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We here analyze the parity space approach to fault detectionand isolation in a
stochastic setting, using a state space model with both deterministic and stochas-
tic unmeasurable inputs. We first show the similarity and a formal relationship
between a Kalman filter approach and the parity space.
A first main contribution is probabilistic design of a parityspace detection and
diagnosis algorithm, which enables an explicit computation of the probability
for incorrect diagnosis.
A second main contribution is to compare a range of related methods starting
at model-based diagnosis going to completely data-driven approaches: (1) the
analytical parity space is computed from a known state spacemodel, (2) this
state space model is estimated from data, (3) the parity space is estimated us-
ing subspace identification techniques and (4) the principal component analysis
(PCA) is applied to data. The methods are here presented in a common parity
space framwork.
The methods are applied to two application examples: a DC motor, which is a
two-state SISO model with two faults, and a larger F16 vertical dynamics five
state MIMO model with six faults. Different user choices anddesign parameters
are compared, for instace how the matrix of diagnosis probabilities can be used
as a design tool for performance optimization with respect to design variables
and sensor placement and quality.

Key words:fault detection, diagnosis, Kalman filtering, adaptive filters, linear systems,
principal component analysis, subspace identification

1 Introduction

The parity space approach to fault detection [1,3,4,7,8] isan elegant and general
tool for additive faults in linear systems and is based on intuitively simple algebraic
projections and geometry. Simply speaking, a residualrt is a data projection

rt = P T Zt, Zt =




Yt

Ut


 , (1)
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where the data vectorZt contains the measured input (Ut) and output (Yt) over a
certain time window. The parity space approach provides a tool to computeP to
yield a residual vector that is zero when there is no fault in the system and reacts to
different faults in different patterns, enabling a simple algorithm for fault isolation
(deciding which fault actually occurred). Examples on simulated data often show
very good results. Consider for instance Figure 1, where a DCmotor is subject to
first an offset in the control input and then an offset in the velocity sensor.
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Fig. 1. Parity space residual for a DC motor, as described in Section 5, subject to first an
input voltage offset and then a sensor offset. The two residuals are designed to be non-zero
for only one fault each. The lower plot illustrates extremely high sensitivity in residuals to
measurement noise (SNR=221).

The upper plot shows how structured parity space residuals correctly point out
which fault has occurred. A main drawback is that the approach does not take mea-
surement errors and state noise into consideration as in theclassical Kalman filter
literature. The lower plot in Figure 1 illustrates the high sensitivity to even quite
small a measurement noise.

The first main contribution is a stochastic design and analysis of the parity space
approach. We here mix the linear state space models used in fault detection and
Kalman filtering, treating deterministic and stochastic disturbances in different ways.
Previous work in this direction includes [14], [1] (Ch. 7) and [8] (Ch. 11). Related
ideas using principal component analysis (PCA) are found inthe chemical diag-
nosis literature as [2,5]. This work is a continuation of [11], where an additive
fault was included in an augmented state vector, and observability of the fault was
used as the tool to assess diagnosability. In this paper, an explicit expression for
P i,j = P (diagnosisj| fault i) is given for any parity space, and the proposed detec-
tion and isolation algorithm is optimally designed to minimize these probabilities.
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The second main contribution is a comparison of alternativeapproaches to compute
the projectionP in (1):

(i) The model-based parity space, whereP (A, B, C, D) depends on the known
state space model, described by the quadruple(A, B, C, D).

(ii) System identification gives(Â, B̂, Ĉ, D̂), from which the parity space can be
approximated asP (Â, B̂, Ĉ, D̂). One here needs to know the structure of the
state space model.

(iii) Subspace approaches to system identification provides a way to directly com-
puteP̂ . Again, one needs to know the structure of the state space model.

(iv) The principal component approach, where one directly estimatesP̂ from data.
Compared to above, one needs to know the state order, but not how the data
Zt is split into inputs and outputs. That is, causality is no concern in the PCA
approach. This is one main reason for its wide spread [2] in chemical engi-
neering, where sometimes thousands of variables are measured.

Simulations on a DC motor and F16 vertical dynamics will be used to illustrate the
contributions. Preliminary results of the two main contributions have previously
been published in [12,13].

2 Models and notation

2.1 System model

The linear system is here defined as the state space model

xt+1 =Atxt + Bu,tut + Bd,tdt + Bf ,tft + Bv,tvt

yt =Ctxt + Du,tut + Dd,tdt + Df ,tft + et. (2)

The matricesA, B, C, D depends on the system, while the signals belong to the
following categories:

– Deterministic known inputut, as is common in control applications.
– Deterministic unknown disturbancedt, as is also common in control applica-

tions.
– Deterministic unknown fault inputft, which is used in the fault detection lit-

erature. We here assume thatft is either zero (no fault) or proportional to the
unit vectorft = mtf

i, wheref i is all zero except for elementi which is one.
Exactly which part of the system faulti affects is determined by the correspond-
ing columns inBf ,t andDf ,t. This fault model covers offsets in actuators and
sensors for instance. The fault magnitudemt can be arbitrary, but in most of the
discussion we consider a constant magnitudemt = m within the analysed data
window.
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– Stochastic unknown state disturbancevt and measurement noiseet, as are used
in a Kalman filter setting. There is an ambiguity of the interpretations ofvt and
dt. We might treatvt as a deterministic disturbance, but in many cases this leads
to an infeasible problem where no parity space exists. Bothvt andet are here
assumed to be independent with zero mean and covariance matricesQt andRt,
respectively.

