ditions. That means, that reproducible experiments with [g].
high accuracy cannot be obtained usually.
For friction monitoring and warning to the driver, the 5,
conclusion from such experiments is that the scale must be G
quite course, perhaps only two levels indicating good or v
bad friction (., = 0.4 for instance). One approach to \!
monitor friction that works also during normal driving, is Fya
to adaptively estimate the initial slope of the friction ear E

4.1.5. Lateral slip

in Figure 4.a, which is a straight line during normal driving
whengu < 0.1.

4.1.4. Estimation on longitudinal slip slope

The initial slope is in tire literature [6] referred to lotgi a L
dinal stiffness, and is considered a tire characteristia(s '
slope for soft tires like M+S). However, as demonstrated in

[18], the slope changes slightly but significantly for diffe For
ent surfaces, as illustrated in Figure 5.a. This fact wad use

in [27, 28] for an adaptive filter based on the linear regres-

sion model Fig. 6. Notation for the lateral dynamics.

s(t) = k(t)u(t) +6(t) + e(t), (12)

wherek(t) is the inverse initial slopej(t) an offset and ~ 4-2. Tire pressure monitoring systems (TPMS)

e(t) noise. The offset has to be estimated. Though being atphe following quote from the NHTSA press release from
valid model easily reproducible in field tests, there are sev April 7, 2005, indicates the importance of development of

eral challenges in signal processing as the contradicedry 1 gjiaple and affordable systems for tire pressure momigori
quirement of fast and accurate tracking of friction, furthe

under very poor signal to noise ratio. The recursive least All passenger cars will have tire pressure mon-
squares scheme is applied to the data in Figure 5.a and the itoring systems beginning with the 2006 model
result is shown in Figure 5.b for one slow and one fast tun- year according to a new motor vehicle safety
ing. None is acceptible, so non-linear methods based on standard by the National Highway Traffic Safety
change detection are needed. Another challenge is how to Administration (NHTSA). The regulation will

handle varying excitation conditions, sing¢t) is almost require that manufacturers install a system that
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can detect when one or more of the vehicle's [49, 67, 62]. Second, model-based sensor fusion can im-

tires are 25 percent or more below the recom- prove the estimation of relative tire radii substantiatygh-
mended inflation pressure. Phase-in of the new level fusion of different principles may in the end enable a
regulation will begin Sept. 1, 2005. All new TPMS that satisfies the NHTSA rules.

4-wheeled vehicles weighing 10,000 pounds or
less must be equipped with the monitoring sys-
tem by the 2008 model year.

Further,

NHTSA estimates that about 120 lives a year
will be saved when all new vehicles are equipped Fig. 7. The TPMS warning symbol.
with the tire pressure monitoring systems. In
addition, consumers should see improved fuel

economy and increased tire life. 5. CHALLENGE Ill: DYNAMIC STATE

Seeht t p: / / www. nht sa. dot . gov/ cars/ rul es/ rul i ngs for ESTIMATION
more details. The user interface is suggested to be as in ] .
Figure 7. The dynamic control systems in Table 1 need accurate state

Today, most TPMS are sensor based [14, 2], using ainformation about the vehicle’s position and orientatiod a

pressure, temperature and possibly acceleration sensor iltlhe_ir time derivatives. This is in general a mod_el based_fil-
each wheel, each sensor kit equipped with a radio transmit-{€ring problem where the (extended) Kalman filter applies,

ter and battery. This is perhaps more of a sensor technologyvhere a partial vehicle model is used to improve sensor
challenge. measurements and for diagnosis. We will here describe two

However, there are indirect systems as well utilizing the Non-standard problems.
wheel speeds at a much lower cost. The basic idea, foundin  EXxamples of application include [29]
implementations on the market today, is to monitor aresid- e Offset-free velocity and acceleration (longitudinal dy-

ual of the form namics) for cruise control and collision mitigation [64].
o w1 (t)wa(t) 1 134 o Offset-free yaw rate and drift-free yaw angle (lateral
eft) = wa(t)ws(t) (133) dynamics) that can be used for ESP, lane keeping aid
_ui(tva(t) ra(t)ra(t) 1+ s1(t) ) (13b) and navigation.
va(t)vs(t) ri(t)ra(t) 1+ s2(t) e Offset-free roll angle estimation (roll dynamics) for

use with motorcycles (ABS, anti-spin, headlight con-
trol) or offset-free roll rate for vehicles (air bag cur-
tains and roll-over detection).

