Residual generation for diagnosis of additive faults in
linear systems

F. Gustafsson

We here analyze the parity space approach to fault deteatidrisolation in a
stochastic setting, using a state space model with bothndigtistic and stochas-
tic unmeasurable inputs. We first show the similarity andrenéd relationship
between a Kalman filter approach and the parity space.

A first main contribution is probabilistic design of a parfipace detection and
diagnosis algorithm, which enables an explicit computatid the probability
for incorrect diagnosis.

A second main contribution is to compare a range of relatethods starting
at model-based diagnosis going to completely data-driygmaaches: (1) the
analytical parity space is computed from a known state spamdel, (2) this
state space model is estimated from data, (3) the parityesisaestimated us-
ing subspace identification techniques and (4) the prihcipaponent analysis
(PCA) is applied to data. The methods are here presented omanon parity
space framwork.

The methods are applied to two application examples: a D@mwahich is a
two-state SISO model with two faults, and a larger F16 vattitynamics five
state MIMO model with six faults. Different user choices alas$ign parameters
are compared, for instace how the matrix of diagnosis prititas can be used
as a design tool for performance optimization with respedatesign variables
and sensor placement and quality.

Key words:fault detection, diagnosis, Kalman filtering, adaptiveefs linear systems,
principal component analysis, subspace identification

1 Introduction

The parity space approach to fault detection [1,3,4,7,8hi®legant and general
tool for additive faults in linear systems and is based ouitively simple algebraic
projections and geometry. Simply speaking, a residuil a data projection

Y,

e = PTZu Zy = ) (1)
Ui
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where the data vector; contains the measured inpuf;} and output ;) over a
certain time window. The parity space approach provideohttocomputeP to
yield a residual vector that is zero when there is no faulbhendystem and reacts to
different faults in different patterns, enabling a simggoaithm for fault isolation
(deciding which fault actually occurred). Examples on dated data often show
very good results. Consider for instance Figure 1, where ario®r is subject to
first an offset in the control input and then an offset in thiverky sensor.

Structured residuals for L = 2

_1 1 1 1 1 1 1 1
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Structured residuals for L = 2 with measurement noise (SNR=221)

Fig. 1. Parity space residual for a DC motor, as describeceatiéh 5, subject to first an
input voltage offset and then a sensor offset. The two ressdare designed to be non-zero
for only one fault each. The lower plot illustrates extreyn@bh sensitivity in residuals to
measurement noise (SNR=221).

The upper plot shows how structured parity space residualealy point out
which fault has occurred. A main drawback is that the apgrates not take mea-
surement errors and state noise into consideration as itldesical Kalman filter
literature. The lower plot in Figure 1 illustrates the higinsitivity to even quite
small a measurement noise.

The first main contribution is a stochastic design and arsalysthe parity space
approach. We here mix the linear state space models usedlird&tection and
Kalman filtering, treating deterministic and stochastgtalibances in different ways.
Previous work in this direction includes [14], [1] (Ch. 7)ca8] (Ch. 11). Related
ideas using principal component analysis (PCA) are founithénchemical diag-
nosis literature as [2,5]. This work is a continuation of J[Idhere an additive
fault was included in an augmented state vector, and olsiétyaf the fault was
used as the tool to assess diagnosability. In this paperxicie expression for
P = P(diagnosigj| fault ) is given for any parity space, and the proposed detec-
tion and isolation algorithm is optimally designed to migemthese probabilities.



The second main contribution is a comparison of alternaipgroaches to compute
the projectionP in (1):

(i) The model-based parity space, whéteA, B, C, D) depends on the known
state space model, described by the quadruple3, C, D).

(i) System identification givesA, B, C', D), from which the parity space can be
approximated a® (A, B, C, D). One here needs to know the structure of the
state space model.

(iif) Subspace approaches to system identification prevedeay to directly com-
pute P. Again, one needs to know the structure of the state spacelmod

(iv) The principal component approach, where one directtineates” from data.
Compared to above, one needs to know the state order, bubnothie data
Zy is split into inputs and outputs. That is, causality is nogan in the PCA
approach. This is one main reason for its wide spread [2] engbal engi-
neering, where sometimes thousands of variables are negasur

Simulations on a DC motor and F16 vertical dynamics will bedu® illustrate the
contributions. Preliminary results of the two main conitibns have previously
been published in [12,13].

