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ABSTRACT 

Vehicle handling depends critically on the tire-road 
contact patch. When the tire inflation pressure changes 
the contact patch is no longer optimal and the handling 
properties deteriorate. Furthermore fuel consumption 
increases and the lifetime of the tires decreases. 
Therefore it is very important that the tires are correctly 
inflated.  
 
We here focus on an indirect tire pressure monitoring 
system, where no pressure sensors are needed. The 
system is based on vibration and wheel radius analysis. 
These two approaches are combined for optimal 
performance concerning sensitivity to detect pressure 
losses and robustness to different driving conditions. 
When these two approaches are combined, it is possible 
to detect pressure losses larger than 15% in one, two, 
three, or four (diffusion) tires within 1 minute. It is also 
possible to detect which of the tires that are under-
inflated. 
 
 
INTRODUCTION 

The importance of correct tire inflation pressure is well 
known. Vehicle handling is decided upon the tire-road 
contact patch. Furthermore fuel consumption increases 
and tire lifetime decreases with 20 % for every 0.2 bar 
under-inflation. It is also known [11] that tire problems 
are the third most common breakdown for passenger 
vehicles. 75% of all tire flats are preceded by under-
inflation or slow leakage. With a tire pressure monitoring 
system severe accidents can be avoided and both 
economical and environmental benefits can be made. 
 
There are two ways of monitoring the tire pressure. One 
way is to mount a pressure sensor at the rim on each 
tire and via a communication-link (usually a radio-link) 
transfer the sensor value to a central unit. This is called 
direct tire pressure monitoring. Due to the extra 
hardware needed this method is very expensive. The 
other alternative, called indirect tire pressure monitoring 
uses existing sensors and software algorithms. The 

indirect systems are very cost-effective (no extra 
hardware). 
 
There are plenty of on-going R&D projects (see e.g. 
[12]) on indirect Tire Pressure Monitoring Systems 
(TPMS), reflected in over 100 patents. There are two 
classes of indirect TPMS. 
1. Vibration analysis using the fact that the rubber in 

the tire reacts like a spring when excited by road 
roughness. The vibration analysis can be performed 
by FFT-based methods or by parametric methods 
(using an auto-regressive model). The idea is to 
monitor the resonance frequency, which is 
correlated with the tire pressure (see e.g. [5] and 
[6]). 

2. Wheel radius analysis using the fact that the tire 
pressure affects the effective rolling radius of the 
tire. The most common suggestion is to monitor a 
residual, based on a static non-linear transformation 
of wheel speeds, which should be close to zero 
when the tires are equally large, i.e. have equally tire 
pressure (see e.g. [7]). 

 
Most of the on-going R&D projects are in the latter class. 
These two classes have some different properties 
regarding robustness and sensitivity, for instance to 
varying velocity, and ability to detect pressure changes. 
Typically wheel radius analysis is very sensitive to 
different velocities, but on the other hand it responds 
very quickly to pressure changes. The vibration analysis 
is sensitive to different road conditions, but is insensitive 
to various velocities.  
 
The idea here is to combine these two classes in a way 
such that both robustness and sensitivity properties are 
enhanced. The method proposed for the wheel radius 
analysis uses both longitudinal and lateral vehicle 
dynamic models. The longitudinal model compares the 
driven and non-driven wheels, using a friction model, 
while the lateral model compares the left and right 
wheels, using a yaw rate model. The analysis is based 
on [1], [2] and [3].  The vibration analysis includes a pre-
processing unit, see [4], to improve the signal quality 
from the ABS-sensors, which makes the analysis 



feasible. This method uses ABS-sensor signals only to 
monitor the tire pressure. 
 
TIRE MODEL 

The information sources for indirect TPMS are wheel 
speed sensors and perhaps inertial sensors like rate-
gyros and accelerometers. The main sources are the 
wheel speed sensors; in modern vehicles these sensors 
are integrated in the ABS-system. 