where the numbering of angular speedswheel speed;
and wheel radius; is defined in Figure 1. A front-wheel
driven vehicle is assumed, and the slip model (6) is used in

the second equality. The residu#t) is non-zero if at least e Positioning support and backup for satellite based po-
one of the following occurs: sitioning as the Global Positioning System (GPS) [23].
This includes improved dead-reckoning with small
e The slipss; ands, are different on the left and right drift.

side (splitu situation),

o The wheel speeds do not match each other. Note from®-1- Sensor fusion for offset estimation

Figure 3 that /v2 = v3/v4 if a circular path is fol-  One general idea of how to estimate sensor offsets using
lowed. sensor fusion is as follows. Suppose there are two measure-
mentsy; (t) of the same variable, where each measure-
ment has an offsét:

Itis the last property that can be used for TPMS. It is clear y1(t) = z(t) + 1 (H)by (14a)
from its construction that four wheel pressure decrease (so

called diffusion) cannot be detected frarft), and also si- va(t) = 2(t) + e2()ba. (14b)
multaneous decreases on one axle or one side might be uni-lere the offset scaling;(¢) is a known function of time.
observable. More advance methods make use of sensor fuThese two equations have three unknowns and is unsolv-
sion on different scales. First, wheel speed analysis as deable, so there is no way to eliminate the offsets directly
scribed in Section 3 may indicate tire pressure information without more information.

e One of the wheel radii differs from the other ones.



When two pairs of measurements|(1), y2(1), y1(2), used as well [55]. So called map matching puts the GPS
y2(2), become available, we get two more equations andposition on the nearest road found in a digital map, and a
only one more unknown. That is, we have four unknowns yaw rate gyro is used to improve orientation estimation dur-

and four equations and we can solve for the offsstdthe ing cornering. Further, gyro and speedometer based dead-
variablesz(1),x(2). The only condition is that there is no  reckoning is used temporarily when GPS is not available
linear dependency in data, which here means that [1,11]

o) e) _Positioning accuracyis to_dqylimited by the digital maps,
! 27 which are usually based on digitized paper maps. It has been
c(2) © e(2) proposed to use sensor fusion ideas to merge (differential)
If this is not satisfied, one can just wait until two equations GPS with on-board sensors so a car can be used as a mea-
that are not linearly dependent are obtained. For instaihce, suring probe to automatically generate high-accuracgstre
c1 is constant ands () = v, (t) is the velocity, the equation  maps [53, 65]. In the sequel, we assume that the street map
system is solvable as soon as the velocity changes. This cais given.
be defined offsebbservabilityor identifiability. A sensor fusion approach to positioning can be based on
This is the basic idea, and there are two extensions tothe motion model
make the solution more realistic.
Extension 1: Assume there are measurement noises added  #(t + 1) =z(t) + T'w(t) cos(¥(t)) + wa(t),  (15a)
to the observations. Then we can collect many observations  y(t + 1) =y(t) + Tv(t) sin(¢(t)) + wy(t), (15b)
and get an overdetermined equation system and compute . ‘
the least squares solution. In ?his way, the solution will rk)Je V(E+ 1) =y + TY(E) +wy (0), (15¢)
more robust to the measurement noise. A perfect Sensof,are the state vector — (z,y, 1) contains position and
fusion match is obtained if one sensor is good in the high- o jentation of the vehicle, and(t) denote process noise.
fr_equency region and the other one in the low-frequency re-Speedy(t) and yaw ratej(t) are considered as inputs. The
gron. measurement relation may include GPS, wheel-speed com-

Extension 2: The variablex is a correlated sequence ted yaw rate (5d), but also implicit information such as
that cannot change arbitrarily fast between two obsematio  iha constraint that the vehicle is most likely located on a

This kind of a priori knowledge is difficult to putdowninto o4 Sych mixture of classical sensor information with
algebraic equations, but is easily handled by filter theory yatahase implied constraints are not easily incorporated i
(Kglman filter). T_he implication is that the accuracy inthe e classical Kalman filter framework. However, the parti-
estimate ofx(¢) might be even better than using the average ¢ filter [52] provides a tool for solving the filtering prob-

of two offset-freesensors, when only spatial informationis oy [23]. Such map based positioning can be used as a GPS
used. replacement or as a complement when GPS is not operat-