– The initial state is treated as an unknown variable, so no prior information is
needed.

The dimension of any signalst is denoted asns = dim(st). Traditionally, either
a stochastic (dt = 0) or a deterministic (vt = 0, et = 0) framework is used in the
literature, but here we aim to mix them and combine the theories.

The work concerns primarily tests based on data from a sliding window, in which
case the signal model can be written

Yt = Oxt−L+1 + HuUt + HdDt + HvVt + HfFt + Et. (3)

To establish the correspondance of models (2) and (3), stackL signal values to

define the signal vectorsYt =
(
yT

t−L+1, . . . , y
T
t

)T

, etc. for all signals. We here

use the time indext to note that fault detection is a recursive task. Also define the
Hankel matrices

Hs =




Ds 0 . . . 0

CBs Ds . . . 0
...

. . .
...

CAL−2Bs . . . CBs Ds




(4)

for all signalss = u, d, f, v and the observability matrix

O =




C

CA
...

CAL−1




. (5)

The covariance of the measurement vector is denoted

S = Cov(HvVt + Et). (6)

If the system is time-varying, thenO, Hs, S will all be time-varying as well.
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2.2 Projections and whitening operations

The basic tools and mathematical notation in the derivationare the following:

– Pseudo-inverse is defined asA† = (AT A)−1AT .
– Projection operator. A projection on the range spaceR(A) spanned by the columns

in A is given byPA = A(AT A)−1AT = AA†, with the obvious properties
PAA = A andPAPA = PA. RA denotes an arbitrary basis forR(A).

– Projection on null space. To remove the state dependence in(3), the orthogonal
projectionI − PO is used, with the obvious properties(I − PO)O = 0 and
(I − PO)(I − PO) = (I − PO). NO denotes an arbitrary basis forN (O).

– Whitening. IfCov(r) = P , thenCov(P−1/2r) = I, so pre-multiplying with
a symmetric matrix square rootP−1/2 with P−1/2P−1/2 = P is a whitening
operation.

– Least Squares (LS) estimation. For the equation systemAx = r, the least squares
(LS) solution isx̂LS = A†r.

– Minimum variance (MV) estimation. For the equation systemAx = r, the least
squares (LS) solution̂xLS = A†r is the minimum variance estimate if and only
if Cov(r) = I. That is, using pre-whitened residual, we have

x̂MV = (P−1/2A)†P−1/2r

= (AT P−1A)−1AT P−1r.

– Angle between subspaces. LetA andB be twoM × N matrices withM > N .
The gap metric distance between the subspaces spanned by thecolumns of A
and B, respectively, is given by

d(A, B) = ‖PA − PB‖ = ‖A(AT A)−1AT − B(BT B)−1BT‖ (7)

for some matrix norm, where we can choose the Frobenius norm.

2.3 State estimation

From the properties above, the state estimator over a sliding window for the model
(3) is immediately derived. The least squares estimate gives the state observer,
while the minimum variance estimator gives the Kalman filterstate estimates

x̂LS
t−L+1 = O†(Yt − HuUt), (8a)

x̂MV
t−L+1 = (S−1/2O)†S−1/2(Yt − HuUt). (8b)

Here, we can interpreteK = (S−1/2O)†S−1/2 as the Kalman gain. For more details,
see [11].
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3 Residual generation

3.1 Parity space

Without loss of generality, the residual generating matrixin (1) can be factorized
as

rt = W T
(
I, −Hu

)



Yt

Ut


 , (9a)

= W T (Yt − HuUt) (9b)

= W T (Oxt−L+1 + HdDt + Hf Ft + HvVt + Et) (9c)

= W T (Hf Ft + HvVt + Et). (9d)

The parity space is defined to be insensitive to the input (yielding the factorization
in (9a)), the initial state and deterministic disturbances, which implies thatrt = 0
for any initial statext−L+1 and any disturbance sequencedk, k = t − L + 1, . . . , t,
provided that there is no stochastic term present (ek = 0, vk = 0 for k = t − L +
1, . . . , t) and no fault,fk = 0, k = t − L + 1, . . . , t.

Definition 1 (Parity space) The parity space is defined as in (1), withP = W [I, −Hu]
for any data projectionW in the null space of[O, Hd]. That is,

W T [O Hd] = 0 ⇔ W ∈ N[O Hd]. (10)

From (9) we get

E(rt) = W THf Ft, (11a)

Cov(rt) = W TSW. (11b)

Any deviation from zero ofrt is either due to the noise or one of the possible faults,
and the diagnosis task is to distinguish these causes.

The maximal dimension of the residual vector is given by

L(ny − nd) − nx ≤ max
W

nr ≤ Lny − nx (12)

The inequalities become an equality in casend = 0, that is, no disturbance. Equality
with the lower bound holds if the matrix[O Hd] has full column rank. This shows
that a parity space always exists (maxw nr > 0) if there are more observations than
disturbances, ifL is chosen large enough.

Another approach, not pursued here, is to applyfault decoupling, where each resid-
ual is designed separately by the conditionW T

i [O Hd Hf F
−i] = 0. HereF−i is a
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fault vector that excites all faults except for faulti. The advantage is that the tran-
sient as shown in the upper plot in Figure 1 will disappear. The disadvantage is that
more measurements needed (ny ≥ nd + nf ) and that one projectionWi is needed
for each fault. We will not use fault decoupling in the sequel, although the same
principles are applicable to this case as well.

