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Blind Equalization of Time Errors in a Time
Interleaved ADC System

Jonas Elbornsson, Fredrik Gustafsson, Jan-Erik Eklund

Abstract— To significantly increase the sampling rate of an A/D and mismatch errors will occur in the system. Three kinds
converter (ADC), a time interleaved ADC system is a good option. of mismatch errors will occur:
The drawback of a time interleaved ADC system is that the

ADCs are not exactly identical due to errors in the manufacturing ~ ® 1ImMe €rrors (static jitter)

process. This means that time, gain and offset mismatch errors The delay times of the clock between the different
are introduced in the ADC system. These errors cause distortion ADCs are not equal. This means that the signal will be
in the sampled signal. periodically but non-uniformly sampled.

In this paper we present a method for estimation and com- « Amplitude offset errors
pensation of the time mismatch errors. The estimation method . .
requires no knowledge about the input signal except that it should Th.e ground level dlffer§ between the dlfferent ADCs.
be band limited to the foldover frequency, /T, for the complete This means that there is a constant amplitude offset in
ADC system. This means that the errors can be estimated while each ADC.
the ADC is running. The method is also adaptive to slow changes , Gain errors
in the time errors. . . . .

The Cramer-Rao bound for the time error estimates is also The gain, from analog input to digital output, differs
calculated and compared to Monte-Carlo simulations. The esti- between the different ADCs.
mation method has also been validated on measurements from The errors listed above are static or slowly time varying. This

a real time interleaved ADC system with 16 ADCs. means here that the errors can be assumed to be constant for
Index Terms—A/D conversion, nonuniform sampling, equal- the same ADC from one cycle to the next over an interval of
ization, estimation some million samples.
With a sinusoidal input, the mismatch errors can be seen in
I. INTRODUCTION the output spectrum as non harmonic distortion [3]. With input

HERE is an ever increasing need for faster A/D convergignal frequency, the gain and time errors cause distortion
ers (ADCs) in modern communications technology, suct the frequencies
as radio base stations and VDSL modems. To achieve high i _
enough sample rates, an array bf ADCs, interleaved in s Two i=1...,.M—1
time, can be used [1], [2], see Figure 1. The time interleave . .
ADC system works as follows: wherew; is the sampllng_frequency. The offset errors cause
« The input signal is connected to all the ADCs. distortion at the frequencies
» Each ADC works with a sampling interval 8f T, where iw i=1 M—1
M is the number of ADCs in the array arifl, is the MY T
desired sampling interval. An example of an output spectrum from an interleaved ADC
» The clock signal to théth ADC is delayed withT;. This  system with four ADCs with sinusoidal input signal is shown
gives an overall sampling interval df,. in Figure 2. This distortion causes problems for instance in a
The drawback with the interleaved structure is that, due tadio receiver where a weak carrier cannot be distinguished
the manufacturing process, all the ADCs are not identicbm the mismatch distortion from a strong carrier. It is
therefore important to remove the mismatch errors. However,
calibration of an ADC system is time consuming and costly.

clock Y Furthermore the mismatch errors may change slowly with for
instance temperature and aging. Therefore we want to estimate

o | the mismatch errors while the ADC is used. Methods for esti-

L Y mation of timing errors have been published in for instance [4]

delay, Ts / : U 7  and [5]. These methods require a known calibration signal,
\ I : X which means that the operation of the ADC must be stopped

during calibration. A blind time error estimation method was
_ presented in [6] and validated on measurements in [7]. This

method works well, but gives a bias error in the time error

Fig. 1. A time interleaved ADC systend/ parallel ADCs are used with the €Stimates. A blind amplitude offset error estimation method

same master clock. The clock is delayed by the nominal sampling interyghs presented in [8]

to each ADC. The outputs are then multiplexed together to form a signal ap : : P

sampled) times faster than the output from each ADC. We WI” in thls paper prese_nt a r_nethod for blind equalization
of the time mismatch errors in a time interleaved ADC system.
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5 _ADC output specirum ' « 2(2J[k] denote the output signaj[k], reconstructed with
(@] S|gnal component the error parametersxt.
T % _ime and gain eror disorion | » 2{%"[k] are the subsequences ") k]
30t 1 We assume throughout this paper th#t) is band limited to
ol the foldover frequencyy-, of the complete ADC system.
= We will next establish a few definitions which will be used
% 1o0r 1 later in the paper. A discrete time signalk| is said to be
g ol 1 quasi-stationary [10] if
© 1 N
5-10
’ ~20 M = N Z E(ulk)
k=1
-30 N
RJM:&E;—E:EWM+MMW
n=1
) 1 > 3 " 5 5 both exist, where the expectation is taken over possible
Normalized angular frequency stochastic parts of the signal. Analogously, a continuous time
signalu(t) is quasi-stationary if
Fig. 2. Simulated output spectrum from interleaved ADC system with four T
ADCs. The input signal is a single sinusoid. The distortion is caused by _ .
mismatch errors. My = Thrn T E(u(t))dt
— 00 0
B T
R,(7) = lim — E(u(t + 7)u(t))dt
T— o0 0

The estimation method requires only that the input signal is
band limited to the foldover frequency,/Ts, for the complete both exist. A stationary stochastic process is quasi-stationary,
ADC system. This method gives no bias in the estimates. TWih m. and R,[n] being the mean value and covariance
joint estimation of all three mismatch error types is presentégnction respectively.

in [9] where the time error estimation presented in this paper

is one part, studied from a system perspective. In this papggfinition 1 (Modulo M qua3| stationary) Assume

the time error estimation method is studied in more detail.

