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Linköping University

SE-58183 Link¨oping, Sweden
perno@isy.liu.se , fredrik@isy.liu.se

ABSTRACT

As a part of aircraft navigation, three-dimensional position must be
computed continuously. For accuracy and reliability reasons, sev-
eral sensors are integrated together, and here we are dealing with
dead-reckoning integrated with terrain-aided positioning. Terrain-
aided positioning suffers from severe nonlinear structure, meaning
that we have to solve a nonlinear recursive Bayesian estimation
problem. This is not possible to do exactly, but recursive Monte
Carlo methods, also known as particle filters, provide a promising
approximate solution.

To reduce the computational load of the normally rather com-
puter intensive particle filter we present an algorithm which takes
advantage of linear structure. The algorithm is based on a Rao-
Blackwellisation technique, meaning that we marginalise the full
conditional posterior density with respect to the linear part. The
linear part of the state vector is estimated using multiple Kalman
filters, and the particle filter is then used for the remaining part.
Simulations show that the computational load is reduced signifi-
cantly.

1. INTRODUCTION

The purpose of this paper is to provide optimal, yet tractable, meth-
ods for estimation of three-dimensional aircraft position (horizon-
tal position and altitude), under the assumption that measurements
are obtained from a dead-reckoning and a terrain-aided positioning
system.

The integration of dead-reckoning with terrain-aided position-
ing is a nonlinear recursive Bayesian state estimation problem,
nonlinear mainly due to the highly nonlinear nature of terrain-
aided positioning and recursive because we need the estimates on-
line. The classical approach to this type of problems is to use the
extended Kalman filter. However, for systems with severe nonlin-
ear and/or non-Gaussian structure the extended Kalman filter tech-
nique is not adequate. Another way to deal with nonlinear estima-
tion problems is to use simulation based methods, also referred to
as sequential Monte Carlo methods, or particle filters [1, 2, 3]. Al-
though they do not suffer from the curse of dimensionality, in many
cases a lot of particles are needed, especially when the dimension
of the problem increases, making these methods computer inten-
sive.

The outline of the report is as follows. In Section 2, the es-
timation problem is described in detail. Section 3 gives a brief
introduction to particle filtering and Section 4 deals with methods

for reducing the computational load. Section 5 provide simulation
results. Finally, in Section 6 conclusions are drawn.

2. PROBLEM FORMULATION

The principle for a dead-reckoning system (e.g an inertial naviga-
tion system) is to start with an initial position and then update it by
cumulating measured movements. Terrain-aided positioning uses
the terrain, more specifically the terrain height variation, to extract
the aircraft position. Measured terrain height, provided by taking
the difference between altitude over sea-level and ground clear-
ance, is compared to the terrain height obtained from a database.
The model of the system is

xt+1 = xt + ut + vxt

zt+1 = zt + vzt

yt = h(xt) + zt + et,

(1)

wherext represent two-dimensional horizontal position andzt
represents altitude bias. The horizontal movement provided by the
dead-reckoning system is denotedut. Note that (1 ) does not need
a uzt becausezt represents not altitude, but altitude error. To be
able to concentrate on position only the error inherent in measured
movement,vt = (vxt , v

z
t )T , is considered to be white noise. In

practice this is not true, e.g. the INS velocity error is highly corre-
lated over time, see [4] how to deal with this. Moreover, in (1),yt
represents measured terrain elevation andh(·) is the terrain eleva-
tion database. The measurement noise,et, can be described by a
Gaussian mixture with two modes; each mode corresponding to if
the radar beam measuring the ground clearance hits the ground or
the tree tops.

The aim is to recursively estimate the filtering posterior den-
sity p(xt, zt|Yt), whereYt = {y0, . . . , yt}. Due to the not only
nonlinear but also nonanalytical functionh(·) the extended Kalman
filter is practically out of the question. A feasible way to proceed
is to apply the particle filter. As will be shown, applying it on the
entire problem will lead to an unnecessarily high computational
load. By considering (1) one sees that the altitude state enters the
estimation problem linearly. This implies that it should be possible
to estimatezt using standard linear methods, and thereby reducing
the dimension of the problem on which the particle filter is ap-
plied. Intuitively, this should in turn decrease the computational
load caused by the normally rather computer intensive particle fil-
ter.