3.2 Kalman filter based residuals

Generally, a linear state estimator can be written

x̂t−L+1 = K(Yt − HuUt).

The estimator is unbiased ifKO = I, which of course is the case for (8). It gener-
ates a vector ofmodel errorsas

εt = Yt − Ŷ = Yt −Ox̂t−L+1 − HuUt (13a)
= (I −OK)(Yt − HuUt) (13b)

= (I −OK)(Oxt−L+1 + HdDt + HvVt + Et + Hf mF i) (13c)

= (I −OK)(HdDt + HvVt + Et + Hf mF i). (13d)

In the last equality, the unbiased property of the state estimate is used.

From (13a) we see that the covariance of the model errors is minimized using the
minimum variance Kalman filter estimate, so this is the only state estimator dis-
cussed in the sequel. The Kalman filter model errors in (13) have mean and covari-
ance:

E(εKF
t ) =(I −O(OT S−1O)−1OT S−1)(HdDt + Hf mF i),

Cov(εKF
t ) =S −O(OT S−1O)−1OT ).

The model error generating matrixI −O(OT S−1O)−1OT S−1 is a projection ma-
trix, so the covariance matrix ofεKF

t is singular. That is, there are many linear com-
binations ofεKF

t that are always zero, independently of the data. More precisely,
the rank of the covariance matrix is

rank(Cov(εKF
t )) = rank(I −O(OT S−1O)−1OT S−1) (14)

= rank(I) − rank(O(OT S−1O)−1OT S−1) (15)
= rank(I) − rank(O) ≥ Lny − nx, (16)

with equality if and only if the system is observable (rank(O) = nx). By intro-
ducing a basisWKF for the range of this data projection matrix, we get a residual
generator

rt = W T
KF (Yt − HuUt), WKF = RI−O(OT S−1O)−1OT S−1 . (17)
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If the system is observable, then the dimension of the residual in (17) is

nr = Lny − nx. (18)

3.3 Comparison

The parity space and Kalman filter prediction errors are related as follows:

– The observer and Kalman filter can be used to compute a model error that can
be reduced to a residual with non-singular covariance matrix for the case of no
disturbanceDt = 0, where the latter gives minimum variance residuals.

– Sincert = W T
KF (Yt − HuUt) has the same size as the parity space residual

defined in (9) (namelyLny − nx) and it does not depend on the initial state, it
belongs by definition to the parity space.

– The Kalman filter innovation can be transformed to a parity space where also the
disturbance is decoupled (besides the initial state), by another projection̄̄rt =
NW T

KF
Hd

r̄t.

That is, these two design methods are more or less equivalent, so in the sequel we
will just refer to the parity space residual.

4 Diagnosis

We here detail an algorithm for parity space detection and isolation which mini-
mizes the risk for incorrect isolation and discuss the improvements to the structured
parity space approach.

4.1 Residual normalization

The distribution of the residual in (11) will in the design and analysis be assumed
Gaussian

(rt|mf i) ∈ N(m W THf F
i

︸ ︷︷ ︸
µi

, W TSW ), (19)

which can be motivated in two ways:

– It is Gaussian if bothVt andEt are Gaussian.
– It is approximately Gaussian by the central limit theorem when dim rt <<

dim Vt + dim Et, which happens if the data windowL is large enough. That
is, asymptotically inL, it is Gaussian.
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It follows from (19) that each fault is mapped onto a vectorµi = W T Hf F
i with a

covariance matrixW T SW . We can normalize the residual distribution as follows,
which will enable probability calculations in Section 4.2.

Definition 2 (Normalized parity space) The normalized parity space is defined
as

[Normalizedparityspace]r̄t = W̄ T (Yt − HuUt), W̄ T = (W TSW )−1/2W T ,

(20)

for any parity spaceW T , whereS = Cov(Yt −HuUt) is defined in (6). The parity
space is unique up to a multiplication with a unitary matrix.We call‖W̄ THf F

i‖ =
‖(W TSW )−1/2W THf F

i‖ theFault to Noise Ratio(FNR).

The bar onr, µ, W is here and in the sequel used to denotes normalized variables.
The normalized residual satisfies (asymptotically)

(r̄t|mf i) = W̄ T (HvVt + Et + mHf F
i) (21a)

∈ N(m W̄ THf F
i

︸ ︷︷ ︸
µ̄i

, I) = N(mµ̄i, I). (21b)

The FNR‖µ̄i‖ explicitly reveals how much each fault contributes to the residual
relative to Gaussian unit noise.

One interpretation of this definition is that the parity space residual is whitened spa-
tially and temporally. We stress that a transformation of the residual space affects
how the fault vectors look like, but not the ability to make diagnosis. The point
to keep in mind is that there are many obtainable parity spaces, the sliding win-
dow sizeL affects their dimensionnr and the weighting matrixW their stochastic
properties. The structured residual is a common choice in the literature on fault
detection.

Definition 3 (Structured parity space) NormalizeW so the fault vectorsµi point
in perpendicular directions. The most common choices of residual pattern are

[µ1, µ2, . . . µnf ] = I and [µ1, µ2, . . . µnf ] = 11
T − I,

both defining a set of corners on a unit cube. This approach presumenf = nr. The
design is done by solving

[µ1, µ2, . . . µnf ] = TW THf(1L ⊗ Inf
) (22)

for T and takingW T
struc = TW T . Here⊗ denotes the Kronecker product.