Guiy ugy, - = lim — E glug [t], ui, [t], ... ),

N—oo N
II. NOTATION AND DEFINITIONS

A . . . . . 11,7 -~-:0...M—1
We will in this section introduce the notation that will be ‘%2, L

used in this paper. The nominal sampling interval, that wexists for a functiory(-,-,---). Thenu is moduloM quasi-
would have without time errors, is denotég. M denotes the stationary with respect tg if

number of ADCs in the time interleaved array, which means _ _

that the sampling interval for each ADC /7. The time Girsiz, = G{(ir+1) mod M, (iz+1) mod M, }»

error parameters are denotdq,, i = 0,..., M — 1. The esti- vie{....-1,0,1,... }

mates of these errors are denomg and the true time errors

The moduloM quasi-stationarity property guarantees that the
are denoted\? . The vector notatiom\; = [Ay, -+ A, ] is a Y Property d

d for all h input signal has the same statistical properties for all the ADCs
used for a ht i tlllme.error paramfeterz anals involved: in the time interleaved system. We assume throughout the rest
We use the following notation for the signals involved: ¢ e naner that the input signal is modul quasi-stationary

« u(t) is the analog input signal. with respect tog; (u;) = us, go(u;) = u2 and gs(us, u;) =
« u[k] denotes the ideal signal, sampled without mismatgh,, — ;)2

errors.

o ui[k], i=0,...,M — 1 denotes the\l subsequences of Example 1 (Modulo M quasi-stationary) Consider first the
ulk], function

uilk] = ulkM +i]. 1) g(uilk]) = ui[K].

e yi[k] i=0,...,M — 1 denotes the output subsequenceBhe modula} quasi-stationary property then means that the
from the M A/D converters, sampled with time errors. mean square value should be equal for all subsequences, i.e.,

if
yilk] = w((kM +i)T, + AY)
. . . 1
« y[k] is the multiplexed output signal from all the ADCs, of = lim < > ulk]
L -
Y[k] = Y(k mod M) HMH’ then

a2
where |-| denotes rounding towardsoc. i =05, 4,j=0,...,M—1.
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In this example this is true for most quasi-stationary signalgyhere

but some periodic signals are not modulé quasi-stationary.

Consider the deterministic signal " MT. [~7/Ta+2m/(MT:)
hi(t) = —= /

H;(w, )l dw
ulk] = cos(gk) 2

—7/Ts

dM =2.Th h . . . . .
an en we have The reconstruction described in [15] is done at an arbitrary

time instance and is quite computationally demanding. If we

- ngnoo N ZC% (15 k only need to reconstruct the signal at the nominal sampling
_ instances
so the signal is quasi-stationary, but
t=kM+0DT,, 1=0,.... M -1, k=...,-1,0,1,...
:hm —Zcos2k—1 ( +1)
N—oco N
3)

and
the reconstruction can be computationally simplified. Here we
= lim Zcos 2Ty I ) 0 introduce the notationy; = —2=1 4 i + A,,, to simplify
> the equation system (2). The right hand side of (2) is then
i.e., the S|gnal is not modul@ quasi-stationary with respect independent of; in (3) and depends only oh Further, the
to g(us[k]) = u2[k], but it is with respect t@y(u;[k]) = u;[k]. left hand side can be factorized into one diagonal matrix which
depends ow, one matrix independent af and H (w, t) which

Il. SIGNAL RECONSTRUCTION WITHKNOWN TIME now also is independent df
ERRORS
If the time error parameters are known, and the input signal A(Q)E(a,w)HY (w) = B

u(t) is band limited to the Nyquist frequency,t) can be
exactly reconstructed from the sampled sigpgl]. We will o0
in this section describe the signal reconstruction.