3. THE PARTICLE FILTER

Recursive Monte Carlo filtering methods, also referred to as parti-
cle filters, provide a solution to the general nonlinear, non-Gaussian
filtering problem. Consider the state space model

xt+1 = f(xt) + vt,

yt = h(xt) + et,
(2)

where the process and measurement noises,vt ∼ pvt(·) andet ∼
pet(·) respectively, are assumed independent with known but ar-
bitrary densities. The state of the system,Xt = {x0, . . . , xt}, is
a Markov process withp(x0|x−1) = p(x0), and the observations,
Yt = {y0, . . . , yt}, are conditionally independent given the states

p(Xt) =

t∏
k=0

p(xk|xk−1), p(Yt|Xt) =

t∏
k=0

p(yk|xk).

The aim is to recursively estimate the filtering densityp(xt|Yt),
using the time and measurement recursions

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt

p(xt+1|Yt+1) =
p(yt+1|xt+1)p(xt+1|Yt)

p(yt+1|Yt)
,

(3)

wherep(yt+1|Yt) =
∫
p(yt+1|xt+1)p(xt+1|Yt)dxt+1.

In the general case there do not exist closed-form expressions
for (3). Instead we are forced to use numerical methods. The prin-
ciple for recursive Monte Carlo methods is to discretize the den-
sity, in a stochastic manner, utilizing a large number of samples.
Suppose we have a set of independent samples{x(i)

t }Ni=1 with
associated weights{w(i)

t }Ni=1, which together represent a Monte
Carlo approximation ofp(xt|Yt), that is

p(xt|Yt) ≈

∑N
i=1 w

(i)
t δ

x
(i)
t

(xt)∑N
i=1 w

(i)
t

=

N∑
i=1

w̄
(i)
t δ

x
(i)
t

(xt), (4)

where

δ
x

(i)
t

(xt) =

{
1 if xt = x

(i)
t

0 otherwise.
(5)

The set of samples with associated weights is said to be properly
weighted with respect top(xt|Yt) if

lim
N→∞

∑N
i=1 w

(i)
t g(x

(i)
t )∑N

i=1 w
(i)
t

= Ep(xt|Yt)(g(xt)), (6)

for any integrable functiong. Plugging (4) into the recursion for-
mulas (3) we obtain

p(xt+1|Yt+1) ≈ p(yt+1|xt+1)

p(yt+1|Yt)

N∑
i=1

w̄
(i)
t p(xt+1|x(i)

t ) (7)

From (7), one way to recursively create a new set of independent,
properly weighted samples is to draw fromp(xt+1|x(i)

t ), i.e.

x
(i)
t+1 ∼ p(xt+1|x(i)

t ). (8)

This gives that the associated weights are updated according to

w
(i)
t+1 = p(yt+1|x(i)

t+1)w̄
(i)
t , w̄

(i)
t+1 =

w
(i)
t+1∑N

i=1 w
(i)
t+1

. (9)

In many cases there are more efficient ways to create new samples,
see [2, 3, 5].

It can be shown [6] that the unconditional variance of the weights
can only increase with time, meaning that most of the weights will
tend to zero and leaving only a few that significantly represent the
target density. To avoid this sample impoverishment we resample
among the particles at regular intervals. Resampling can be done in
many different ways, but one strategy known to have nice proper-
ties is residual resampling. The principle is to first multiply/discard
particles according tobNw̄(i)

t c, and then to pick randomly, with
replacement, amongst the rest,Mt = N −

∑N
i=1bNw̄

(i)
t c. In the

last step, the probability for picking particlei is M−1
t (Nw̄

(i)
t −

bNw̄(i)
t c). See [3, 7] for alternative resampling strategies.

A standard method for choosing when to resample is to use an
approximative expression for the effective sample size of the filter
[6]

N̂eff =
1∑N

i=1(w̄
(i)
t )2

. (10)

When the effective sample size falls below a threshold,N̂eff < Nh

a resampling is performed.
The minimum mean square (MMS) estimate ofxt and its co-

variance are computed according to

x̂MMS
t ≈

N∑
i=1

w̄
(i)
t x

(i)
t (11)

PMMS
t ≈

N∑
i=1

w̄
(i)
t (x

(i)
t − x̂MMS

t )(x
(i)
t − x̂MMS

t )T . (12)

4. RAO-BLACKWELLIZATION

The purpose of Rao-Blackwellization is to try to reduce the num-
ber of particles needed for a given estimation precision.