Figure 2 illustrates some fundamental differences of structured and normalized par-
ity spaces:
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– Figure 2.a shows one example of a structured residual. In a noise-free setting,
diagnosis is simple, but in the noisy case, the decision regions become quite
complicated non-linear surfaces.

– Figure 2.a shows normalized residuals. Here, the stochastic uncertainty is a unit
sphere, and the decision regions are straight lines. The price paid is non-perpendicular
fault vectorsµ̄i.

Another important difference concerns the residual dimension:

nf < nr The structured residual is truncated in some way, and information is lost.
nf = nr This is the case in Figure 2.
nf > nr The structured residual concept does not work, while isolation is still pos-

sible as outlined in the algorithm below as long as only single faults are consid-
ered.
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Fig. 2. Structured and normalized residual fault pattern with uncertainty ellipsoids for fault
1 and 2, respectively. Solid line is for unnormalized residuals, and dashed line after nor-
malization. The dashed line is the optimal decision region.

4.2 Algorithm

Since(r̄t|f = 0) ∈ N(0, I) we have(r̄T
t r̄t|f = 0) ∈ χ2(nr). Theχ2 test provides

a thresholdh for detection, and fault isolation is performed by taking the closest
fault vector in the sense of smallest angle difference (since the magnitudem of µ̄

is unknown).

Algorithm 1 On-line diagnosis
1. Compute a normalized parity spacēW , e.g.(20).
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2. Compute recursively:

Residual: r̄t = W̄ T (Yt − HUUt)

Detection: r̄T
t r̄t > h

Isolation: î = arg min
i

‖ r̄t

‖r̄t‖
− µ̄i

‖µ̄i‖‖
2

= arg min
i

angle(r̄t, µ̄
i)

wherer̄T
t r̄t ∈ χ2(nr) andangle(r̄t, µ̄

i) denotes the angle between the two vectorsr̄t

andµ̄i. A detection may be rejected if no suitable isolation is found (mini angle(r̄t, µ̄
i)

is too large) to improve false alarm rate.

Fordiagnosabilityof single faults, the only requirement is that all faults aremapped
to different directions̄µi.

In the two-dimensional residual space, as in the example in Figure 2, the probability
for false alarm,PFA, (incorrect detection) can be computed explicitly as

PFA =
∫

rT
t rt>h

1

2π
e−

rT
t

rt

2 dr

=
∫ 2π

0

∫ ∞

h

x

2π
e−

x2

2 dxdφ

= e−
h2

2 .

which means that the threshold design is to choosePFA and then lettingh =√
−2 log(PFA). Note that the true false alarm rate may be lower if we reject alarms

wheremini angle(r̄t, µ̄
i) is too large. A more precise analysis is given below.

4.3 Analysis

We can interpret the diagnosis step as a classification problem, and compare it to
modulation in digital communication. Performance dependson the SNR, which
here corresponds to FNRm‖µ̄i‖. In modulation theory, using an additive Gaussian
error assumption, it is straightforward to compute the riskfor incorrect symbol
detection. We will here extend these expressions from regular 2D (complex plane)
patterns to general vectors inRnr .

The risk of incorrect diagnosis can be computed exactly in the case of only two
faults as follows. It relies on the symmetric distribution of r̄t, where the decision
region becomes a line, as illustrated by the dashed lines in Figure 2(b). The first step
is a change of coordinates to one where one axis is perpendicular to the decision
plane. Because of the normalization, the Jacobian of this transformation equals one.
The second step is to marginalize all dimensions except the one perpendicular to
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the decision plane. All these marginals integrate to one. The third step is to evaluate
the Gaussian error function. Here we use the (Matlab) definition

erfc(x) = 2
∫ ∞

x

1√
2π

e−x2/2dx

The result inR2 (cf. Figure 2) can be written

P (diagnosis i|fault mf j) =
1

2
erfc

(
m‖µ̄j‖ sin(

αi − αj

2
)
)

.

In the general case, the decision line becomes a plane, and the line perpendicular
to it is given by the projection distance to the intermediateline µ̄1 + µ̄2 as

m

(
µ̄1 − (µ̄1, µ̄1 + µ̄2)

(µ̄1 + µ̄2, µ̄1 + µ̄2)
(µ̄1 + µ̄2)

)
,

where(a, b) = aT b denotes a scalar product, and we get the following algorithm:

Algorithm 2 Off-line diagnosis analysis
1. Compute a normalized parity spaceW , e.g.(20).
2. Compute the normalized fault vectorsµ̄i in the parity space as in (21b).
3. The probability of incorrect diagnosis is approximately

P (diagnosis i|fault mf j) =
1

2
erfc

(
m

∥∥∥∥∥µ̄
j − (µ̄j, µ̄j + µ̄i)

(µ̄j + µ̄i, µ̄j + µ̄i)
(µ̄j + µ̄i)

∥∥∥∥∥

)

(23)

Herem denotes the magnitude of the fault. If this is not constant, we replaceµ̄i =
W̄ T Hf F

i in (21b) withµ̄i = W̄ T Hf (Mt ⊗ F i).

For more than two faults, this expression is an approximation but, as in modulation
theory, generally quite a good one. The approximation becomes worse when there
are several conflicting faults, which means that there are three or more fault vectors
in about the same direction.

We can now define the diagnosability matrixP as

P (i,j) = P (diagnosis i|fault f j), i 6= j

P (j,j) = 1 −
∑

i6=j

P (i,j). (24)

It tells us everything about fault association probabilities for normalized faultsm =
1, and the off-diagonal elements are monotonically decreasing functions of the fault
magnitudem.