The time errors can be compensated for by many different

interpolation techniques, for instance splines [13], polynomial jaolk% o jaM}M%
interpolation or filter bank interpolation [14]. We will here () = € : € . @)
describe a method for exact interpolation by filtering the signal : : :

with a non-causal IR filter. If the input signal is band limited i oo (M—1) 725 el —1(M—1) 575~

to the foldover frequencyT—, and the time error parameters
are known, the input S|gnal can be perfectly reconstructed
from the irregular samples [15]. In a real application, the

interpolation is of course approximate since we cannot use edaow 0 0
a filter of infinite length, but we can come arbitrarily close 0 ejoiw L, 0
to the exact interpolation by choosing the length of the filter Ela,w) = } ) . ) (5)
large enough. In [15] the interpolation is done at an arbitrary : : R
time instance according to the following: 0 0 .. e
Solve the equation system
M—1 and
Z 6]-(7 Af;1+i+Ati)wHi(w,t) -1
i=0 B, = [ 1 ei2nl/M . gg2m(M=1)I/M ]T (6)
M-—1
S ST AR [ (0,1) = SHE(2)
i—0 Since onlyE(«,w) depends ow and the time dependence in

the right hand side of (2) is removed, we can easily calculate
the coefﬂmentsh“ [k] = hi((KM + 1)Ts)

M-—1
Z ej(i Mz_l+i+A"i)(w+(M71)%)H¢(w,t) _ ej(Jvffl)ﬁt
i=0 WOk =
. . —7/Ts+2m/(MTs

f_or Hi(w>t). The input signal can then be calculated at an{/Zs [Tot2m/ (M) E—l(a7w)ejw(k'M+l)Tsde—1(a)Bl
time instance as 2 J_xr,

co M-1

Z yi[klhi(t — kMT) From here on we assumi to be even, M odd gives simi-

k=—o00 i=0 lar calculations. Calculating the DTFT (discrete-time Fourier
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transform) of the subsequenck® [k] gives

H(Z)(ejwl\lTs) = MT, Z h(l)[k]

k=—o0
(MT5)2 /—ﬂ/T5+2W/(MTa)
- 2 771'/T5

)
Z 6j'yIcMTs efju)kMTS d’)/Ail(Oé)Bl

k=—o0

B (o, 7)el1T:

o0 —7/Ts+2m/(MTs) ,
B ()T

The subsequence® ™" (e7*MT:) can then be calculated as

Zl(Af) (ejWMTs)

= YT (IMTNMT, B~ (o, — Tl)eﬂ‘wl(q)lA*l(a)Bl

S

where

YT(ejwMTS) — [ Yo(ejw]\/ITs)

Yas_1(edoMTe) ]

and its corresponding/ x M covariance function

Rot[l] = lim —Z{zmt 22 k1) (@)

N—>oo

Note that M-cyclostationarity implies that (11) exists for
all A,. Note also thatz(*+) becomes quasi-stationary when
the true time errorsA; = AY are found. In that case, its
covariance functiorR2¢[l] becomes Toeplitz for each value

of [. Basically, that is the only second order information we
have in the blind equalization case. Thus, it seems natural to
consider norms of how far the covariance function is from
Toeplitz, and minimize this norm with respect . A quite
general norm that measures the quadratic difference on each
diagonal ofR2‘t is given by

oo M-1
=30 D0 SR immll] = (B2 l1)?
=0 m=0 4,j (12)

where (R2t); ;[1] is the element on row and columnj in
R2¢[1].

Clearly, for a correlated signal u, the most information is
found for small lags in its covariance function, which for
the vector procesg corresponds to the first diagonal in the
off-diagonal part of the covariance function. We will in the
following consider the special case of (12) where only the
first off-diagonal diagonal is studied for zero laig={ 0):

The DTFT of the time error compensated signal, Vl(At):Z((Rm)”_l[o]_(RAt)j‘j_l[O])z. (13)

ZAd(e3@Ts), can  then be calculated from

subsequences [17]

M—1
) = Z Zl(At)(ej(wMTS monW))e—jles
1=0

Z(At) (erJTS

its

2,
We will in the following assume that the time error in the first
ADC is zero, i.e.AO0 = 0. This is no loss of generality since
only the distance between the samples, and not the absolute
sampling instances, needs to be correct.

With the inverse DTFT we get the time error reconstructed The signal reconstruction described in Section Il is quite

signal

2B[k] = DTFT~H( 28 (74T%))

complicated to analyze. Also other signal reconstruction ap-
proximations can be used. Therefore we first study the loss
function (13) assuming a signal reconstruction where the time

In practice (7), (8) and (9) are calculated on finite sequenc®$0r parameters change the time errors linearly. This means
using the DFT (discrete Fourier transform) instead of tH8at we can study the output signals

DTFT.

IV. TIME ERRORESTIMATION

yo[k] = (MkT)

We will in this section present a method to estimate t@rgmeterizeq in.the time error parameteksi.. In the next
time errors in a time interleaved ADC system. The estim&ection we will discuss how the reconstruction described in

tion is done without a special calibration signal and withowection lil affects the time error estimation.

knowledge of the input signal.