To concretize, let: (t) be the integrated acceleration jng properly (tunnels, urban areas or forrests sufferingifr
of measurements from a longitudinal accelerometer with amultipath). Figure 8 illustrates one real-time productrogt
slowly time-varying offset, ang»(t) be the velocity com- g
puted from the wheel speed sensor using a nominal wheel
radiusr, ., with offset Ar. To simplify, assume the ac-
celerometer is placed on top of the wheel, so the two mea- 6. CHALLENGE IV: SITUATIONAL AWARENESS

sured velocities are defined at the same position. We then , . , .
In particular collision avoidance systems and adaptiviseru

have
controllers need advanced situational awareness, ant shor
! time prediction of the road and other vehicles’ motion is
n(t) = Z a(k) = va(t) — v2(0) + bt + ex(?), crucial for safety related systems. Pre-crash systemg, suc
k=0 as belt pre-tensioners and pedestrain protection systerad,
ya(t) =w(t)rnom = vz (t) +w()Ar + ex(t). accurate predictions and an estimate of the type of object of

Since the scalings; (t) = 1 ande; (t) = w(t) are linearly an imminient collision. Further, future engine control sys

independent if the velocity is not constant, the two offsets [€Ms may need a road prediction for optimizing fuel econ-
can in principle be resolved. omy and for automatic gear shifting.
The main sensors needed for situational awareness are

one or a combination of radar [45], laser scanner [47, 25],
lidar ([58] describes a 3D version), IR (including so called
Navigation systems as well as some future ADAS need ac-thermopiles [41]) and vision [51].

curate and robust position information. Usually, this is-pr We split the situational awareness into the following sub-
vided by the GPS but infrastructure road beacons can beproblems:

5.2. Positioning
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N i) However, road geometry and vehicle movements are highly
e pocket ¢ correlated, and further dependent on the type of vehicle (mo
torcycles have fast dynamics, bikes move slowly and close
to the road sidegtc). More specifically, a lateral movement

of tracked vehicles can be due to either a lane change or
road bend, but a yaw change in the host vehicle gives quite
similar sensor signals from the radar, lidar or vision senso
Further, a displacement in two consequtive video frames of
the radar bearing measurement from a stationary object may
be used as a virtual yaw velocity sensor. See the left plot in

Menu Exit Restart | & &

= C;’C Figure 13 for and illustration.
® < This motivates a centralized filtering approach accord-
248 ing to the centralized filter in Figure 9. Here, the state vec-
el tors of the tracked vehicles and the road are merged into one

state vector. In this way, movements of the tracked vehicles

based on wheel speed measurements and road map only,

here implemented in a handheld computer.

IMU, wheel speeds Vehicle state

e Classicaltarget trackingproblems, includingObject Radar, IR, vision
recognitionand the data association problem, which
are more or less similar problems to what is studied Vision
in the area of air traffic control [8].

Tracking states
Road states

IMU, wheel speeds Vehicle state

e Tracking and prediction of ego-motigastimation of
host vehicle state).

Radar, IR, vision Tracking states

e Road geometry tracking and prediction

Vision

Road states

e Decision algorithmgor warning and intervention sys-

tems. Fig. 9. Decentralized versus centralized filtering.

Most publications in this field are concerned with target

tracking and object recognition, describing sensor fusion

with a subset of the sensors listed above: Sepsor fu_S|on6_1_ A fusion model for filtering

of laser scanner and vision in the European Union project

PROTECTOR is described in [35], while [26] also includes The idea in centralized filtering is to merge all states in the

radar for pedestrian protection within the same projeat-Se models for road geometry, ego-motion and tracked vehicles

sor fusion with focus on pedestrians is also treated in [43]. into one state vector, cross-utilizing all measuremente O

A Bayesian framework for sensor fusion is described in [12, such model was developed independently in [20] and [38].

