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Abstract— To significantly increase the sampling rate of an A/D
converter (ADC), a time interleaved ADC system is a good option.
The drawback of a time interleaved ADC system is that the
ADCs are not exactly identical due to errors in the manufacturing
process. This means that time, gain and offset mismatch errors
are introduced in the ADC system. These errors cause distortion
in the sampled signal.

In this paper we present a method for estimation and com-
pensation of the time mismatch errors. The estimation method
requires no knowledge about the input signal except that it should
be band limited to the foldover frequency,π/Ts, for the complete
ADC system. This means that the errors can be estimated while
the ADC is running. The method is also adaptive to slow changes
in the time errors.

The Cramer-Rao bound for the time error estimates is also
calculated and compared to Monte-Carlo simulations. The esti-
mation method has also been validated on measurements from
a real time interleaved ADC system with 16 ADCs.

Index Terms— A/D conversion, nonuniform sampling, equal-
ization, estimation

I. I NTRODUCTION

T HERE is an ever increasing need for faster A/D convert-
ers (ADCs) in modern communications technology, such

as radio base stations and VDSL modems. To achieve high
enough sample rates, an array ofM ADCs, interleaved in
time, can be used [1], [2], see Figure 1. The time interleaved
ADC system works as follows:
• The input signal is connected to all the ADCs.
• Each ADC works with a sampling interval ofMTs, where
M is the number of ADCs in the array andTs is the
desired sampling interval.

• The clock signal to theith ADC is delayed withiTs. This
gives an overall sampling interval ofTs.

The drawback with the interleaved structure is that, due to
the manufacturing process, all the ADCs are not identical
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Fig. 1. A time interleaved ADC system.M parallel ADCs are used with the
same master clock. The clock is delayed by the nominal sampling interval
to each ADC. The outputs are then multiplexed together to form a signal
sampledM times faster than the output from each ADC.

and mismatch errors will occur in the system. Three kinds
of mismatch errors will occur:

• Time errors (static jitter)
The delay times of the clock between the different
ADCs are not equal. This means that the signal will be
periodically but non-uniformly sampled.

• Amplitude offset errors
The ground level differs between the different ADCs.
This means that there is a constant amplitude offset in
each ADC.

• Gain errors
The gain, from analog input to digital output, differs
between the different ADCs.

The errors listed above are static or slowly time varying. This
means here that the errors can be assumed to be constant for
the same ADC from one cycle to the next over an interval of
some million samples.

With a sinusoidal input, the mismatch errors can be seen in
the output spectrum as non harmonic distortion [3]. With input
signal frequencyω0, the gain and time errors cause distortion
at the frequencies

i

M
ωs ± ω0, i = 1, . . . ,M − 1

whereωs is the sampling frequency. The offset errors cause
distortion at the frequencies

i

M
ωs, i = 1, . . . ,M − 1

An example of an output spectrum from an interleaved ADC
system with four ADCs with sinusoidal input signal is shown
in Figure 2. This distortion causes problems for instance in a
radio receiver where a weak carrier cannot be distinguished
from the mismatch distortion from a strong carrier. It is
therefore important to remove the mismatch errors. However,
calibration of an ADC system is time consuming and costly.
Furthermore the mismatch errors may change slowly with for
instance temperature and aging. Therefore we want to estimate
the mismatch errors while the ADC is used. Methods for esti-
mation of timing errors have been published in for instance [4]
and [5]. These methods require a known calibration signal,
which means that the operation of the ADC must be stopped
during calibration. A blind time error estimation method was
presented in [6] and validated on measurements in [7]. This
method works well, but gives a bias error in the time error
estimates. A blind amplitude offset error estimation method
was presented in [8].

We will in this paper present a method for blind equalization
of the time mismatch errors in a time interleaved ADC system.
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Fig. 2. Simulated output spectrum from interleaved ADC system with four
ADCs. The input signal is a single sinusoid. The distortion is caused by
mismatch errors.

The estimation method requires only that the input signal is
band limited to the foldover frequency,π/Ts, for the complete
ADC system. This method gives no bias in the estimates. The
joint estimation of all three mismatch error types is presented
in [9] where the time error estimation presented in this paper
is one part, studied from a system perspective. In this paper,
the time error estimation method is studied in more detail.

II. N OTATION AND DEFINITIONS

We will in this section introduce the notation that will be
used in this paper. The nominal sampling interval, that we
would have without time errors, is denotedTs. M denotes the
number of ADCs in the time interleaved array, which means
that the sampling interval for each ADC isMTs. The time
error parameters are denoted∆ti , i = 0, . . . ,M−1. The esti-
mates of these errors are denoted∆̂ti , and the true time errors
are denoted∆0

ti . The vector notation∆t = [∆t0 · · ·∆tM−1 ] is
used for all the time error parameters.