Next, we will state a few theroems about the loss function

Now, since the input signak[k] is modulo M quasi- (13). The proofs for these theorems are given in [16].
stationary and thus does not contain any deterministic peri-First we consider a dual ADC system, i.8/, = 2. The first
odic components in phase with the sampling frequency, tHeeorem says that we have a global minimum for the correct
output signaly[k] is M-cyclostationary [11], [12]. Also the time error parameters. The second theorem says that the loss
reconstructed signat[k] (9) will then be M-cyclostationary function is monotonically increasing around this minimum.
for all time error estimateg,. We can then define the vector

processz(2t)[k] as

28K = 890 2B0m o 200k T

Theorem 1 Consider the loss function (13) and assume that
reconstruction with the time error parameters changes the time
linearly, i.e., the model (14) is used. Assume then [hat <
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T, and T < 7w/w., wherew,. is the bandwidth of the input input, but simulations of many different input signals with
signal. Then different frequency range and different valuesidf indicate
Vi (0) = 0 that this loss function works for a wide range of signals.
1(0) = The minimizing arguments of the loss function (16) gives
and the time error estimates. Since the minimizing argument
. cannot be calculated analytically, a numerical minimization
Vi(Ad) >0, if A #0 algorithm is used. Further, the mismatch errors may change
flowly with for instance temperature and aging. Therefore the
parameter estimates should be adaptively updated with new
data. There are many minimization algorithms available with
fast convergence, for instance Newton’s method [18]. How-
ever, the fast converging methods are usually computationally
This means that as |ong as we have a Nyquist Samp"ng Syg{@ﬁﬁnanding. Therefore a stochastic gradient search method is
and the time errors are smaller than half the sampling intervélosen here, which has a somewhat slower convergence rate
we can estimate the time errors. than other methods, but is computationally very efficient. In
For the general casé{ > 2) we cannot guarantee a globa@ Stochastic gradient minimization algorithm, the parameters
minimum for Vi (A,) for any signal arbitrarily close to the are updated by a step in the negative gradient direction Here,
foldover frequency. However, we do not have to change the
requirements much.

Theorem 2 Consider the assumptions given in Theorem
Assume thatA;| < T/2 and Ts < 7/w., wherew, is the
bandwidth of the input signal. Thér{*™°(A;) is monotonically
increasing aroundA; = 0.

\A (AI)
Theorem 3 Consider the assumptions given in Theorem 1. o
Assume thafA| < T,/2 and T, < 3. ThenV;(0) = 0 0.08
and V1 (A;) > 0if A, #0. ) 0.06

If we know that the time error parameters are smaller we cal 0.04r

allow an input signal closer to the foldover frequency and 0.02h

whenmaz|A;,| — 0 we only need the requirement tHAf < -
T/ we.

-0.02f,

V. ESTIMATION ALGORITHM —0.04}

In this section we will discuss how the time errors can
be estimated practically using the theory from the previous
sections, but with some modifications to incorporate the actue
signal reconstruction used. 0,08 ~006 -0.04 -002 % 002 004 006 008 01

With the reconstruction described in Section lll, simulations 1
show that there are local minima in the loss functiGA,). ) . ) )

. . . Fig. 3. A contour plot of the time error loss functiovi; (A¢), with M = 4
A contour plot of Vi (A¢) is shown in Figure 3. Herd/ = 4, and sinusoidal inputA;, and A;, are fixed to their true values.
and A, and A,, are fixed to their true values to generate
a two-dimensional plot. The input signal is here sinusoidal.
We can see that there are local minima along a lihg, — Vo @)
A;, = constant, in this figure. However, whety, # A ol ‘
in the interpolation, simulations show that the gain of the 0.08f;
subsequences of the interpolated signals are changed, i.e., t
main diagonal in the covariance functi®c'¢[] is no longer
constant. Consider instead the part of the loss function (12
that involves the main diagonal 0.02}

Vo(A) =D ((R2)iilll — (R, ;1) (18 < 9

) -0.02

If we plot the same contour plot for this function, see Figure 4,  _goaf

we see that again there are local minima along a line. But thi:
line, A;, + A;, = constant, is perpendicular to the line in

Figure 3. This means that adding the two loss functions (13 ~ -0.08f

and (15) we still get a special case of (12): 008 0.06 —0.04 002 % 002 004 006 008 01

Vor(A) = Vo(A) + Vi(Ay) (16) ‘

Simulations indicate that this loss function eliminates the Iocgf’d'
minima, see Figure 5. This is just an example with a sinusoidal

-0.08f

0.06

0.04k

-0.06f

4. A contour plot of the time error loss functioVp (A¢), with M = 4
sinusoidal inputA¢, and A4, are fixed to their true values.
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a normalized version of the stochastic gradient method is used!) Update the parameter estimates

to make the choice of, easier <
o AUHD ZAGD Vo1 (AY)
N t - t ~ (4
AGH) _ A® _, VVAY) max [VVh,1 (A7)
t - =t ~ (i . . . . .
max|VV(A§ ))| 5) If the loss function has increased since the last iteration
To avoid taking too long steps, we can check that the loss Vor(AVT) > vy 1 (AD)

function decreases for every iteration, and otherwise backtrack
the step size until it does [18]. The next iteration is then started
with doubled step length, so that the step length does not get
unnecessarily small. To summarize, the adaptive equalization

backtrack the step sizgp; := u:/2 and change the
parameter estimates in step until the loss function

decreases. Otherwise double the step lengths for the next

iteration: 1 := 2u;.