Furthermore, in the classification we should allow the non-faulty class (0), where
f = 0, to decrease the false alarm rate by neglecting residual vectors, though having
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large amplitude, being far from the known fault vectors. Consider for instance the
residualrt = (−1,−1)T in Figure 2(b). This would most likely be caused by noise,
not a fault. The missed detection probabilities are computed in a similar way as

P (diagnosis 0|fault f j) =
1

2
erfc

(
m‖µ̄j‖

2

)
(25a)

P (0,0) = 1 −
∑

j

P (0,j) < PFA. (25b)

5 Example: DC motor

Consider a sampled state space model of a DC motor with continuous time transfer
function

G(s) =
1

s(s + 1)
=

1

s2 + s
.

The state variables are angle (x1) and angular velocity (x2) of the motor. Assume the
fault is either an input voltage disturbance (f 1) (equivalent to a torque disturbance)
or a velocity sensor offset (f 2).

The derivation of the corresponding state space model is straightforward, and can
be found in any textbook in control theory. Sampling with sample intervalTs = 0.4
s gives

A =




1 0.3297

0 0.6703


 , Bu =




0.0703

0.3297


 , Bv =




0.08

0.16


 , Q = 0.012,

Bd =




0

0


 , Bf =




0.0703 0

0.3297 0


 , C =




1 0

0 1


 ,

Du =




0

0


 , Dd =




0

0


 , Df =




0 0

0 1


 , R = 0.12 · I.

It is assumed that bothx1 andx2 are measured. The matrices in the sliding window
model become forL = 2:

O =




1 0

0 1

1 0.3297

0 0.6703




, Hu =




0 0

0 0

0.0703 0

0.3297 0




, Hf =




0 0 0 0

0 1 0 0

0.0703 0 0 0

0.3297 0 0 1




,
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and

W̄ T = N[O Hd] =



−0.6930 −0.1901 0.6930 −0.0572

0.0405 −0.5466 −0.0405 0.8354


 . (26)

The residual space with structured residuals, as shown in Figure 2, is

W T
struc =



−1 −0.3297 1 0

0 −0.6703 0 1


 . (27)

The difference of the parity spaces generated by (26) and (27), respectively, is il-
lustrated in Figure 2. The faults in the normalized parity space are not orthogonal,
but on the other hand the decision region is particularly simple.

The probability matrix (24) is here

P (1:2,1;2) =




0.995 0.005

0.005 0.995


 .

Note that this matrix is independent of the choice of original parity space (26), (27)
or if the Kalman filter approach (17) is used. By increasing the length of the sliding
window to L = 3, we get a much better performance with a probability matrix
that is very close to diagonal and a very small missed detection probability. The
confidence circles of the structured residuals in Figure 3 are more separated than
the ones in Figure 2.
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Fig. 3. Similar to Fig. 2, but withL increased from2 to 3. The circles are now more
separated, decreasing the risk of incorrect decisions.

Figure 4 shows a systematic evaluation of the design parameterL. A largerL means
that it takes a longer time to get a complete window with faulty data, so the delay
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for detection should increase withL. On the other hand, the miss-classification
probabilities decrease quickly inL.
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Fig. 4. Miss-classification probabilities in diagnosis as afunction of sliding window length.

As a final illustration, one can investigate how much we lose in performance using
a cheaper velocity sensor with variance 10 instead of 1, and the result is

P (1:2,1;2) =




0.95 0.05

0.05 0.95


 .

The ten times larger miss-classification probabilities canbe compensated for by
sacrificing a short delay for detection and using a longer sliding window.

6 Data-driven approaches to compute the parity space

We will in this section briefly outline alternative approaches to compute a corre-
spondance to a parity space residual in case of that no model is availablea priori.
To simplify, no state disturbance will be included in the comparison. It is suffi-
cient to obtain any residual in the parity space, normalization can then be applied
afterwards.

To implement Algorithm 1, onlyW , S andµi are needed. For later comparison,
we first give a general approach to fault detection that only depends onW , no
matter howW is computed. First the residuals are normalized by their estimated
covariance matrix. The matrixS in (20) can be computed analytically when the
model is known, but for conformity we use the same method for all approaches.
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From a fault-free data setZt with N samples, we take

rt = W T Zt (28a)

R̂ =
1

N − L

N∑

t=L+1

rtr
T
t (28b)

W̄ = WR̂−1/2 (28c)

r̄t = R̂−1/2rt. (28d)

Here,R corresponds toW T SW .

For diagnosis, a data setZ i
t of lengthN i for each fault mode is needed. Usually,

these data sets are quite short. The fault vector is estimated using averaging of
residuals

µ̄i =
1

N i − L

N i∑

t=L+1

r̄i
t. (29)

The approaches are sorted in ascending order of model knowledge.

6.1 System identification

The following cases of unknown model are plausible:

– If the model (2) is partially given, where certain subsystems and integrators are
known, the data setZt can be used to estimate the free parameters.

– If only the structure of the model (2) is known, a subspace identification algo-
rithm can be used to estimate the state space matrices, followed by a prediction
error method to refine the model.