We use the following notation for the signals involved:

• u(t) is the analog input signal.
• u[k] denotes the ideal signal, sampled without mismatch

errors.
• ui[k], i = 0, . . . ,M − 1 denotes theM subsequences of
u[k],

ui[k] = u[kM + i]. (1)

• yi[k] i = 0, . . . ,M − 1 denotes the output subsequences
from theM A/D converters, sampled with time errors.

yi[k] = u
(
(kM + i)Ts + ∆0

ti

)
• y[k] is the multiplexed output signal from all the ADCs,

y[k] = y(kmodM)

[⌊
k

M

⌋]
,

whereb·c denotes rounding towards−∞.

• z(∆t)[k] denote the output signal,y[k], reconstructed with
the error parameters,∆t.

• z
(∆t)
i [k] are the subsequences ofz(∆t)[k]

We assume throughout this paper thatu(t) is band limited to
the foldover frequency,πTs , of the complete ADC system.

We will next establish a few definitions which will be used
later in the paper. A discrete time signalu[k] is said to be
quasi-stationary [10] if

m̄u = lim
N→∞

1
N

N∑
k=1

E(u[k])

R̄u[n] = lim
N→∞

1
N

N∑
n=1

E(u[k + n]u[k])

both exist, where the expectation is taken over possible
stochastic parts of the signal. Analogously, a continuous time
signalu(t) is quasi-stationary if

m̄u = lim
T→∞

1
T

∫ T

0

E(u(t))dt

R̄u(τ) = lim
T→∞

1
T

∫ T

0

E(u(t+ τ)u(t))dt

both exist. A stationary stochastic process is quasi-stationary,
with m̄u and R̄u[n] being the mean value and covariance
function respectively.

Definition 1 (Modulo M quasi-stationary) Assume

ḡui1 ,ui2 ,··· = lim
N→∞

1
N

N∑
t=1

g(ui1 [t], ui2 [t], . . . ),

i1, i2, · · · = 0, . . . ,M − 1

exists for a functiong(·, ·, · · · ). Thenu is moduloM quasi-
stationary with respect tog if

ḡi1,i2,··· = ḡ{(i1+l) modM,(i2+l) modM,··· },

∀l ∈ {. . . ,−1, 0, 1, . . . }

The moduloM quasi-stationarity property guarantees that the
input signal has the same statistical properties for all the ADCs
in the time interleaved system. We assume throughout the rest
of the paper that the input signal is moduloM quasi-stationary
with respect tog1(ui) = ui, g2(ui) = u2

i and g3(ui, uj) =
(ui − uj)2.

Example 1 (Modulo M quasi-stationary) Consider first the
function

g(ui[k]) = u2
i [k].

The moduloM quasi-stationary property then means that the
mean square value should be equal for all subsequences, i.e.,
if

σ̄2
i = lim

N→∞

1
N

N∑
k=1

u2
i [k]

then

σ̄2
i = σ̄2

j , i, j = 0, . . . ,M − 1.
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In this example this is true for most quasi-stationary signals,
but some periodic signals are not moduloM quasi-stationary.
Consider the deterministic signal

u[k] = cos(
π

2
k)

andM = 2. Then we have

σ̄2 = lim
N→∞

1
N

N∑
k=1

cos2(1
π

2
k) =

1
2

so the signal is quasi-stationary, but

σ̄2
0 = lim

N→∞

1
N

N∑
k=1

cos2(2
π

2
k) = 1

and

σ̄2
1 = lim

N→∞

1
N

N∑
k=1

cos(2
π

2
k +

π

2
) = 0

i.e., the signal is not modulo2 quasi-stationary with respect
to g(ui[k]) = u2

i [k], but it is with respect tog(ui[k]) = ui[k].

III. SIGNAL RECONSTRUCTION WITHKNOWN TIME

ERRORS

If the time error parameters are known, and the input signal
u(t) is band limited to the Nyquist frequency,u(t) can be
exactly reconstructed from the sampled signaly[k]. We will
in this section describe the signal reconstruction.

The time errors can be compensated for by many different
interpolation techniques, for instance splines [13], polynomial
interpolation or filter bank interpolation [14]. We will here
describe a method for exact interpolation by filtering the signal
with a non-causal IIR filter. If the input signal is band limited
to the foldover frequency,πTs , and the time error parameters
are known, the input signal can be perfectly reconstructed
from the irregular samples [15]. In a real application, the
interpolation is of course approximate since we cannot use
a filter of infinite length, but we can come arbitrarily close
to the exact interpolation by choosing the length of the filter
large enough. In [15] the interpolation is done at an arbitrary
time instance according to the following:

Solve the equation system

M−1∑
i=0

ej(−
M−1

2 +i+∆ti
)ωHi(ω, t) = 1

M−1∑
i=0

ej(−
M−1

2 +i+∆ti
)(ω+ 2π

MTs
)Hi(ω, t) = ej

2π
MTs

t (2)