algorithm is given by 6) Return to step).
Algorithm 1 (Interleaved ADC equalization) Figure 6 illustrates the operation of the adaptive equalization
Initialization: algorithm.
« Choose a batch sizédy, for each iteration. clock| |y
« Initialize the step lengths of the stochastic gradient al- c LB ]
gorithm, ;. If the order of magnitude of the mismatch Yo o/ -2
errors are known, this information can be used for the F z(A*’)
initialization. A/D, LU gl y (B
« Initialize the parameter estimates delay,Ts< : - "
A~ - | o A
A =0, i=0,...,M—1 I | 0 Al
A/D - Ay ?
Adaptation: / L]
1) Collect a batch ofN data from each ADCy;[k], i = 1 A,
0,...,M—1. yvy
2) Calculate the reconstructed signals Time error estimation

3)

A
LB

[k],izO,...,M—l . . L . A
Fig. 6. Time interleaved ADC system with time errors. The time errars,
according to (7), (8) and (9) are estimated by a blind adaptive algorithm and the signal is corrected by a

i filter.
Calculate the gradient of the loss functicWi,Voyl(Ag’)). e

The gradients can be calculated numerically by a finite . . .
. oo . The signal correction part of the algorithm must be done
difference approximation from the loss functions, or b%

. ) o . real time. However, the estimation part may work more
analytically differentiating the loss function. The loss . !

L . . slowly depending on how fast the time errors change. The
function is defined in (16).

signal correction is done on a batch of data containivig
samples per ADC. The correction involves a DFT and inverse
v, @) DFT calculation which required/ log, N operations each per

: ADC. The matricesA(«), F(o,w) and B; in (4-6) do not
have to be updated for each batch of data, assuming that the
estimation is done more slowly. This means that these matrices
can be precalculated and the calculation of the corrected signal
therefore required/ N operations per ADC. This gives a total

of M2N + 2M N log, N operations for the correction for
each batch of data, i.el + 2log, N operations per sample.
One operation is here basically one multiplication and one
summation.

The estimation part requires more operations, but these
calculations can normally be done at a slower rate and are
therefore not critical.

This algorithm is intended for applications that require high

‘ ‘ : ‘ ‘ ‘ sample rates, such as soft radio base stations and VDSL
7008 -006 0.04 “0.02 {002 004 006 008 01 5dems. This means that a lot of data is available and the
algorithm will therefore converge in a fraction of a second.

-0.02f

—-0.04F

-0.06

-0.08f

Fig. 5. A contour plot of the time error loss functidv 1 (A:) = Vo(A)+  In these systems there are also a lot of computational power

Vl(At)|' with M = 4 and sinusoidal inputA¢, and A, are fixed to their gyajlable on chip which means that is should be possible to
true values.

implement this algorithm in existing hardware on chip.
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V1. CRAMER-RAO BOUND Differentiating the log-likelihood function twice with respect
to the error parameters gives

The Cramer-Rao bound (CRB) is a lower bound on the ¢2 . N 1
variance of the estimated parameters for a given amount@(_ ngnoo log fe(A,y™)) = 202 M
of data [10], independent of the estimation algorithm used. ER,(AY —A,,) ‘
The CRB is here calculated assuming known input while the | — W 0
estimation algorithm is blind. This means that the estimation :
algorithm never can reach the CRB. The reason for this is ERUAY AL )
that the blind CRB is difficult to calculate. However, the 0 R
non-blind CRB still gives a rule of thumbs of the estimation (17)
performance and it is simple to interpret in terms of design . 0 ) , )
parameters and input signals. We will first calculate the CRB¥@luating (17) atA, = Ay gives the Fisher information
for a general input signal assuming only additive noise dHaX,
the signal. The CRB is here calculated asymptotically for a I
general input signal. For a special signal it is also possible to F= Mo?2 RO} -1y (18)
calculate the CRB for a fixed, finite amount of data, but tphe Fisher information matrix gives a lower bound on the
keep it general this is not included here. With stochastic jittgbvariance of the parameter estimates. If the parameters are
we cannot calculate a general expression for the CRB, but w&imated fromV samples per ADC, the Cramer-Rao bound

will calculate the CRB for some special input signals. is
A 1
COV(At) 2 mF71 (19)
A. CRB for additive noise Putting (18) into (19) we get
2
~ OE
Assuming only additive noise, the output signal subse- Var(A¢,) > NEI(0) (20)

ences are .
au We can see from (20) that the CRB for the time error depends

on the input signal. We will next evaluate the CRB for a few

Yolk] = u(MFKT;) + eo[k] signal examples.
yilk] = u((Mk +9)Ts + A )+ e[k], i=1,...,M —1 « Sinusoidal input: In radio applications a single modu-
lated sinusoidal carrier is often used. Here we discard the
The noise is here assumed to be white Gaussian modulation and calculate the CRB for a sinusoidal signal:

u(t) = V2sin(wt).