13], within the EU project CARSENSE. In the same project, Because of its potential role as sensor fusion glue between

[40] focuses on low speed situational awareness. Fusion ofsensors and model-based filters, it will be outlined in some

radar and IR is described in [54] and [48] fuses laser scan-detail below.

ner and vision. Sensor fusion with focus on lateral tracking Road geometry can be approximated with constant jerk,

is described in [38] based on GPS, vision and radar and inleading to a linear relation for inverse curve radiRs! =

[5, 4] based on vision and radar. co + c1z. According to (5a), the yaw rate then becomes
An ACC system based on inter-vehicle communication linear in time when the speed is constant corresponding to

is described in [63]. Sensor requirements for a stop and gosmooth steering wheel maneuvers.

ACC system is discussed in [31, 24, 25]. The coordinates andy denote the position in the curved
A straightforward decentralized implementation of fil- coordinate system, which is attached to the road according

ters for situational awareness mightlook like the uppercstr ~ to Fig. 10. In these coordinates, the motion model for the

ture in Figure 9. The filters all need motion models for the tracked vehicles can be greatly simplified. For example, it

road geometry, the ego-motion, the motion of tracked vehi- allows us to use the equatigfh = 0, which simply means

cles (often simpler than for ego-motion), and even a separat that it is assumed that the tracked vehicle nunibwitl fol-

model for decision support. low its own lane. In the longitudinal direction we will use
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¥ = —acos ¥,.;, Wherea is the measured acceleration of
the host vehicle and,.; is the angle between the host ve-
hicle and the lane. Hence, we have the following motion
model:

it =o', (16a)
08 = —acos U, (16b)
7t =0, (16¢)

wherev’ is the longitudinal velocity of objedt i.e., the time
derivative ofz?. Furthermore¥ ;. is the angle between
the host vehicle and some fix reference. We can obtain a
relationship between th&.,.., and ¥, by differentiating
U, W.I.t. time,

\I/Tel = ‘Ilabs + \I/lane = (173)

. . . . v .

Vrer = Yabs + Yiane = Yabs + 7 = Yabs + cov, (17b)  Fig. 10. The coordinate systems used in deriving the dy-
namic motion model. Herd;z,y) denotes the position in

a curved coordinate system, which is attached to and fol-
Tows the road. Furthermoréz, ) denotes the position in

a coordinate system, which is attached to the moving host
vehicle.

wherer is the current road radius,the velocity andly,,,.
denotes the angle between the lane and some fix referenc
U, Ccan typically be measured with a yaw rate sensor. We
also have

Yot = SIn(Vye)v &2 Upgpv. (18)

UsingW = 0 and¢; = 0 continuous-time motion equa-
tions for the host vehicle states and the road states can be

written e a%: No action if T} < Tyre < Ty = oo.
W =0, (19a)
1. iy ;
doft = 0ot (19b) e a': Warnlqg |fT2_ < T7rc < T1. Here any d.rlver can
. . easily avoid collision, but a prompt action is needed.
W,er = veg + Waps, (19C)
o = ver, (19d) e a2 Avoidance maneuver is issued®f < Trrc <
¢1=0. (19e) T>». Here only a very alert and skilled driver can avoid

A further extension of this model to three-dimensional road collision.

models is possible by including a road curvatétgalong
the lateraly-axis. Roads are constructed under constraints e ¢3: Mitigation actions are activated f = Ty, <
on the visible horizon with a parabolic design rue= Trrc < T5. The collision is unavoidable regardless
z?/(2R,). A linear model is plausible for the variation in of steering/braking manuevers.

Ry—l here as well, similar to the faR, around thez-axis.

Such a 3D model can be used by ACC systems for fuel econ-q o problem here is thatandv are estimated from sen-
omy and collision avoidance system by warning for possible

. - - sor measurements, and thus are uncertain. From a Bayesian
vehicles 'behind the hill".

viewpoint, Trtc can be considered a stochastic variable, and
the action taken becomes random. There is thus a need for

6.2. Decision evaluation designing decision algorithms based on estimated staite var
For illustration of the main concepts in decision evaluatio ables.
consider the so callgime to collision The question of how to interface filters providing un-
r(t) certain state information with decision algorithms based o
Trrc= ﬁ (20) perfect state knowledge is illustrated in Figure 12. A gen-
v

eral approach is based on Monte Carlo simulations. First,
as a risk metric. Here denotes the range to the object and take a numberV of samples(ri(t),v(t)) from a poste-
v the relative speed. The following cases need to be consid-iori distributionp(r(t), v(t)|y(0), ..., y(t)) given all past
ered. sensor observations. Then, compute the confidence in each
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action as

p* = Prob(a®(t)) = N ZI <Tk+1 < Zz—gg < Ti> ,

(21)

wherel(-) is the binary indicator function.