...
M−1∑
i=0

ej(−
M−1

2 +i+∆ti
)(ω+(M−1) 2π

MTs
)Hi(ω, t) = ej(M−1) 2π

MTs
t

for Hi(ω, t). The input signal can then be calculated at any
time instance as

u(t) =
∞∑

k=−∞

M−1∑
i=0

yi[k]hi(t− kMTs)

where

hi(t) =
MTs
2π

∫ −π/Ts+2π/(MTs)

−π/Ts
Hi(ω, t)ejωtdω

The reconstruction described in [15] is done at an arbitrary
time instance and is quite computationally demanding. If we
only need to reconstruct the signal at the nominal sampling
instances

t = (kM + l)Ts, l = 0, . . . ,M − 1, k = . . . ,−1, 0, 1, . . .

(3)

the reconstruction can be computationally simplified. Here we
introduce the notationαi = −M−1

2 + i + ∆ti , to simplify
the equation system (2). The right hand side of (2) is then
independent ofk in (3) and depends only onl. Further, the
left hand side can be factorized into one diagonal matrix which
depends onω, one matrix independent ofω andH(ω, t) which
now also is independent ofk

A(α)E(α, ω)H(l)(ω) = Bl

Here

A(α) =


1 · · · 1

ejα0
2π
MTs · · · ejαM−1

2π
MTs

...
. . .

...

ejα0(M−1) 2π
MTs · · · ejαM−1(M−1) 2π

MTs

 (4)

E(α, ω) =


ejα0ω 0 · · · 0

0 ejα1ω · · · 0
...

...
. . .

...
0 0 · · · ejαM−1ω

 (5)

and

Bl =
[

1 ej2πl/M · · · ej2π(M−1)l/M
]T

(6)

Since onlyE(α, ω) depends onω and the time dependence in
the right hand side of (2) is removed, we can easily calculate
the coefficientsh(l)

i [k] = hi((kM + l)Ts)

h(l)[k] =

MTs
2π

∫ −π/Ts+2π/(MTs)

−π/Ts
E−1(α, ω)ejω(kM+l)TsdωA−1(α)Bl

From here on we assumeM to be even,M odd gives simi-
lar calculations. Calculating the DTFT (discrete-time Fourier



IEEE TRANSACTIONS ON SIGNAL PROCESSING, J. ELBORNSSONet al. 4

transform) of the subsequencesh(l)[k] gives

H(l)(ejωMTs) = MTs

∞∑
k=−∞

h(l)[k]

=
(MTs)2

2π

∫ −π/Ts+2π/(MTs)

−π/Ts
E−1(α, γ)ejγlTs

∞∑
k=−∞

ejγkMTse−jωkMTsdγA−1(α)Bl

= MTs

∞∑
r=−∞

∫ −π/Ts+2π/(MTs)

−π/Ts
E−1(α, γ)ejγlTs

δ(γ − ω + r
2π
MTs

)dγA−1(α)Bl

= MTsE
−1(α, ω − π

Ts
)ejωlTs(−1)lA−1(α)Bl,

0 ≤ ω < 2π
MTs

The subsequencesZ(∆t)
i (ejωMTs) can then be calculated as

Z
(∆t)
l (ejωMTs)

= Y T (ejωMTs)MTsE
−1(α, ω − π

Ts
)ejωl(−1)lA−1(α)Bl

(7)

where

Y T (ejωMTs) =
[
Y0(ejωMTs) · · · YM−1(ejωMTs)

]
The DTFT of the time error compensated signal,
Z(∆t)(ejωTs), can then be calculated from its
subsequences [17]

Z(∆t)(ejωTs) =
M−1∑
l=0

Z
(∆t)
l (ej(ωMTs mod 2π))e−jlωTs (8)

With the inverse DTFT we get the time error reconstructed
signal

z(∆t)[k] = DTFT−1(Z(∆t)(ejωTs)) (9)

In practice (7), (8) and (9) are calculated on finite sequences
using the DFT (discrete Fourier transform) instead of the
DTFT.

IV. T IME ERRORESTIMATION

We will in this section present a method to estimate the
time errors in a time interleaved ADC system. The estima-
tion is done without a special calibration signal and without
knowledge of the input signal.