This gives the Cramer-Rao bound

2
despite that uniformly distributed noise is a better model of Var(Ay,) > Ie

the quantization noise. However, Gaussian noise simplifies the L Nw? .
calculations of the CRB and simulations show that, with the ® Multisine input: In DSL modems and OFDM radio
same noise variance, the estimation accuracy is approximately communications, a sum of several sinusoidal carriers are
the same for Gaussian and uniform noise. The parameterized US€d:- Here we calculate the CRB for a multisine input

ez[k] c N(O,Ue)

signal model is signal:
L 1 L
Jolk] = u(MKT,) u(t) = izzlozz sin(w;t), 5 Lzzl a; =1
gilkl = w((Mk+0)T + Ay,), i=1,..., M ~1 This gives the Cramer-Rao bound
. 202

The negative log-likelihood function [10] is then calculated by Var(Ay,) > %22
taking the logarithm of the probability density function of the N il ojw;
noise. « Band limited white noise input:

Here the input is a stochastic process with spectrum

s

— th log fe(At, yN) QWmaz < |W‘ < Wmaz
— 00

(bu — Wmaz(l_a) ) 21
L Mo 9 ) { 0 otherwise (21)
= Jim o > Z{yi[k] - ?i[k]} This gives the Cramer-Rao bound
€ =0 k=1
A 302
M-—1 e
1 Var(Ay,) =
= goa7 D 1200 +02) —2Ru(A} — Ay} "= N2+ a+ 1w,
geM 30 The CRB is evaluated in more detail in [16].
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B. CRB for noise and jitter ‘ __ Before equalization
Here we will evaluate the CRB with both noise and stochas-
tic jitter present. The output signal subsequences are now
Yolk] = u(EMTs + €)™ [k]) + eolk]
yilk] = w((kM + )T + A +el™[k]) + e;[k],  (22)

i=1,...,. M -1 0 1 2 3 4 5 6
’ ’ Normalized angular frequency
After equalization

Signal energy [dB]

We assume that both the noise and the random jitter are 0

Gaussian distributed g -2
>
5 -40
eilk] € N(0,0.) 2
.. ~ -60
tt
6,]/ er[k] S N(O,Ujitter) g
2 -sof 1
Here we cannot, in general, assume that the output signal ai 71000W1 . . " . n
a certain time instance is Gaussian distributed. But if we take Normalized angular frequency
a sum over many samples we have, according to the central
limit theorem [19], that Eig. 7. Upper plot: The output spectrum of an interleaved A_DC system with
time errors. Lower plot: The same spectrum after compensation with estimated
1 N—-1M-1 time error parameters. The parameters were estimated #fénsamples per
j = —— [k 23) ADC.
V= NI yilk] (23)
k=0 =0

is Gaussian distributed. If we assume thgt| is modulo M
quasistationary with respect tg(u;) = u; the mean value Parameters converge in abolt — 50 iterations. In Figure 8
of e(A,,y"N) is zero, independent of the input signal shap@&n example of the convergence of the time error estimates
However, the variance depends on what input signal we haige shown. The simulation is here done with four ADCs and
We will therefore in the following consider a few special case§inusoidal input. The amount of data is herfd samples per
The derivations are omitted here, but are given in [16]. batch. One iteration was done on each batch. In this example

« Sinusoidal input: u(t) = v/2sin(wot). the parameters converge in ab@gtiterations.

The CRB is here given by

Time error estimation convergence
A szitter 02 E
Var(A,;,) > 22 e 24
ar( tz) ~ N + ng ( )
i.e., the jitter gives an additional term to the CRB de-
pending only on the jitter noise variance and the number
of estimation data.

« Multisine input With a multisine input signal

L L
1
u(t) = E a; sin(w;t), 3 E o =1
i=1 i=1

we get the CRB

Estimation error

A szitter 20'2
Var(Ati) 5 N + i3 5 o (25)
N YL ajw;
Again the jitter gives an additional term to the CRB. The Iteration number
contribution from the jitter to the CRB is independent ofiq g convergence of time error parameter estimatks, (— AY) for
the number of tones and hence the same as for the singe system with four ADCs (three time errors). The estimation error is here
sinusoidal case (24). shown in fractions ofT.