The tire can be modeled as a spring-damper system 
both in vertical and torsional direction, see Figure 1. 
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Figure 1: Tire modeled as spring-damper system in both 
vertical and torsional direction. 

The vertical spring-damper system is the source of two 
phenomena. First, the effective rolling radius is 
dependent on the inflation pressure and if the pressure 
is decreased the radius is decreased. This causes the 
tire to rotate faster. In the equation rδ  denotes the 
change of radius affected by deflation. 
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Secondly, the tire vibrates in the vertical direction 
excited by road roughness and causes the effective 
rolling radius to fluctuate with a specific resonance 
frequency. Indirectly this results in a fluctuation of the 
wheel speed at the same resonance frequency. When 
the tire inflation pressure decreases the spring-constant 
is decreased, , and this yields a lower resonance 
frequency. The most significant mode for this vibration is 
about 10-20 Hz. 
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In the equation N denotes the normal force applied to 
the wheel. The torsional spring-damper system is also 
excited by road roughness. The tire vibrates in the 
torsional direction and the vibration directly affects the 

wheel speeds. Again, the vibration frequency is 
decreased when the tire inflation pressure is decreased. 
For this vibration the most significant vibration mode is 
about 40-50 Hz. 

TPMS USING VIBRATION ANALYSIS 

The idea here is to monitor the vibration frequency from 
the vertical and torsional spring-damper systems and to 
detect abnormal values of the frequency. Here we have 
only used the torsional vibration. The frequency content 
(FFT) of the wheel speed signal for three different test 
runs (with different pressure) is shown in Figure 2. As is 
evident from the figure the correlation between 
resonance peak frequency and inflation pressure can be 
used for tire pressure monitoring. In the figure, batches 
of 30 seconds test runs are used. 

 

Figure 2: Smoothed FFT of wheel speed signal for three 
different test runs with 100%, 85% and 70% of the 
nominal inflation pressure, respectively. 

The FFT is a batch-wise data processing and consumes 
a large amount of memory and causes a time delay. An 
alternative is to estimate the resonance frequency 
recursively using a second order damper-spring model 
of the form 
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where yt is the wheel speed and q is the shift operator 
. Model-based parameter estimation can 

easily be implemented with standard recursive methods, 
such as recursive least squares (RLS) or Kalman filter. 
The parameters a
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1 and a2 are transformed by means of 
a non-linear function to the frequency value of the 
resonance peak. Using a recursive filter, the resonance 
peak frequency becomes a function of time and is 
shown in Figure 3. 



 

Figure 3: Recursive estimates of torsional vibration 
frequency for three different test runs with 100%, 85% 
and 70% of the nominal inflation pressure, respectively. 

To evaluate the performance of the filter, 30 test runs 
were performed. The first 10 have nominal pressure, the 
ten in the middle are 15 % under-inflated and the last 10 
are 30% under-inflated. The test runs include different 
driving styles, surfaces and velocities. An average of the 
recursive estimate for each test run is shown in Figure 4. 
A pressure decrease of 15 % is detectable within 30 
seconds, but a more realistic threshold is 25 % within 
one minute. 

 

Figure 4: Average of pressure indication for 30 test runs 
with 100%, 85% and 70% of the nominal inflation 
pressure, respectively. The pressure indication is the 
normalized vibration frequency. 

Vibration analysis has the advantage to independently 
evaluate every tire and therefore it is also possible to 
detect pressure losses in all four tires (diffusion). 

TPMS USING WHEEL RADIUS ANALYSIS 

TPMS based on wheel radius analysis uses the fact that 
the effective rolling radius of the wheel decreases if the 

tire loses pressure. This is perhaps the most intuitive 
way of detecting under-inflation by monitoring wheel 
speeds, but it has both advantages and disadvantages. 