Now, since the input signalu[k] is modulo M quasi-
stationary and thus does not contain any deterministic peri-
odic components in phase with the sampling frequency, the
output signaly[k] is M -cyclostationary [11], [12]. Also the
reconstructed signalz[k] (9) will then beM -cyclostationary
for all time error estimates∆t. We can then define the vector
processz(∆t)[k] as

z(∆t)[k] = [ z(∆t)
0 [k] z

(∆t)
1 [k] · · · z

(∆t)
M−1[k] ]T (10)

and its correspondingM ×M covariance function

R∆t
z [l] = lim

N→∞

1
N

N∑
k=1

{
z(∆t)[k](z(∆t))

T
[k + l]

}
. (11)

Note that M-cyclostationarity implies that (11) exists for
all ∆t. Note also thatz(∆t) becomes quasi-stationary when
the true time errors∆̂t = ∆0

t are found. In that case, its
covariance functionR∆t

z [l] becomes Toeplitz for each value
of l. Basically, that is the only second order information we
have in the blind equalization case. Thus, it seems natural to
consider norms of how far the covariance function is from
Toeplitz, and minimize this norm with respect to∆t. A quite
general norm that measures the quadratic difference on each
diagonal ofR∆t

z is given by

V (∆t) =
∞∑
l=0

M−1∑
m=0

∑
i,j

((R∆t
z )i,i−m[l]− (R∆t

z )j,j−m[l])2

(12)

where (R∆t
z )i,j [l] is the element on rowi and columnj in

R∆t
z [l].
Clearly, for a correlated signal u, the most information is

found for small lags in its covariance function, which for
the vector processz corresponds to the first diagonal in the
off-diagonal part of the covariance function. We will in the
following consider the special case of (12) where only the
first off-diagonal diagonal is studied for zero lag (l = 0):

V1(∆t) =
∑
i,j

((R∆t
z )i,i−1[0]− (R∆t

z )j,j−1[0])2. (13)

We will in the following assume that the time error in the first
ADC is zero, i.e.,∆0

t0 = 0. This is no loss of generality since
only the distance between the samples, and not the absolute
sampling instances, needs to be correct.

The signal reconstruction described in Section III is quite
complicated to analyze. Also other signal reconstruction ap-
proximations can be used. Therefore we first study the loss
function (13) assuming a signal reconstruction where the time
error parameters change the time errors linearly. This means
that we can study the output signals

y0[k] = u(MkTs)
yi[k] = u((Mk + i)Ts + ∆ti), i = 1, . . . ,M − 1. (14)

parameterized in the time error parameters,∆ti . In the next
section we will discuss how the reconstruction described in
Section III affects the time error estimation.

Next, we will state a few theroems about the loss function
(13). The proofs for these theorems are given in [16].

First we consider a dual ADC system, i.e.,M = 2. The first
theorem says that we have a global minimum for the correct
time error parameters. The second theorem says that the loss
function is monotonically increasing around this minimum.

Theorem 1 Consider the loss function (13) and assume that
reconstruction with the time error parameters changes the time
linearly, i.e., the model (14) is used. Assume then that|∆t| <
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Ts and Ts < π/ωc, whereωc is the bandwidth of the input
signal. Then

V1(0) = 0

and

V1(∆t) > 0, if ∆t 6= 0

Theorem 2 Consider the assumptions given in Theorem 1.
Assume that|∆t| < Ts/2 and Ts < π/ωc, whereωc is the
bandwidth of the input signal. ThenV∞1 (∆t) is monotonically
increasing around∆t = 0.

This means that as long as we have a Nyquist sampling system
and the time errors are smaller than half the sampling interval,
we can estimate the time errors.

For the general case (M ≥ 2) we cannot guarantee a global
minimum for V1(∆t) for any signal arbitrarily close to the
foldover frequency. However, we do not have to change the
requirements much.

Theorem 3 Consider the assumptions given in Theorem 1.
Assume that|∆t| < Ts/2 and Ts < 4

5
π
ωc

. ThenV1(0) = 0
and V1(∆t) > 0 if ∆t 6= 0.

If we know that the time error parameters are smaller we can
allow an input signal closer to the foldover frequency and
whenmax|∆ti | → 0 we only need the requirement thatTs <
π/ωc.

V. ESTIMATION ALGORITHM

In this section we will discuss how the time errors can
be estimated practically using the theory from the previous
sections, but with some modifications to incorporate the actual
signal reconstruction used.

With the reconstruction described in Section III, simulations
show that there are local minima in the loss functionV1(∆t).
A contour plot ofV1(∆t) is shown in Figure 3. HereM = 4,
and ∆t0 and ∆t2 are fixed to their true values to generate
a two-dimensional plot. The input signal is here sinusoidal.
We can see that there are local minima along a line,∆t1 −
∆t3 = constant, in this figure. However, when∆t 6= ∆0

t

in the interpolation, simulations show that the gain of the
subsequences of the interpolated signals are changed, i.e., the
main diagonal in the covariance functionR∆t

z [l] is no longer
constant. Consider instead the part of the loss function (12)
that involves the main diagonal

V0(∆t) =
∑
i,j

((R∆t
z )i,i[l]− (R∆t

z )j,j [l])2. (15)

If we plot the same contour plot for this function, see Figure 4,
we see that again there are local minima along a line. But this
line, ∆t1 + ∆t3 = constant, is perpendicular to the line in
Figure 3. This means that adding the two loss functions (13)
and (15) we still get a special case of (12):

V0,1(∆t) = V0(∆t) + V1(∆t) (16)

Simulations indicate that this loss function eliminates the local
minima, see Figure 5. This is just an example with a sinusoidal

input, but simulations of many different input signals with
different frequency range and different values ofM indicate
that this loss function works for a wide range of signals.