This Monte Carlo approach can be generalized to sug
vise more complex decision criteria for collision avoidan
applications, see the survey in [34], as outlined in Figt
12. As a further illustration, Figure 11 shows a snapsl
from a test case where a critical situation has arised aft
lateral drift over the lane borders of the host vehicle. T
own state is known with some uncertainty, the position

the stationary threat is tracked with some uncertainty, ¢ Fig. 13 Left: Radar as a sensor. Responses from mov-

it is unknown what the driver intends to do. What is th._ . . . :
: . ing objects are used for tracking and from stationary ob-
consequence of a braking or steering maneuver? If all state

vectors were perfectly known, a prediction would reveal if JeCtS“ they can be used” as inertial measuremen_ts. Right:
and when a collision would occur. The “track before detect” concept, where the received radar

energy in each range-bearing cell is measured, rather than
thresholded (detected).

7.2. Vision as a sensor

One basic output from image processing is a list of features.
In signal processing terms, each feature ismaplicit non-
linear measuremerdf the kind:

h(z'(t),x(t),f) =0, i€ I(t) (22)

Herez'(t) is the image coordinates of featureelonging to
the setl(t) of features visible at time, f* denotes the cor-
Fig. 11 What is the risk for collision, and how to evaluate responding feature positian(usually unknown), ane(t)
braking and steering control decisions? is the camera state at timie The camera positioa(t) and
orientationg (quaternion or any other angle representation)
at timet are included in the state vecteft).

7. CHALLENGE V: SENSOR-NEAR SIGNAL 7.2.1. Real-time feature extraction

PROCESSING There is a need for developing real-time versions of low-
level primitives for feature extraction the image procegsi
7.1. Radar and lidar as a vision system area. One example of such an efficient algorithm is the Har-

ris detector [33], which is based on local maxima and min-
Aradar system transmits a pulse and thresholds the responsina in the functionf(z) defined as
to get a range detection at each scanned bearing. The idea . .
of “track before detect’in the target tracking literature [10, H(z) =V(2)V" (2), (23a)
56], is to measure the received signal energy in each range- f(z) =det(H) — 0.04 trace(H ). (23b)
bearing(-doppler) cell of the radar. In this way, a 2D (3D)
image is obtained from the received waveform, asiillusttate Here,Vz is a numerical approximation of the gradient in the
in the right plot in Figure 13. This can be used for estimat- image, and{ (z) becomes an approximation of the Hessian.
ing the spatial size of the object and its reflectance, which The idea is thaf (z) is small at points where the grey scale
further is very useful for object classification. One of the in the image is locally constant, it is negative when the grey
few automotive publications on this approach [41] intro- scale is monotonously increasing in one direction, and-posi
duces the term “occupancy grid” thermopile sensors. tive when there are two or more local gradierdi& %) is full
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y(t) p((®)]y}) o x(t) Action a;

Sensors Filter Rule DB

(a) The problem: how to interface uncertain state estimattrsdeterministic decision making? Shoutdt) be taken as the minimum variance estimate?

p(z()|y?) . Action a*(t) with confidence)*
— ] Superviso

{ai(ﬁ) z‘J\L1
y(t) Filter Rule DB

{z' (O}

(b) One solution: a supervisory algorithm that assessefidente in action decisions using Monte Carlo integratiosdypling fromp(z(¢)|y¢), wherey!
denotes all past measurements.

Sensors

Fig. 12 Collision avoidance based on uncertain information.

rank) in the image. That isf(z) is a large positive number  where

at corners and a large negative number at edges. ) () -t —1)
The plus signs in Figure 14 are computed using large Za,dis = T, ’
values in the Harris detector. Suppose the association prob zy(t) — 2y (t — 1)
lem can be resolved, so each detection is associated to one Zv.dis = T, ’
tracked object or to the stationary background. The detec- )
) y A 20, z)z)

tion on tracked vehicles can be used for firstly trackingand  z, r = f(1 + 72 Ywy — 7
secondly for getting a rough feeling for the size of each )
moving object on which object recognition can be based on. ;. _ a)z(t) £+ Zz(? oy + 2y (£
The detections from stationary objects can be used for vir- f f
tual yaw, roll and pitch sensors. A preview of some mathe- That is, z, ;s is the displacement of a feature in the
matical models needed for this is given in the next sections.direction in the imagez. r is the rotation of the feature
affecting the image projection along thecoordinate, and
similarly for they coordinate.