Most of the existing approaches to TPMS use static non-
linear relations to detect under-inflation. One example is 
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The wheel speedsωi are enumerated as front left (1), 
front right (2), rear left (3), and rear right (4). This 
enumeration is used in the rest of the paper. A pressure 
loss is detected when the test statistic, r, is non-zero. As 
an inherit disadvantage, this static consistency test 
cannot detect equal pressure losses on the same axle or 
side. Assuming that all tires are traveling with the same 
velocity this is seen from 
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An equal pressure loss in for example both rear tires 
does not affect the test statistic, r. Instead of using a 
static non-linearity, we use both longitudinal and lateral 
vehicle dynamics. The longitudinal dynamics compares 
the driven and non-driven wheel speeds, using a friction 
model, while the lateral dynamics compares left and 
right wheel speeds, using a yaw rate model. 

LONGITUDINAL DYNAMICS 

As suggested in [8] a friction model can be used to 
detect under-inflation. The friction model is based on the 
linear part of the classic longitudinal slip model, Figure 5, 
described in for instance [9] and [10]. The wheel speeds 
of front (driven) and rear (non-driven) wheels are 
compared to compute the slip. 

 

Figure 5: Slip curves for asphalt, gravel and snow. The 
slope of the linear part (s small) is used in the TPMS. 



The wheel speed and engine torque are computed from 
standard sensors. The wheel slip is defined as the 
difference between the circumferential and longitudinal 
velocity. 
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For small values of the normalized traction force, 

zx FF=µ , the wheel slip is a linear function of the 
normalized traction force and the relative difference in 
tire radius between the front and rear wheel 

δµ += ks  

where k is the inverse of the longitudinal stiffness and δ , 
for the left side, is defined as 
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Using the state vector  the discrete 
time state space model for the left side of the vehicle is 
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An analogous and independent model is used for the 
right side of the vehicle. The offset, δ, is caused by 
unequal tire radius and can be used in the TPMS as an 
indicator of the tire inflation pressure. The state space 
model can be directly applied to a Kalman filter and with 
proper tuning a decent trade-off between noise 
attenuation and tracking speed can be achieved. 

Experimental results 

In order to evaluate the performance of estimating 13δ  

(left side) and 24δ  (right side), a series of test runs were 
conducted. The test runs included 5 different scenarios.  

1. Nominal pressure in all tires. 

2. Low pressure in front left from the beginning. 

3. Low pressure in front left after 220 seconds. 

4. Low pressure in rear left from the beginning. 

5. Low pressure in rear left after 220 seconds. 

The result is shown in Figure 6. The response to the 
pressure change is fast and accurate and it takes only 
about 60 seconds to track the right level. 

 

Figure 6: Recursive estimates of longitudinal dynamic 
relative radius parameters. The solid line represents 
nominal pressure; the dash dotted low pressure in front 
left and the dotted low pressure in rear left. 

LATERAL DYNAMICS 

Instead of comparing front and rear tires, left and right 
tires can be compared. Additional to wheel speed 
sensors a rate gyro is needed. Rate gyros have become 
more and more common in modern vehicles due to the 
fact that the number of stability assistant systems 
increases and they demand rate gyros. 

Using a lateral dynamic model it is possible to compute 
the yaw rate from wheel angular speeds. 

Dynamic model 

The well-known relation between yaw rate ψ& , 
longitudinal velocity vx and curve radius R (see e.g. [9] 
and [10]) is 

R
vx=ψ&  

The velocity at the center of the rear axle is 
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The curve radius is defined as the distance between the 
center of the rear axle and the Instantaneous Center of 
Motion, ICM. 
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With the definition 1
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δ  and with Lrear denoting 

the distance between the rear wheels, yaw rate is 
computed as 
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The tire radius r4 is unknown and a good working 
approximation is to use the nominal tire radius rn.  
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where m indicates a computable value. Again, an 
analogous model is used for the front axle. 

The gyro signal is subject to an offset error and needs to 
be modeled. A good working approximation of gyro 
imperfections is 

ogyro δψψ += && . 