The minimizing arguments of the loss function (16) gives
the time error estimates. Since the minimizing argument
cannot be calculated analytically, a numerical minimization
algorithm is used. Further, the mismatch errors may change
slowly with for instance temperature and aging. Therefore the
parameter estimates should be adaptively updated with new
data. There are many minimization algorithms available with
fast convergence, for instance Newton’s method [18]. How-
ever, the fast converging methods are usually computationally
demanding. Therefore a stochastic gradient search method is
chosen here, which has a somewhat slower convergence rate
than other methods, but is computationally very efficient. In
a stochastic gradient minimization algorithm, the parameters
are updated by a step in the negative gradient direction Here,
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Fig. 3. A contour plot of the time error loss function,V1(∆t), with M = 4
and sinusoidal input.∆t0 and∆t2 are fixed to their true values.
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Fig. 4. A contour plot of the time error loss function,V0(∆t), with M = 4
and sinusoidal input.∆t0 and∆t2 are fixed to their true values.
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a normalized version of the stochastic gradient method is used
to make the choice ofµ easier

∆̂(i+1)
t = ∆̂(i)

t − µ
∇V (∆̂(i)

t )

max
∣∣∇V (∆̂(i)

t )
∣∣

To avoid taking too long steps, we can check that the loss
function decreases for every iteration, and otherwise backtrack
the step size until it does [18]. The next iteration is then started
with doubled step length, so that the step length does not get
unnecessarily small. To summarize, the adaptive equalization
algorithm is given by

Algorithm 1 (Interleaved ADC equalization)
Initialization:

• Choose a batch size,N , for each iteration.
• Initialize the step lengths of the stochastic gradient al-

gorithm, µt. If the order of magnitude of the mismatch
errors are known, this information can be used for the
initialization.

• Initialize the parameter estimates

∆̂(0)
ti = 0, i = 0, . . . ,M − 1

Adaptation:

1) Collect a batch ofN data from each ADC,yi[k], i =
0, . . . ,M − 1.

2) Calculate the reconstructed signals

z
(∆̂

(j)
t )

i [k], i = 0, . . . ,M − 1

according to (7), (8) and (9)
3) Calculate the gradient of the loss function,∇V0,1(∆̂(j)

t ).
The gradients can be calculated numerically by a finite
difference approximation from the loss functions, or by
analytically differentiating the loss function. The loss
function is defined in (16).
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Fig. 5. A contour plot of the time error loss function,V0,1(∆t) = V0(∆t)+
V1(∆t), with M = 4 and sinusoidal input.∆t0 and∆t2 are fixed to their
true values.

4) Update the parameter estimates

∆̂(j+1)
t = ∆̂(j)

t − µt
∇V0,1(∆̂(j)

t )

max |∇V0,1(∆̂(j)
t )|

5) If the loss function has increased since the last iteration

V0,1(∆̂(j+1)
t ) > V0,1(∆̂(j)

t )

backtrack the step sizeµt := µt/2 and change the
parameter estimates in step4) until the loss function
decreases. Otherwise double the step lengths for the next
iteration: µt := 2µt.

6) Return to step1).

Figure 6 illustrates the operation of the adaptive equalization
algorithm.

A/D0

A/D1

A/DM−1

uclock

y0

y1

yM−1

z
(∆̂t)
0

z
(∆̂t)
1

z
(∆̂t)
M−1

z(∆̂t)
M
U
X

Time error estimation

delay,Ts

∆̂t

C

o

o
r
r
e
c
t
i
n
∆̂t

Fig. 6. Time interleaved ADC system with time errors. The time errors,∆̂t,
are estimated by a blind adaptive algorithm and the signal is corrected by a
filter.

The signal correction part of the algorithm must be done
in real time. However, the estimation part may work more
slowly depending on how fast the time errors change. The
signal correction is done on a batch of data containingN
samples per ADC. The correction involves a DFT and inverse
DFT calculation which requiresN log2N operations each per
ADC. The matricesA(α), E(α, ω) and Bl in (4-6) do not
have to be updated for each batch of data, assuming that the
estimation is done more slowly. This means that these matrices
can be precalculated and the calculation of the corrected signal
therefore requiresMN operations per ADC. This gives a total
of M2N + 2MN log2N operations for the correction for
each batch of data, i.e.,M + 2 log2N operations per sample.
One operation is here basically one multiplication and one
summation.

The estimation part requires more operations, but these
calculations can normally be done at a slower rate and are
therefore not critical.