The relation (25) is linear in the velocity and non-
linear in the rotatiory, and its linearized version might be

- ] ~used in an extended Kalman filter to gain information of
The feature and camera position can be thought of in a fixedspeed and rotation (not absolute position).

coordinate system, where one choice of state vector is

wy + 2z (t)ws,

7.2.2. Vision as an inertial sensor

7.2.3. Vision as a tracking sensor

(¢
<= |é (24) For target tracking, the state vector (24) denotes relative
q ' ordinates between the tracked vehicle and the host. Each

feature on the tracked vehicle can be considered as a 3D

. . correspondance, with
The global position of the features is usually not known,

unless we presume recognizable beacons or road signs with [~ fI2, 2'(t)] R(Q)E'(t) =0 (26)
database position support. However, fhature displace-  wherez(t) denotes the image coordinates for vehicke
mentbetween two consequtive frames contains information time ¢, ¢ is the relative 3D coordinates is the relative

of the host's relative motion. The relation can be expressedorientation and?(q) denotes an relative orientation matrix.

as [57] We have to bear in mind that such implicit relations can
be re-parametrized. The ones chosen here are chosen to be
as linear as possible in a certain sense. In general, the more

[(Z_x’dis B Z.””"R)f’ (Zy’f“S a Zy’.R)f’ _ linear relation, the easier expressions and the more aecura
(Zy,dis - Zy,R)Zw - (Zw,dis - Z;C,R)Zy] C(t) =0. (25) EKF.
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Fig. 14. Two images from the video stream used to obtain the visioasmements. Features using the Harris detector in
(23) have been indicated in the images. The camera has be¢edd0 degrees from the upper to the lower image, and the
feature displacements can be used for tracking and nawigati

8. SENSOR FUSION IMPLEMENTATION

8.1. Trends in software architecture

The current software architecture in cars use local compu-
tation nodes for each function, and often the function sup-
plier also provides dedicated sensors. This will in the end b
quite an inefficient structure, with a lot of redundant seaso
and processors. Today, both navigation guidance systems
and dynamic control systems come with yaw rate gyros for
instance. There can be more than ten micro-processors in
a modern car, ranging from important computational nodes
in the ABS and engine control systems, to mostly disabled -ﬁ-
nodes in the audio, keyless entry and airbag systems.

There is a trend that the OEM’s want to take back the Fig. 15. Sensor cluster
initiative for system design from the tier one suppliersisTh
requires an open architecture, with a clear interface betwe
sensors, actuators and software applications to the microing system, communication protocols and network manage-
processor the OEM provides. Figure 15 illustrates a naturalment. This is today considered an industry standard. How-
development. Here, also future short range communicationever, there have been competing proposals from both Amer-
functionality is indicated, with the idea to 'exchange stat ican and Japanese groups.
vectors’ with each other, and communicate intentions and  The Automotive Open System Architecture (AUTOSAR)
warnings. Such communication protocols are today stan-ht t p: / / www. aut osar . or g initiative was launched in
dardized for commercial aircraft (AlS) and surface (ADS) 2002. AUTOSAR aims at addressing important questions
traffic, respectively. The next section summarizes two suchlike how to handle increased complexity, scalability, &vai
recent trends, followed by a section on trends in local com- ability, and product changes, software updatiesduring a
munication protocols. vehicle’s lifetime. One key feature of AUTOSAR is modu-
larity: definition of a modular software architecture, sfiec
problems associated with hardware-dependentand hardware
independent softwaretc. Another key feature is flexibility,
The German-Frenchinitiative OSEK-VDM t p: / / wwww. whiche.g.means integration of software from different sup-
osek- vdx. or g, started in 1993, has proposed an open pliers in one node or electronic control unit, transpoitgbi
standard for systems architecture. The project aims at fa-of software to allow resource allocation optimizations on a
cilitating efficient design, integration, and testing cgter  vehicle or sub-system level.