In either case, a function likepem in the system identification toolbox in Matlab
can be applied off-line to a fault-free data setZt [15]. For diagnosis, the faulty data
setsZ i

t collected during faulti are used to estimateµi by averaging the residual.
The on-line residual is then computed as

rt = NO(Â,Ĉ)(I, −Hu(Â, B̂u, Ĉ))Zt. (30)

6.2 Subspace identification

If the state space model is only instrumental for diagnosis,then one can instead
estimate the parity space directly, using a certain subspace identification algorithm
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[5]. This yields

rt = N̂O(I, −Ĥu)Zt. (31)

The key step is a principal component analysis (PCA) of a product ofL×nx Hankel
matrices of past and future data:

ZfZ
T
p =




Yf

Uf



(
Y T

p UT
p

)
= PT + P̃ T̃ ,

where

Yf =




y(t) y(t + 1) . . . y(t + nx − 1)

y(t + 1) y(t + 2) . . . y(t + nx)
...

...

y(t + L − 1) y(t + L) . . . y(t + L + nx − 2)




Yp =




y(t − L) y(t − L + 1) . . . y(t − L + nx − 1)

y(t− L + 1) y(t − L + 2) . . . y(t− L + nx)
...

...

y(t− 1) y(t) . . . y(t + nx − 2)




,

and similarly forUf andUp. The data window is in this notation a bit different from
before, in thatL past (index p) andL+nx future (index f) data are used, rather than
justL past data.

The projection matrices are then computed fromP̃ as

P̃ =




P̃y

P̃u




Ôs = P̃⊥
y

−P̃ T
y Ĥu = P̃ T

u ,

from which we can take

N̂O = P̃y (32)

Ĥu = −(P̃yP̃
T
y )−1P̃yP̃

T
u , (33)

and these estimates are plugged into the residual generator(31). A fault-free data set
Zt provides an estimate ofS, while the faulty data setsZ i

t can be used to estimate
µi.
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6.3 PCA

The model-free approach is to use principal component analysis (PCA) [6,17] to
split up the data into two parts, modelẐt and residual̃Zt:

Zt =




Yt

Ut


 = Ẑt + Z̃t = Pxxt + Prrt. (34)

The notation has been chosen to show the resemblence with themodel-based ap-
proach, the model depends on the statext and the other part is due to the residual
rt. We first describe how to compute this representation, and then comment on
properties, relations and applications.

A singular value decomposition (SVD) is applied to the estimated covariance ma-
trix of Zt as follows:

R̂Z =
1

N − L

N∑

t=L+1

ZtZ
T
t = PDP T . (35)

HereP is a square unitary matrix, that isP TP = PP T = I, andD is a diagonal
matrix containing the singular values ofR̂Z . We will split the SVD into two parts
as

P =
(
Px Pr

)
, D =




Dx 0

0 Dr


 (36)

The split assigns thenx largest singular values to the model, and the othernr sin-
gular values are assumed to belong to the residual space. By construction, we have
P T

x Px = Inx
, P T

x Pr = 0, P T
r Px = 0, P T

r Pr = Inr
andPxP

T
x + PrP

T
r = Inx+nr

.
Using these properties, the split in (34) is computed by

Ẑt = PxP
T
x Zt (37a)

Z̃t = PrP
T
r Zt. (37b)

For fault identification, we take the residuals

rt = P T
r Zt (38)

r̄t = D−1/2
r P T

r Zt, (39)

where the transformation impliesCov(rt) = I in the limit N → ∞.

What is the relation to the parity space? To answer this, firstuse the model (3) in
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(34):

Zt =




Yt

Ut


 =



O
0


xt−L+1 +




Hf , Hu, Hv, I

0, I, 0, 0







F

U

V

E




= Pxxt + Prrt. (40)

We conclude the following:

– The split of eigenvalues should giverank(Px) = nx.
– The inputs in the data are revealed by zero rows inPx, so causality is cleared out.
– The rangePx is the same as the range ofO, if these zero rows are omitted.
– The residual part must also explain dynamics in the input data, and changes in

input dynamics can be mixed up with system changes.
– It cannot be guaranteed that the eigenvalues of the system are larger than the

other ones, so the PCA split based on sorted eigenvalues can be dubious.

Despite the two last points, the examples to follow demonstrate excellent perfor-
mance, though these points should be kept in mind.

7 Example: DC motor revisited

Let us return to the DC motor example in Section 5, where the parity space ap-
proach was investigated. We there got the null space (26), which gives the following
data projection matrix:

NO(I, −Hu) =



−0.6930 −0.1901 0.6930 −0.0572 −0.0299 0

0.0405 −0.5466 −0.0405 0.8354 −0.2726 0


 (41)

7.1 Identification approach

The state space matrices(A, Bu, C) are estimated from fault-free data, and then the
parity space is computed from these. The numerical result is

NO(I, −Hu) =



−0.7059 −0.0358 0.7066 −0.0320 0.0017 0

−0.0009 −0.6664 −0.0008 0.7456 −0.0721 0


 (42)

which is close to the analytical projection in (41).
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7.2 Subspace identification approach

The result should be identical to the one in the previous subsection, if the same
subspace approach is used. The main difference is that the state space matrices are
never estimated explicitly.