2 Models and notation
2.1 System model

The linear system is here defined as the state space model

Ty =Awwy + Byguy + Bagdy + By fy + By vy
Yy =Cray + Dy yuy + Dgydy + Dy o fy + e (2)

The matricesA, B, C, D depends on the system, while the signals belong to the
following categories:

— Deterministic known input;, as is common in control applications.

— Deterministic unknown disturbaneg, as is also common in control applica-
tions.

— Deterministic unknown fault inpuf;, which is used in the fault detection lit-
erature. We here assume thfatis either zero (no fault) or proportional to the
unit vector f, = m,f%, where f? is all zero except for elemerntwhich is one.
Exactly which part of the system faulaffects is determined by the correspond-
ing columns inB;; and Dy ;. This fault model covers offsets in actuators and
sensors for instance. The fault magnitudecan be arbitrary, but in most of the
discussion we consider a constant magnituge= m within the analysed data
window.



— Stochastic unknown state disturbang@&nd measurement noisg as are used
in a Kalman filter setting. There is an ambiguity of the intetptions ofv; and
d;. We might treat; as a deterministic disturbance, but in many cases this leads
to an infeasible problem where no parity space exists. Bo#nde; are here
assumed to be independent with zero mean and covarianceesély and R;,
respectively.

— The initial state is treated as an unknown variable, so mr prformation is
needed.

The dimension of any signal is denoted as, = dim(s;). Traditionally, either
a stochasticd; = 0) or a deterministic«®;, = 0,e; = 0) framework is used in the
literature, but here we aim to mix them and combine the tlesori

The work concerns primarily tests based on data from a gjidimdow, in which
case the signal model can be written

Y, =Ox_pp + HU, + HiDy + H,)V;, + Hy Fy + B, (3)

To establish the correspondance of models (2) and (3), dtasignal values to
T

define the signal vectors, = (ytT_LH, . ,ytT) , etc. for all signals. We here

use the time index to note that fault detection is a recursive task. Also deffiree t
Hankel matrices

o . e @

CAL=2B, ... OB, D,

for all signalss = u, d, f, v and the observability matrix

C
CA
0= . ) (5)
CAL—l
The covariance of the measurement vector is denoted

S = Cov(H,V, + E,). (6)

If the system is time-varying, thafl, H,, S will all be time-varying as well.



2.2 Projections and whitening operations

The basic tools and mathematical notation in the derivatrerthe following:

— Pseudo-inverse is defined 45 = (AT A)~1AT.

— Projection operator. A projection on the range space) spanned by the columns
in Ais given by P, = A(ATA)"1AT = AAT, with the obvious properties
Py,A = AandP,P, = Ps. R4 denotes an arbitrary basis fR( A).

— Projection on null space. To remove the state depender(89,ithe orthogonal
projection/ — Py is used, with the obvious propertiés — P»,)O = 0 and
(I — Po)(I — Po) = (I — Po). No denotes an arbitrary basis f4f(O).

— Whitening. If Cov(r) = P, thenCov(P~'/?r) = I, so pre-multiplying with
a symmetric matrix square rodt~/2 with P~'/2P~1/2 = P is a whitening
operation.

— Least Squares (LS) estimation. For the equation sysiters r, the least squares
(LS) solution isz™® = Afr.

— Minimum variance (MV) estimation. For the equation systém= r, the least
squares (LS) solution™ = Afr is the minimum variance estimate if and only
if Cov(r) = I. Thatis, using pre-whitened residual, we have

i'MV _ (P_1/2A)TP_1/2T
= (ATP'A)TATP

— Angle between subspaces. L&and B be twoM x N matrices withAM/ > N.
The gap metric distance between the subspaces spanned bgltinens of A
and B, respectively, is given by

d(A, B) = | Pa — Pp| = |A(A"A) A" = B(B" B) "' B (7)

for some matrix norm, where we can choose the Frobenius norm.

2.3 State estimation

From the properties above, the state estimator over a glwiindow for the model
(3) is immediately derived. The least squares estimatesdive state observer,
while the minimum variance estimator gives the Kalman fiate estimates

:%I{IELJA - OT(th - HuUt)7 (8a)
My = (STVPOYISTVA(Y, — HLUL). (8b)

Here, we can interprete = (S~1/200)1S~1/2 as the Kalman gain. For more details,
see [11].