8.2. Architecture standardization

15



8.3. Communication Standards and Protocols output from the sensor fusion include virtual sensor sigjnal

. L navigation information, tracking information and road ge-
In the automotive industry bus communication systems are i e o .

now standard in most types of vehicles. The following list
provides some background on recent work in this area:

6D IMU 54'5,(}7, X y,2 ANavigaﬁon
e CAN (Controller Area Network) (ISO 11898} t p: é”%“?é‘;”z
/I ww. can. bosch. comis found in many vehi- o SENSOR  e———r—
cles today. It is a family of protocols and it is not el epees ACEE Tracking
. . . . Sensor-near information
unusual to see vehicles with up to five different CAN algorithms X, Yoy
buses for different purposes. Vision [mpf  FEAWIE bl icgrated [
a:zvti%e:;tli(?: g Road prediction
e LIN (Local Interconnect Networkpt t p: / / wwww. Opional posi- |___ %Y o —
. . .. P C?PS Diagnosis
I i n- subbus. or gis a cost efficient bus for low re- tioning (GPS) Virtual sensor
quirement applications. optona L1+ 2 flags r—
sensors
e TTP (Time Triggered Protocol) http: //www. Fig. 16. Sensor fusion in future vehicles?

tt agr oup. or g is designed to be used in demand-

ing, safety-critical applications such as brake-by-wire  We have pointed out signal processing challengs rang-
and steer-by-wire. ing from low level sensor-near pre-processing to the high-
level algorithms for situational awareness. These areateed

in advanced driver assistance systems for decision sypport
feedback control and driver alerts. Model-based contrei sy
tems is one particular example, where signal processing de-
sign becomes patrticularly integrated with control system d

e FlexRayhtt p: // www. f | exray- gr oup. comis
a competitor to TTP. Leading actors as BMW, Daim-
lerChrysler, Motorola, Philips, GM, and Bosch pro-
mote FlexRay for its high bandwidth, availability, flex-
ibility, deterministic behaviour, and fault tolerance.

sign.
e MOST (Media Oriented Systems Transpdrt)t p:
/ | www. nost cooper at i on. comis an optical bus 10. ACKNOWLEDGEMENT
for high bandwidth applications, primarily aimed for . . ) o
infotainment. My work in automotive signal processing started with tire-

road friction estimation in the European union proje@metheus
1992-1994, with Volvo Car Corp. Five years later, | co-

9. CONCLUSIONS founded the company NIRA Dynamics for commercializing
the results of this project, and quite soon general projects

¢ g n automotive sensor fusion functions started. | have also
external and internal state variables as well as unobserve

: I fricti q1i Wi ad a long-term collaboration Volvo Car Corp. regarding
environmental parameters as friction and tire pressure. We_jjision avoidance systems. These two companies must

have in this_contribution surveyed the main needs for sig— first of all be acknowledged, and, in particular, the CEO
nal processing development and argued for a sensor fusiony¢ \jra Dynamics, Dr. Urban Forssell, has contributed
approach where all tasks are considered jointly. First; Sec with background facts on several issues. These two col-

tion 2 summarized a number of safety systems, and it Was, o rations have been supported by grants from Vinnova’s
pointed out that a limited number of sensors can be suffi- ., \hetence center ISIS and the IVSS (Intelligent Vehicle
C|e_nt to |mpIementava_r|ety of safety syste;ms_. Second, theSafety Systems) program, which are also acknowledged.
active development of improved communication Networks g naner also contains partial results from projects with
enables new sensor fusion strategies. grants from the Swedish Research Council (Sensor Fusion

Figure 16 extends Figure 9 and summarizes our VIew 5, gensor Informatics) and the European Union (FP5-IST-
on sensor fusion for future automotive safety systems. All 002013) project MATRIS.

available sensor information is communicated to the cen-
tralized or distributed sensor fusion algorithm. This utgs
vision sensors (camera, radar, lidar, IR), an inertial mess
ment unit (IMU) with up to three accelerometers and three
gyroscopes, satellite navigation, and, most importantigeV
speeds. The curved coordinate system aligned to the road
and the state space model (19) is the sensor fusion glue be-[2] National Highway Traffic Safety Administration. An
tween the different kind of sensors and applications. The evaluation of existing tire pressure monitoring sys-

Automotive safety systems rely on accurate estimation of
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