This algorithm is intended for applications that require high
sample rates, such as soft radio base stations and VDSL
modems. This means that a lot of data is available and the
algorithm will therefore converge in a fraction of a second.
In these systems there are also a lot of computational power
available on chip which means that is should be possible to
implement this algorithm in existing hardware on chip.
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VI. CRAMER-RAO BOUND

The Cramer-Rao bound (CRB) is a lower bound on the
variance of the estimated parameters for a given amount
of data [10], independent of the estimation algorithm used.
The CRB is here calculated assuming known input while the
estimation algorithm is blind. This means that the estimation
algorithm never can reach the CRB. The reason for this is
that the blind CRB is difficult to calculate. However, the
non-blind CRB still gives a rule of thumbs of the estimation
performance and it is simple to interpret in terms of design
parameters and input signals. We will first calculate the CRB
for a general input signal assuming only additive noise on
the signal. The CRB is here calculated asymptotically for a
general input signal. For a special signal it is also possible to
calculate the CRB for a fixed, finite amount of data, but to
keep it general this is not included here. With stochastic jitter
we cannot calculate a general expression for the CRB, but we
will calculate the CRB for some special input signals.

A. CRB for additive noise

Assuming only additive noise, the output signal subse-
quences are

y0[k] = u(MkTs) + e0[k]

yi[k] = u((Mk + i)Ts + ∆0
ti) + ei[k], i = 1, . . . ,M − 1

The noise is here assumed to be white Gaussian

ei[k] ∈ N(0, σe)

despite that uniformly distributed noise is a better model of
the quantization noise. However, Gaussian noise simplifies the
calculations of the CRB and simulations show that, with the
same noise variance, the estimation accuracy is approximately
the same for Gaussian and uniform noise. The parameterized
signal model is

ŷ0[k] = u(MkTs)
ŷi[k] = u((Mk + i)Ts + ∆ti), i = 1, . . . ,M − 1

The negative log-likelihood function [10] is then calculated by
taking the logarithm of the probability density function of the
noise.

− lim
N→∞

log fe(∆t, y
N )

= lim
N→∞

1
N

1
2σ2

eM

M−1∑
i=0

N∑
k=1

{
yi[k]− ŷi[k]

}2

=
1

2σ2
eM

M−1∑
i=0

{
(2σ2

u + σ2
e)− 2Ru(∆0

ti −∆ti)
}

Differentiating the log-likelihood function twice with respect
to the error parameters gives

d2

d∆2
(− lim

N→∞
log fe(∆t, y

N )) =
1

2σ2
eM
·

−2
d2Ru(∆0

t1
−∆t1 )

(d∆t1 )2 · · · 0
...

. ..
...

0 · · · −2
d2Ru(∆0

tM−1
−∆tM−1 )

(d∆tM−1 )2


(17)

Evaluating (17) at∆t = ∆0
t gives the Fisher information

matrix,

F = − 1
Mσ2

e

R′′u(0)I(M−1)×(M−1) (18)

The Fisher information matrix gives a lower bound on the
covariance of the parameter estimates. If the parameters are
estimated fromN samples per ADC, the Cramer-Rao bound
is

Cov(∆̂t) ≥
1

MN
F−1 (19)

Putting (18) into (19) we get

Var(∆̂ti) ≥
σ2
e

NR′′u(0)
(20)

We can see from (20) that the CRB for the time error depends
on the input signal. We will next evaluate the CRB for a few
signal examples.
• Sinusoidal input: In radio applications a single modu-

lated sinusoidal carrier is often used. Here we discard the
modulation and calculate the CRB for a sinusoidal signal:

u(t) =
√

2 sin(ωt).

This gives the Cramer-Rao bound

Var(∆̂ti) ≥
σ2
e

Nω2

• Multisine input: In DSL modems and OFDM radio
communications, a sum of several sinusoidal carriers are
used. Here we calculate the CRB for a multisine input
signal:

u(t) =
L∑
i=1

αi sin(ωit),
1
2

L∑
i=1

α2
i = 1

This gives the Cramer-Rao bound

Var(∆̂ti) ≥
2σ2

e

N
∑L
i=1 α

2
iω

2
i

• Band limited white noise input:
Here the input is a stochastic process with spectrum

Φu(ω) =
{ π

ωmax(1−α) αωmax ≤ |ω| ≤ ωmax
0 otherwise

(21)

This gives the Cramer-Rao bound

Var(∆̂ti) ≥
3σ2

e

N(α2 + α+ 1)ω2
max

The CRB is evaluated in more detail in [16].
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B. CRB for noise and jitter

Here we will evaluate the CRB with both noise and stochas-
tic jitter present. The output signal subsequences are now

y0[k] = u(kMTs + ejitter0 [k]) + e0[k]

yi[k] = u((kM + i)Ts + ∆0
ti + ejitteri [k]) + ei[k], (22)

i = 1, . . . ,M − 1

We assume that both the noise and the random jitter are
Gaussian distributed

ei[k] ∈ N(0, σe)

ejitteri [k] ∈ N(0, σjitter)

Here we cannot, in general, assume that the output signal at
a certain time instance is Gaussian distributed. But if we take
a sum over many samples we have, according to the central
limit theorem [19], that

ȳ =
1

NM

N−1∑
k=0

M−1∑
i=0

yi[k] (23)

is Gaussian distributed. If we assume thaty[k] is moduloM
quasistationary with respect tog(ui) = ui the mean value
of ε(∆t, y

N ) is zero, independent of the input signal shape.
However, the variance depends on what input signal we have.
We will therefore in the following consider a few special cases.
The derivations are omitted here, but are given in [16].
• Sinusoidal input: u(t) =

√
2 sin(ω0t).