VII. SIMULATIONS To compare the estimation accuracy with the CRB the
To evaluate the performance of the time error estimationinimization has been done on one batch of data instead
method, a time interleaved ADC system has been simulated.updating with new data for each iteration. The estimation
In Figure 7 the spectrum of the output signal is showalgorithm has been tested with different input signals and
before and after correction with estimated time errors. Hed#ferent signal parameters have been varied. One parameter at
the input signal is a single sinusoid. We can see here thattime is changed according to the following list. The default
after correction, the time errors cannot be seen above tfa&ue, used when other parameters are changed, is given inside
noise floor. The convergence rate is different for differeqtarentheses. All frequencies in the simulations are normalized
input signals and different number of ADCs, but usually thso that the foldover frequenay; = .
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« Sinusoidal input signal 10
— Angular frequencyw, € [0.01,3.1] (wg = 1).
— Number of data per ADCN € [23,216] (N = 21%). 102

Number of ADCs:M € [2,16] (M = 4).
Quantization noise, given as number of bits:=
[2,16] (n = 10).
Jitter variances;;,., € [0,1] (03, = 0).
o Multisine input signal

— Maximum angular frequency, € [0.01, 3.1] (wo =

Time estimation error

1).

— Number of tonesZ € [2,256] (L = 64). 10°F
« Low pass filtered white noise = CRe tme eror

— Cut off frequencywy € [0.01,3.1]. 10 wio es‘JTa“"” . - . i
« Band pass filtered white noise, band width% of cut 10 10 Number of data. N 10 10

off frequency
. Fig. 9. Blind time estimation error as a function of the number of estimation
- CTUt off frequency.wo < [0'01’ 3'1]' data compared to the non-blind CRB. The input signal is here a single sinusoid
The true time error parameters have been generated randowity frequencywo = 1. The simulated values are calculated framMonte

from a uniform distribution Carlo simulations.

Fori=1,....M —1 o
A} e U[-01T,01T] TS

The standard deviations of the parameter estimation errors ;2|
have been calculated fro5 Monte-Carlo simulations for

each case in the list above. Some of the results from these s
simulations are shown in the plots described below. The results ¢ 107}
from simulations with the other paramters listed above are
similar.

In Figure 9 the root mean square of the estimation error
of the time error parameters is shown, as a function of the
number of data/NV. The input signal is here sinusoidal with 107}
input frequencywy = 1. For large values ofV the simulated

S‘oldover

10k

Time estimatio
L

—e— MC time error

.. N — CRBi
parameter standard deviation is about a factorlo@bove the e wo L atmor ;
CRB. In Figure 10 the estimation error is shown with varying %= 10" 0 0t
input signal frequency instead. We can see here that the Input signal angular frequency. «,

estimation works well even close to the foldover frequency. For o o ] ) ]

very low frequencies the input signal is very slowly varying[ %10 Bind ime estmatin ercr as & eton of ot signal eguency
The output signal will therefore be constant for several sampleg simulated values are calculated fr@m Monte Carlo simulations.

due to the quantization. This means that much fewer samples

contribute to the loss function and the performance is therefore

worse. Figure 11 shows the estimation error as a function of, sinysoidal input signal with frequencies between
the random jitter variance. We can see here that we get quite ( 31\MHz and 2.2MHz.

good estimates even when the jitter is in the same order of, g192 samples per ADC in each batch of data.

magnitude as the static time errors. In Figure 12 the estimatip{rgre we have estimated the gain and offset errors also, as

error 1S _shown for a muItlglne input signal as a.fun(?tlon 0ciescribed in [9]. The signal generator is not perfect, which
the maximum frequency. Figure 13 shows the estimation error

ith band limited whit e input. Th band is h eans that there is some harmonic distortion in the output
Wi and fimited white noise nput. The pass band 1S e5"2r)ectrum. There are also other errors, besides the mismatch
between).9w. andw,. and the result is shown for varying..

errors, that give distortion in the output signal. An example of
an output spectrum is shown in Figure 14. Here we see that
the mismatch distortion is small compared to the harmonic
distortion. Therefore SFDR or SNDR [20] is not useful to
To validate the estimation method, the algorithm has alsfeasure the improvement after compensation for mismatch
been tested on measured data from a time interleaved AéRors. Instead we study the improvement of the frequency
converter system. The following parameters were used in t8&mponents caused by the mismatch errors. In Figure 15 the
measurements same spectrum is shown after compensation with estimated
« 16 parallel ADCs with12-bit precision. mismatch parameters. The mismatch distortion is here no
« Sampling frequencyf, = 5MHz. longer visible above the noise floor. To validate the mismatch

VIIl. M EASUREMENTS
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Time errors estimated with sinusoidal input Time errors estimated with band limited white noise input

-1

10 10 T
'E 1072 ] .5 -2 :
s s 10 °F foldover E
> > -
() ()
= s o
T 10 B
3 S,
s £ 10 i
1] @
5 107} 5
5] 5]
8 §10" 3
£107 £
7] 7]
(0] (0]
.g 6 _g 107} |
i 10 - [t -
—e— MC time error —e— MC time error
— CRB time error — CRB time error
~ - - w/o estimation _¢|LL=_~_w/o estimation
10 -5 ‘74 ‘73 ‘72 '71 0 10 -2 ‘71 ‘ 0 1
10 10 10 10 10 10 10 10 10 10
Random jitter variance Input signal max angular frequency, w_