7.3 PCA approach

The SVD of estimated data covariance matrixCov(Zt) gives the singular values
of (35)

diag(D) = (1.1208, 0.8136, 0.1860, 0.0475, 0.0105, 0.0088).

and projection matrix

P =
(
Px Pr

)
=




−0.0035 0.0687 0.7008 −0.0560 −0.6109 0.3575

0.0092 0.0510 −0.0043 0.7203 0.2995 0.6235

0.0028 0.0650 0.7070 0.0468 0.6106 −0.3478

−0.0594 −0.0169 0.0101 0.6886 −0.4037 −0.5992

−0.7137 −0.6940 0.0651 −0.0073 0.0359 0.0589

0.6979 −0.7117 0.0682 0.0412 −0.0072 0.0042




The question is how to split between model and residual. Thatis, how many columns
nx belongs toPx? This choice ofnx is not a clear cut, since there is no obvious
threshold for the singular values.nx =2, 3 or 4 are all plausible choices. One might
first try nx = 4 in the light of the parity space approach above, and the theoretical
dimension of the residual in (12). This would be the direct counterpart to the parity
space. We then take

W = PrD
−1/2
r .

In Section 7.5, we investigate what happens for the choicenx = 2.

7.4 Comparison

As mentioned, only the choice ofW differs between the different approaches. To
quantify the similarity of two approaches, we measure the closeness of two sub-
spacesW1 andW2 using the gap metric as a generalization of the angle between
vectors.
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Fig. 5. Convex hull and covariance for residuals generated from the parity space (a) and
PCA (b) two-dimensional (n = 4) residuals when no fault, fault 1 and fault 2 is present,
respectively.

We fix the false alarm rate (FAR) to 0.05, and compute the threshold as

h : #(gt > h) = N · FAR,

on the fault free data{z0
t }N0

t=1. We can then evaluate isolation performance experi-
mentally as

pi(m) = P (gt > h|fault i of magnitudem)

on the data sets{zi
t}N i

t=1. The thresholds and achieved FAR are summarized in Table
1. Figure 5 shows the residuals from parity space and PCA design, respectively.
Figure 6 showspi(m). These plots are quite similar and, as can be expected, the
more prior knowledge the better performance, although the difference is minor.

Table 1
Comparison of parameters. The theoreticalχ2(nr) thresholds are 5.99 (nr = 2) and 9.49
(nr = 4), respectively.

Method Gap metric Threshold false alarm rate

True parity space 0 5.76 0.052

System identification 0.0066 5.79 0.052

PCA 2D residual 0.0386 6.02 0.052

PCA 4D residual – 14.1 0.062
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Fig. 6. Empirical probabilitypi(m) of detection of no fault, fault 1 and fault 2 is present,
respectively. For PCA,nx = 4 in (a) andnx = 2 in (b) in (36), respectively.

7.5 Extending the dimension of the PCA residual

In the PCA approach, the split in model and residual was not a clear cut. Choosing
nx = 2 yields a four-dimensional residual, and this reveals a veryinteresting fact.
According to Figure 6(b), the model-free PCA approach outperforms the model-
based parity space approach! The only explanation for this,is that there are sub-
spaces in the data that are almost in the parity space, but notcompletely. The design
of less conservative parity spaces might be an interesting research area. That is, one
should check the singular values of the observability matrix Os and include almost
singular directions as well. This means that the residuals will under the no-fault
assumption normally be somewhat larger (so the threshold has to be increased to
keep the false alarm rate), but the detectability increases. The size of the ’almost’
parity space should be optimized to maximize isolation performance.

8 Simulation example: F16 vertical dynamics

The fault detection algorithm is applied to a model of the vertical dynamics of
an F-16 aircraft. The model is taken from [10], which is a sampled version of a
model in [16]. Preliminary results are also reported in [13]. The involved signals
and their generation in the simulations are summarized in Table 2. Input, state and
measurement noises are all simulated as independent Gaussian variables, whose
variance is given in the same table.

We have the following numerical values for the matrices in the model (2):
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Table 2
Signals in the F16 simulation study. Size means the variancefor the inputs, measurement
noise variance for the outputs, state noise variance for thestates and constant magnitude
for the faults, respectively.

Signal Not. Meaning Size

Inputs u1 spoiler angle (0.1 deg) 1

u2 forward accelerations (m/s2) 1

u3 elevator angle (deg) 1

Outputs y1 relative altitude (m) 10−4

y2 forward speed (m/s) 10−6

y3 pitch angle (deg) 10−6

Disturb. d1 speed disturbance -

States x1 altitude (m) 10−4

x2 forward speed (m/s) 10−4

x3 pitch angle (deg) 10−4

x4 pitch rate (deg/s) 10−4

x5 vertical speed (deg/s) 10−4

Faults f1 spoiler angle actuator 0.5

f2 forward acceleration actuator0.1

f3 elevator angle actuator 1

f4 relative altitude sensor 1

f5 forward speed sensor 1

f6 pitch angle sensor 1

A =




1 0.0014 0.1133 0.0004 −0.0997

0 0.9945 −0.0171 −0.0005 0.0070

0 0.0003 1.0000 0.0957 −0.0049

0 0.0061 −0.0000 0.9130 −0.0966

0 −0.0286 0.0002 0.1004 0.9879




(43a)
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Bu =




−0.0078 0.0000 0.0003

−0.0115 0.0997 0.0000

0.0212 0.0000 −0.0081

0.4150 0.0003 −0.1589

0.1794 −0.0014 −0.0158




(43b)

Bd =
(
0 1 0 0 0

)T

(43c)

Bf =




−0.0078 0.0000 0.0003 0 0 0

−0.0115 0.0997 0.0000 0 0 0

0.0212 0.0000 −0.0081 0 0 0

0.4150 0.0003 −0.1589 0 0 0

0.1794 −0.0014 −0.0158 0 0 0




(43d)

C =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0




, Df =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(43e)

Du andDd are zero matrices of appropriate dimensions.