The CRB is here given by

Var(∆̂ti) &
σ2
jitter

N
+

σ2
e

Nω2
0

(24)

i.e., the jitter gives an additional term to the CRB de-
pending only on the jitter noise variance and the number
of estimation data.

• Multisine input With a multisine input signal

u(t) =
L∑
i=1

αi sin(ωit),
1
2

L∑
i=1

α2
i = 1

we get the CRB

Var(∆̂ti) &
σ2
jitter

N
+

2σ2
e

N
∑L
l=1 α

2
l ω

2
l

(25)

Again the jitter gives an additional term to the CRB. The
contribution from the jitter to the CRB is independent of
the number of tones and hence the same as for the single
sinusoidal case (24).

VII. SIMULATIONS

To evaluate the performance of the time error estimation
method, a time interleaved ADC system has been simulated.
In Figure 7 the spectrum of the output signal is shown
before and after correction with estimated time errors. Here
the input signal is a single sinusoid. We can see here that,
after correction, the time errors cannot be seen above the
noise floor. The convergence rate is different for different
input signals and different number of ADCs, but usually the
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Fig. 7. Upper plot: The output spectrum of an interleaved ADC system with
time errors. Lower plot: The same spectrum after compensation with estimated
time error parameters. The parameters were estimated from214 samples per
ADC.

parameters converge in about10 − 50 iterations. In Figure 8
an example of the convergence of the time error estimates
is shown. The simulation is here done with four ADCs and
sinusoidal input. The amount of data is here214 samples per
batch. One iteration was done on each batch. In this example
the parameters converge in about20 iterations.
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Fig. 8. Convergence of time error parameter estimates (∆̂ti − ∆0
ti

) for
ADC system with four ADCs (three time errors). The estimation error is here
shown in fractions ofTs.

To compare the estimation accuracy with the CRB the
minimization has been done on one batch of data instead
of updating with new data for each iteration. The estimation
algorithm has been tested with different input signals and
different signal parameters have been varied. One parameter at
a time is changed according to the following list. The default
value, used when other parameters are changed, is given inside
parentheses. All frequencies in the simulations are normalized
so that the foldover frequencyωf = π.
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• Sinusoidal input signal
– Angular frequency:ω0 ∈ [0.01, 3.1] (ω0 = 1).
– Number of data per ADC:N ∈ [23, 216] (N = 214).
– Number of ADCs:M ∈ [2, 16] (M = 4).
– Quantization noise, given as number of bits:n =

[2, 16] (n = 10).
– Jitter variance:σ2

jitter ∈ [0, 1] (σ2
jitter = 0).

• Multisine input signal
– Maximum angular frequency:ω0 ∈ [0.01, 3.1] (ω0 =

1).
– Number of tones:L ∈ [2, 256] (L = 64).

• Low pass filtered white noise
– Cut off frequency:ω0 ∈ [0.01, 3.1].

• Band pass filtered white noise, band width10% of cut
off frequency

– Cut off frequency:ω0 ∈ [0.01, 3.1].
The true time error parameters have been generated randomly
from a uniform distribution

For i = 1, . . . ,M − 1

∆0
ti ∈ U [−0.1Ts, 0.1Ts]

The standard deviations of the parameter estimation errors
have been calculated from25 Monte-Carlo simulations for
each case in the list above. Some of the results from these
simulations are shown in the plots described below. The results
from simulations with the other paramters listed above are
similar.

In Figure 9 the root mean square of the estimation error
of the time error parameters is shown, as a function of the
number of data,N . The input signal is here sinusoidal with
input frequencyω0 = 1. For large values ofN the simulated
parameter standard deviation is about a factor of10 above the
CRB. In Figure 10 the estimation error is shown with varying
input signal frequency instead. We can see here that the
estimation works well even close to the foldover frequency. For
very low frequencies the input signal is very slowly varying.
The output signal will therefore be constant for several samples
due to the quantization. This means that much fewer samples
contribute to the loss function and the performance is therefore
worse. Figure 11 shows the estimation error as a function of
the random jitter variance. We can see here that we get quite
good estimates even when the jitter is in the same order of
magnitude as the static time errors. In Figure 12 the estimation
error is shown for a multisine input signal as a function of
the maximum frequency. Figure 13 shows the estimation error
with band limited white noise input. The pass band is here
between0.9ωc andωc and the result is shown for varyingωc.