Fig. 11. Blind time estimation error as a function of the random jitter varianggig. 13. Blind time estimation error as a function of input signal maximum
compared to the non-blind CRB. The input signal is here a single sinusgiéquency compared to the non-blind CRB. The input signal is here band
with frequencywo = 1. The simulated values are calculated framMonte  |imited white noise with pass band betwe@w. and w.. The simulated

Carlo simulations. values are calculated fro2b Monte Carlo simulations.
Time errors estimated with multisine input 120 T T r T
A -
10 T T - © O Signal component
————————————————————————————— : x  Offset error distortion
: * Time and gain error distortion
- : 1001 1
o 2 -
210 °F foldover 4
g :
S
° 80 1
[
E10° |
@
S 60 ]
5]
S0 i
i
£ |
]
(o] M
2107 : | |
= "
—e— MC time error |
— CRB time error
_¢|LL=_~_w/o estimation
10 = ‘,1 : 0 1
10 10 10 10 0 0.5 1 1.5 2 2.5
Input signal max angular frequency, Frequency [MHz]

Fig. 12. Blind time estimation error as a function of input signal maximurfig. 14. Output spectrum from ADC measurement. The signal component is
frequency compared to the non-blind CRB. The input signal is here a multisimarked by 'o’, the offset error distortion is marked by 'x’ and the gain error
signal with64 tones. The simulated values are calculated f@dnMonte Carlo  distortion is marked by "*.

simulations.

ADCs in the time interleaved system are not exactly identical.
lﬁ‘ﬂs means that mismatch errors in time, gain and offset
@le introduced. The mismatch errors cause distortion in the

compensated with each estimate. In Figure 16 the me@é}npled signal. Calibration of ADCs is time consuming and

improvement of the gain and time error distortion componenégstly_ Further, the mismatch errors may change slowly, with
is shown. Since the sampling frequency is quite low, the tin}

. AR 6r instance temperature and aging. Therefore it is preferable
errors relative to the sampling interval are very small. Th

. ) C \ continuously estimate the mismatch errors while the ADC
means that the time error distortion is very small, especially |,caq

for low frequency signals, and therefore cannot be improved
much. But we still see some improvement after the time errpy;
compensation.

error estimation algorithm a parameter estimate was calcula

In this paper, we have studied the time errors in a time
erleaved ADC system. We have presented a method for
estimation and compensation of the time mismatch errors. As

opposed to other methods for estimation of time errors, this es-

IX. CONCLUSION timation method is blind, so that it does not require any special
A time interleaved ADC system is a good option taalibration signal or measurement of the input signal. It only
significantly increase the sampling rate of A/D conversiomequires that the input signal is band limited to the foldover
However, due to errors in the manufacturing process, tfrequency of the complete ADC system. The method is also
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120 T T ; r
© O Signal component
x  Offset error distortion
* Time and gain error distortion
1001 1
80 E
60 k
40f -
20
‘ fif i
0 |
0 0.5 1 15 2 2.5

Frequency [MHz]

are

11

other distortions, besides the mismatch error distortion.

However, the measurement results show that the estimation
method works well even if the ADCs are not ideal.

(1]

(2]

(3]

(4]
(5]

Fig. 15. Output spectrum from ADC measurement after compensation with

estimated mismatch errors. Here the mismatch distortion is no longer visi
above the noise floor.

50 T T
— Estimated at 0.31MHz
- - Estimated at 0.63MHz ||
-~ Estimated at 2.2MHz

45

40

o

35

30

25

20

Improvement [dB]

15

10

0 . . . .
0.5 1 15

. 25
Input signal frequency [MHz]

Fig. 16. Gain and time error distortion improvement. The improveme

bié
[71
[8]
[9]

(10]
(11]
(12]
(13]

(14]

[15]

el

is shown for three sets of estimated parameters, estimated from sinusoidal

signals with frequencie®.31M Hz, 0.63M Hz and2.2M Hz. The curves
marked with 'x’ show the improvement after compensation with only the gal

A7

error parameters and the curves marked with ‘o’ show the improvement afffé]

compensation with both gain and time error parameters.

[19]
(20]

adaptive, so the estimates are updated if the mismatch errors

change slowly. The time error estimates that the estimati

on

method generates are unbiased if the reconstruction changes

the time error parameters linearly and simulations indicate t

he

estimates are unbiased also when the real reconstruction is

used. This means that the estimation accuracy can be m
arbitrarily good by increasing the amount of estimation dat
We have also calculated the Cramer-Rao bound for the
timated parameters. The estimation accuracy from simulatig
does not reach the CRB, since the CRB is calculated assum
known input. However, the standard deviation of the estimat
time errors decay with the amount of data at the same rate

the CRB.
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