The trick here is to apply the particle filter for estimation of
horizontal position (xt) only. Consider for the moment the stacked
vector of position history,Xt = {x0, . . . , xt}. The posterior den-
sity forXt andzt can be factorized, using Bayes’ rule, according
to

p(Xt, zt|Yt) = p(zt|Xt, Yt)p(Xt|Yt). (13)

From (13) we see that if there exists a closed-form expression for
p(zt|Xt, Yt), and if there is a method for recursively updating
p(Xt|Yt), we can reduce the dimension on which we apply the
particle filter, and thereby we should be able to reduce the number
of particles needed for a certain accuracy.

For the filtering density for altitude bias, we can use (4), where
xt now represents horizontal position, and extend it to cover the
entire position history,

p(Xt|Yt) =

N∑
i=1

w̄
(i)
t δ

X
(i)
t

(Xt). (14)



Plugging this into (13) gives

p(zt|Yt) =
N∑
i=1

w̄
(i)
t p(zt|X(i)

t , Yt). (15)

How to estimatep(zt|X(i)
t , Yt) is described in Section 4.1, and

how to recursively update the approximation ofp(Xt|Yt) is de-
scribed in Section 4.2.

4.1. Altitude estimation

Suppose here that the sequenceXt = {x0, . . . , xt} is given. In
practice, it is the sequenceX(i)

t obtained from the particle filter
that is given, but we leave the index out in the following for nota-
tional convenience. Withξt = yt−h(xt) the part of (1) applicable
for zt is

zt+1 = zt + vzt

ξt = zt + et.
(16)

Assume thatpvzt (·) = N (vzt ; 0, Qzt ), whereN (·;m,Q) repre-
sents the Gaussian density with meanm and covarianceQ. As
mentioned in Section 2 the measurement noiseet is not Gaussian,
but rather a Gaussian mixture with two modes, i.e.

pet(·) =

1∑
k=0

P (γt = k)N (et;m
k
t , R

k
t ), (17)

whereγt is a binary Markov process with

P (γt = k) = pk, P (γt = k|γt−1 = l) = πkl,

for k, l = 0, 1. Because of the exponential growth of possible
mode sequences,Γt = {γ0, . . . , γt}, the exact analytical solution
for p(zt|Ξt), whereΞt = {ξ0, . . . , ξt}, is intractable.

The simplest approach is to consider the generalized pseudo-
Bayesian method of the first order (GPB1) [8]. The approximate
solution is

p(zt|Ξt) ≈
1∑
k=0

N (zt; ẑ
k
t|t, P

z,k
t|t )ᾱkt|t, (18)

where

P zt|t−1 = P zt−1|t−1 +Qzt−1

Skt = P zt|t−1 +Rkt

ẑkt|t = ẑt−1|t−1 + P zt|t−1(Skt )−1(ξt −mk
t − ẑt−1|t−1)

P z,kt|t = P zt|t−1 − P zt|t−1(Skt )−1P zt|t−1

(19)

and

αkt|t =

≈N (ξt;ẑt−1|t−1+mkt ,S
k
t )︷ ︸︸ ︷

p(ξt|γt = k,Ξt−1)
1∑
l=0

πklᾱ
l
t−1|t−1

ᾱkt|t =
αkt|t∑1
k=0 α

k
t|t
.

(20)

Finally, the two Gaussian distributions are merged

ẑt|t =

1∑
k=0

ᾱkt|tẑ
k
t|t

P zt|t =
1∑
k=0

ᾱkt|t(P
z,k
t|t + (ẑkt|t − ẑt|t)(ẑkt|t − ẑt|t)T ).

(21)

4.2. Horizontal position estimation

Returning to (13), it remains to compute isp(Xt|Yt). This density
can be rewritten recursively, using Bayes’ rule repeatedly, accord-
ing to

p(Xt|Yt) =
p(yt|Xt, Yt−1)p(xt|xt−1)

p(yt|Yt−1)
p(Xt−1|Yt−1). (22)

In (22), the time propagation density is given byp(xt|xt−1) =
pvxt (xt − xt−1 − ut−1), not necessarily, but usually, assumed
Gaussian distributed. Regardingp(yt|Xt, Yt−1), using the mode
indicatorγt we get

p(yt|Xt, Yt−1) =

1∑
k=0

p(yt|γt = k,Xt, Yt−1)P (γt = k|Xt, Yt−1) =

1∑
k=0

p(ξt|γt = k,Ξt−1)

1∑
l=0

πklP (γt−1 = l|Ξt−1).