VIII. M EASUREMENTS

To validate the estimation method, the algorithm has also
been tested on measured data from a time interleaved A/D
converter system. The following parameters were used in the
measurements
• 16 parallel ADCs with12-bit precision.
• Sampling frequency,fs = 5MHz.
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Fig. 9. Blind time estimation error as a function of the number of estimation
data compared to the non-blind CRB. The input signal is here a single sinusoid
with frequencyω0 = 1. The simulated values are calculated from25 Monte
Carlo simulations.
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Fig. 10. Blind time estimation error as a function of input signal frequency
compared to the non-blind CRB. The input signal is here a single sinusoid.
The simulated values are calculated from25 Monte Carlo simulations.

• Sinusoidal input signal with frequencies between
0.31MHz and2.2MHz.

• 8192 samples per ADC in each batch of data.

Here we have estimated the gain and offset errors also, as
described in [9]. The signal generator is not perfect, which
means that there is some harmonic distortion in the output
spectrum. There are also other errors, besides the mismatch
errors, that give distortion in the output signal. An example of
an output spectrum is shown in Figure 14. Here we see that
the mismatch distortion is small compared to the harmonic
distortion. Therefore SFDR or SNDR [20] is not useful to
measure the improvement after compensation for mismatch
errors. Instead we study the improvement of the frequency
components caused by the mismatch errors. In Figure 15 the
same spectrum is shown after compensation with estimated
mismatch parameters. The mismatch distortion is here no
longer visible above the noise floor. To validate the mismatch
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Fig. 11. Blind time estimation error as a function of the random jitter variance
compared to the non-blind CRB. The input signal is here a single sinusoid
with frequencyω0 = 1. The simulated values are calculated from25 Monte
Carlo simulations.
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Fig. 12. Blind time estimation error as a function of input signal maximum
frequency compared to the non-blind CRB. The input signal is here a multisine
signal with64 tones. The simulated values are calculated from25 Monte Carlo
simulations.

error estimation algorithm a parameter estimate was calculated
for each input signal frequency and all signals were then
compensated with each estimate. In Figure 16 the mean
improvement of the gain and time error distortion components
is shown. Since the sampling frequency is quite low, the time
errors relative to the sampling interval are very small. This
means that the time error distortion is very small, especially
for low frequency signals, and therefore cannot be improved
much. But we still see some improvement after the time error
compensation.

IX. CONCLUSION

A time interleaved ADC system is a good option to
significantly increase the sampling rate of A/D conversion.
However, due to errors in the manufacturing process, the
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Fig. 13. Blind time estimation error as a function of input signal maximum
frequency compared to the non-blind CRB. The input signal is here band
limited white noise with pass band between0.9ωc and ωc. The simulated
values are calculated from25 Monte Carlo simulations.
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Fig. 14. Output spectrum from ADC measurement. The signal component is
marked by ’o’, the offset error distortion is marked by ’x’ and the gain error
distortion is marked by ’*’.

ADCs in the time interleaved system are not exactly identical.
This means that mismatch errors in time, gain and offset
are introduced. The mismatch errors cause distortion in the
sampled signal. Calibration of ADCs is time consuming and
costly. Further, the mismatch errors may change slowly, with
for instance temperature and aging. Therefore it is preferable
to continuously estimate the mismatch errors while the ADC
is used.

In this paper, we have studied the time errors in a time
interleaved ADC system. We have presented a method for
estimation and compensation of the time mismatch errors. As
opposed to other methods for estimation of time errors, this es-
timation method is blind, so that it does not require any special
calibration signal or measurement of the input signal. It only
requires that the input signal is band limited to the foldover
frequency of the complete ADC system. The method is also
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Fig. 15. Output spectrum from ADC measurement after compensation with
estimated mismatch errors. Here the mismatch distortion is no longer visible
above the noise floor.
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Fig. 16. Gain and time error distortion improvement. The improvement
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adaptive, so the estimates are updated if the mismatch errors
change slowly. The time error estimates that the estimation
method generates are unbiased if the reconstruction changes
the time error parameters linearly and simulations indicate the
estimates are unbiased also when the real reconstruction is
used. This means that the estimation accuracy can be made
arbitrarily good by increasing the amount of estimation data.

We have also calculated the Cramer-Rao bound for the es-
timated parameters. The estimation accuracy from simulations
does not reach the CRB, since the CRB is calculated assuming
known input. However, the standard deviation of the estimated
time errors decay with the amount of data at the same rate as
the CRB.

The estimation method has also been verified on data from
a real time interleaved ADC system. In a real ADC there

are other distortions, besides the mismatch error distortion.
However, the measurement results show that the estimation
method works well even if the ADCs are not ideal.
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