Residuals were computed for the fault-free case, and for thesix different single
faults described in Table 2, according to Algorithm 1, the stochastic parity space
approach. The time windowL was selected to 3. This gives a four-dimensional
(nr = Lny − nx = 3 · 3 − 5 = 4) residual, which is illustrated in Figure 7.

It is clear from the figure that some of the faults are easy to detect and isolate, while
some (where the residuals are closer to the origin) are harder. Faultf4, fault in the
relative altitude sensor, gives a zero residual, so it cannot be detected. The threshold
is chosen toh = 9.3 to get a false alarm rate of 0.05. The probability of correct
isolation is in this simulation and for this threshold,1, 1, 0.96, 0.05, 0.72, 1,
respectively. That is, fault 4 is not possible to isolate or detect (PD = PFA = 0.05).
Note that the fault size, as well as the noise level, will affect the detectability and
isolability of the faults. This can be analyzed using Algorithm 2.

The probability of incorrect diagnosis, Equation (23), canbe calculated analyti-
cally. The matrix below contains these probabilities, where

P (i,j) = prob(diagnosisi|fault j). (44)
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Fig. 7. Illustration of the four-dimensional residuals from parity space for no fault (0) and
fault 1–6, respectively. The mean value, estimated covariance matrix and convex hull of
each group of residuals are illustrated. Fault 4 is obviously not diagnosable, and residualr4

contains almost no information.
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Fig. 8. Illustration of the residuals from parity space for no fault (0) and fault 1–6, respec-
tively, but here in another basis. This confirms that fault 4 is not diagnosable. The decision
lines for fault isolation are indicated.

The residual for faultf4 is zero, the relative altitude fault cannot be detected simply
because we do not measure absolute height. This means that probability of incorrect
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Fig. 9. Illustration of the residuals from PCA for no fault (0) and fault 1–6, respectively.
The mean value, estimated covariance matrix and convex hullof each group of residuals
are illustrated. These can however not directly be comparedto the residual components in
Figures 7 and 8 due to that the bases are different. Again, fault 4 is not diagnosable, and
here residualr1 contains little information.

as well as correct diagnosis all can be considered zero (P (i,4) andP (4,i)).

P =




1.0000 0.0000 0.0000 0 0.0000 0.0000

0.0000 0.5980 0.0000 0 0.4020 0.0001

0.0000 0.0000 0.9999 0 0.0001 0.0000

0 0 0 0 0 0

0.0000 0.4020 0.0001 0 0.5415 0.0564

0.0000 0.0001 0.0000 0 0.0564 0.9436




(45)

The probability for incorrect diagnosis is very small in most cases. The case that
poses the most problems is to distinguish faultsf2 andf5. These two faults are also
very close in Figure 8, in the sense that they are almost parallel. Yet, the interesting
fact is that more faults than residuals actually can be isolated.

Simulations of PCA are shown in Figure 9. The dimensionnr of the residuals
(the dimension ofPr in Equation (36)) is selected to 4, to facilitate a comparison
with the parity space approach. Figure 9 shows the residuals. Note that the residual
components are not the same as in the parity space approach inFigure 7, since we
have another basis for the residual space. The threshold is chosen toh = 9.7 to get
a false alarm rate of 0.05. The probability of correct isolation is in this simulation
and this threshold1, 1, 0.96, 0.05, 0.67, 1, respectively. That is, compared to the
parity space approach these are almost the same. There is only a slightly worse
performance for isolating fault 5.
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The residual componentr1 from the PCA method is very small for all faults. This
suggests that it does not contain information about the faults, and that the residual
space is indeed only three-dimensional. From the simulations and analysis of the
stochastic parity space approach, it appears that the residual componentr4 plays a
similar role, and contain very little information for faultisolation.

9 Conclusions

We have here introduced the normalized parity residual space for additive faults in
linear stochastic systems. It was shown how this parity space can be derived in a
Kalman filter framework. We have derived explicit formulas for incorrect diagnosis
probabilities, and these depend critically on the fault to noise ratio. An example
illustrated how the diagnosability matrix can be used as a design tool with respect
to sensor quality and design parameters.

Further, several approaches to fault detection and isolation were compared, where
parity space approach and principle components analysis (PCA) are the conceptu-
ally most interesting ones. A detailed interpretation of PCA analysis in terms of
parity space notation was given. The assumptions, advantages and drawbacks of
these approaches are summarized below:

– The parity space approach starts with a state space model ofthe system. The use
of prior model knowledge improves the performance comparedto PCA. With a
partially known model, system identification techniques can be applied. Gener-
ally, the more prior structural knowledge, the better performance. Another ad-
vantage is thata priori probabilities of incorrect diagnosis can be calculated.

– PCA requires absolutely no prior knowledge, not even causality (which ones of
the known signals inzt are inputsut and outputsyt, respectively). The perfor-
mance has been demonstrated to be only slightly worse compared to the case of
perfect model knowledge. Determination of the state dimension is one critical
step in PCA, and it is based on the singular values of the data correlation matrix.
Over-estimating the state dimension gives too few residuals which decreases per-
formance. Under-estimating state dimension can give very good performance, in
that new residuals almost belonging to the parity space are used for detection and
diagnosis. One major risk here, is that when the system enters a new operating
point which was never reached in the training data, this residual might increase
in magnitude and cause a false alarm.
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