(23)

Using the result from the GPB1 method given in (20) we obtain

p(yt|Xt, Yt−1) ≈
1∑

k=0

αkt|t. (24)

In other words,p(yt|Xt, Yt−1) is approximated by the sum of the
unnormalized weightsαkt|t.

To summarize, we can estimatep(Xt|Yt) using the particle
filter algorithm described in Section 3, only changing the weight
update from (9) to

w
(i)
t = p(yt|X(i)

t , Yt−1)w̄
(i)
t−1 =

1∑
k=0

α
k,(i)
t|t w̄

(i)
t−1. (25)

5. SIMULATIONS

The whole idea of trying to solve as much of the problem as pos-
sible using closed-form methods is of course to reduce the compu-
tational load required for a given accuracy.

We performed a number of simulations to compare the two
methods, i.e. the particle filter applied to 3-dimensional position
and the particle filter applied to 2-dimensional horizontal position
together with the GPB1 filter applied to altitude.

All the simulations were performed using one and the same
trajectory considered to have adequate terrain variation. The sim-
ulation parameters are given in Table 1. To deal with density dis-
cretization errors, particularly during the convergence phase, the
model of the process noise for horizontal position is extended to

vx,model
t = vx,system

t + vx,add
t , (26)

wherevx,add
t ∼ N (0, k · PMMS,x

t ) with k = 0.001 andPMMS,x
t

given by (12). To draw{x(i)
0 }Ni=1 we use the true distribution,

p(x0). To show that the particle filter combined with a GPB1 filter
is robust with respect top(z0) we chosez(i)

0 = 0, P z,(i)0 = 1002

for all i = 1, . . . , N . The measurement update rate of the filters
are in all cases 1 Hz.

The result from the simulations is shown in Table 2, where the
result is based on 100 Monte Carlo simulations for each filtering
method and number of particles. The simulations were performed



Table 1. Simulation parameters

ut
[
−100 100 0

]T
m/s

pet(·) 0.5 · N (et; 0, 32) + 0.5 · N (et; 12, 62)

pvxt (·), pvzt (·) N
(
vxt ;

[
0
0

]
,

[
22 0
0 22

])
,N (vzt ; 0, 0.22)

p(x0)

{
1/20002 if |x1

0| < 1000, |x2
0| < 1000

0 otherwise

p(z0)

{
1/(200

√
3) if |z0| < 100 ·

√
3

0 otherwise
πkl 0.5 for k, l = 0, 1

in Matlab on a Sun station (Ultra 10). The table shows that by
using the particle and GPB1 filter it is enough to use less than half
the number of particles compared to the stand-alone particle filter
for the same accuracy (24 m for horizontal position and 1.0 m for
altitude). Less than half the number of particles in this case means
that the computational load is about 65% of the load for the stand-
alone particle filter. These results are also confirmed by Figure 1,

Table 2. Required simulation time and
√

( 1
61

∑120
t=60 RMSE(·)2)

for x̂MMS
t and ẑMMS

t as a function of method and number of parti-
cles.

N Time Position Altitude
Particle filter 10000 24.6s 76.2m 0.99m

11000 26.6s 24.5m 0.97m
12000 29.7s 24.2m 0.99m

Particle / 4000 14.3s 80.8m 1.0 m
GPB1 filter 5000 17.7s 23.1m 0.96m

6000 20.9s 23.0m 0.96m

which shows typical behaviour of the RMSE of horizontal position
and altitude over time for the two filters.

6. CONCLUSIONS

In this paper we have given two ways to estimate three-dimensional
position given a dead-reckoning system and a terrain-aided posi-
tioning system. Both methods are based on the particle filter, what
differs is the way we estimate altitude. We have shown that the
particle filter is well suited for this highly nonlinear problem, but
the computational load is unnecessarily high. By using the fact that
altitude enters linearly we can use Rao-Blackwellisation technique
to reduce the dimension on which we apply the particle filter, and
thereby reduce the computational load.
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