Kalman filter 

A state space model for the lateral dynamic models 
(front and rear) and gyro model uses the state vector 

( )Tox 1234 δδδψψ &&&=  

and the measurements are arranged as  

( t
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With these two vectors a discrete time state space 
model can be derived as 
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It is here assumed that the unknown input vt only affects 
the yaw acceleration, which is common for motion 
models. The discrete time model is applied by a Kalman 
filter and the tire inflation pressure correlated parameters 
δ12 and δ34 can be estimated. 

Experimental results 

Figure 7 illustrates the estimated δ-parameters for the 
lateral dynamics model. The same test runs as in the 
longitudinal dynamics are used. Again, the tracking is 
both fast and reliable. The same performance as for the 
longitudinal dynamics is achieved. As can be seen the 
estimated parameters are non-zero even with nominal 
pressure in all tires. The reason for this is different wear 
and tear for all tires. A calibration routine is needed to 
compute the nominal level of the estimated parameters. 

 

Figure 7: Recursive estimation of lateral dynamics 
relative radius parameters for the 5 test runs defined 
above. The solid line represents nominal pressure; the 
dash dotted low pressure in front left and the dotted low 
pressure in rear left. 

FUSION OF VIBRATION AND WHEEL RADIUS 
ANALYSIS 

Both vibration and wheel radius analysis carry 
information about the current tire inflation pressure. They 
can be used independently, but for optimal performance 
they should be combined. Wheel radius analysis 
estimates the relative radii between front, rear, left and 
right wheel pairs, respectively. Using simple logistic it is 
possible to detect whether one, two or three tires are 
under-inflated. Both vibration and wheel radius analysis 
need calibration after the pressure is changed in one or 
more tires. The calibration routine computes the nominal 
value of the resonance frequency and relative tire 
radius. Neither of the proposed methods includes a state 
for the absolute tire pressure and the standard fusion 
formula cannot be applied. Instead a voting scheme has 
to be applied. 
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Figure 8: A voting scheme is used for the fusion of 
vibration and wheel radius analysis. 

Both vibration and wheel radius analysis deliver two 
signals. 

1. A flag ti (i = 1,2) indicating which tire is/are 
under-inflated. 

2. A confidence ci (i = 1,2) level of the first signal. 

The voting scheme works as follows: 

If both flags indicate the same under-inflation, t1 = t2, the 
mean of the confidence levels is tested against a 
predetermined threshold, (c1+c2)/2 > h0. In case the test 
is positive a warning is applied. If the flags indicate 
different under-inflations they are treated separately. 
Each confidence level is tested against a predetermined 
threshold c1>h1 and c2>h2. If any of the tests is positive a 
warning is applied. If none of the flags indicates under-
inflation no warning is applied. An important note here is 
that h1, h2 > h0, i.e. if both vibration and wheel radius 
analysis indicate that the same tire (or tires) is under-
inflated the threshold level is lower. This means that the 
confidence is higher and smaller pressure changes can 
be detected faster and more accurate. It also improves 
the false detection rate. In Figure 9 warning signals for 
the three different approaches are illustrated for a test 
run with 30% under-inflation. 

 

Figure 9: Warning signals for wheel radius analysis, 
vibration analysis and fusion of both methods. Zero and 
one means no warning and warning, respectively. 

As can be seen in the figure the detection time is shorter 
when both wheel radius and vibration analysis is used. 

The detection time for the fusion algorithm is within 1 
minute. 

CONCLUSIONS 

A novel approach for detecting low/changed pressure 
without pressure sensors has been outlined. The 
approach uses both vibration and wheel radius analysis 
for optimal performance and only existing sensors in 
modern vehicles are used. Independently the 
approaches can detect a pressure loss of 25% within 
one minute, but if they are combined a pressure loss of 
15% in one, two, three or four tires (diffusion) can be 
detected within one minute. To combine the two 
approaches a voting scheme was proposed. 
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