3 Residual generation
3.1 Parity space

Without loss of generality, the residual generating matrixl) can be factorized

as
= W7 <I, _Hu) (:;t) 7 (9a)

t

— WT(Y, — HuUy) (9b)
=W (Oxy_py1 + HyD; + HiFy, + H)V; + E}) (9¢)
= WT(H;F, + H,V; + E}). (9d)

The parity space is defined to be insensitive to the inputdiyig the factorization
in (9a)), the initial state and deterministic disturbanaeesich implies that, = 0
for any initial stater, ., and any disturbance sequentek =t — L+ 1,...,t,
provided that there is no stochastic term presept 0, v, = 0fork =t — L +
1,...,t)andnofault,f, =0,k =t—L+1,...,t.

Definition 1 (Parity space) The parity space is defined asin (1), with= W[I, —H,]
for any data projectiori?” in the null space ofO, H,|. Thatis,

WTO Hy)=0< W € N . (10)

From (9) we get
E(r) = W H F,, (11a)
Cov(r,) = WTSW. (11b)

Any deviation from zero of; is either due to the noise or one of the possible faults,
and the diagnosis task is to distinguish these causes.

The maximal dimension of the residual vector is given by
L(ny —ng) —ny < max n, < Lny, —n, (12)

The inequalities become an equality in cage= 0, that is, no disturbance. Equality
with the lower bound holds if the matrix) H,] has full column rank. This shows

that a parity space always exists«x,, n, > 0) if there are more observations than
disturbances, if. is chosen large enough.

Another approach, not pursued here, is to afglt decouplingwhere each resid-
ual is designed separately by the conditiéii (O H, H;F~'] = 0. Here F ' is a



fault vector that excites all faults except for fauliThe advantage is that the tran-
sient as shown in the upper plot in Figure 1 will disappeae disadvantage is that
more measurements needeq & n, + ny) and that one projectiol¥; is needed
for each fault. We will not use fault decoupling in the sequadthough the same
principles are applicable to this case as well.

3.2 Kalman filter based residuals

Generally, a linear state estimator can be written
ffthH = K(Y}/ - HuUt)-

The estimator is unbiased KO = I, which of course is the case for (8). It gener-
ates a vector afnodel errorsas

=Y, —Y =Y, — Oty — HU, (13a)
= ([ = OK)(Y, — H,Up) (13b)
= (I — OK)(Ox4_p41 + HyD; + H,V; + E; + HmF") (13c)
= (I — OK)(H,D; + H,V; + E, + HymF"). (13d)

In the last equality, the unbiased property of the statenedé is used.

From (13a) we see that the covariance of the model errorsnsmaed using the
minimum variance Kalman filter estimate, so this is the onftesestimator dis-
cussed in the sequel. The Kalman filter model errors in (13¢ n@ean and covari-
ance:

E(gffF) =(I - O(OTSflo)fIOTSfleth 1 HfmFi)’
Cov(ng) =5 — O(OTS_l(Q)_l(QT).

The model error generating matrx— O(OTS~10)~ 10T S~ is a projection ma-
trix, so the covariance matrix ef‘”" is singular. That is, there are many linear com-
binations ofX* that are always zero, independently of the data. More pelgis
the rank of the covariance matrix is

rank(Cov (e/")) = rank(l — O(OTS'0)tOTS™1) (14)
= rank(I) — rank(O(OTS'O) 10T S (15)
= rank(/) — rank(OQ) > Ln, — n,, (16)

with equality if and only if the system is observabtei(k(O) = n,). By intro-
ducing a basi$Vr for the range of this data projection matrix, we get a redidua
generator

Tt = W}‘?F(Y; - HuUt), WKF = R[,(Q(@Ts—l(f))—l(f)Ts—l. (17)



If the system is observable, then the dimension of the rasidy17) is

n, = Lny, — ng. (18)
3.3 Comparison

The parity space and Kalman filter prediction errors argedlas follows:

— The observer and Kalman filter can be used to compute a modelteat can
be reduced to a residual with non-singular covariance m#drithe case of no
disturbanceD, = 0, where the latter gives minimum variance residuals.

— Sincer; = WL.(Y; — H,U;) has the same size as the parity space residual
defined in (9) (namely.n, — n,) and it does not depend on the initial state, it
belongs by definition to the parity space.

— The Kalman filter innovation can be transformed to a papgce where also the
disturbance is decoupled (besides the initial state), loghen projectionr;, =
/\/’ngdet.

That is, these two design methods are more or less equiyakemnt the sequel we
will just refer to the parity space residual.

4 Diagnosis

We here detail an algorithm for parity space detection anthi®n which mini-
mizes the risk for incorrect isolation and discuss the inaproents to the structured
parity space approach.

4.1 Residual normalization

The distribution of the residual in (11) will in the designdaanalysis be assumed
Gaussian

(refmf) € N(m WTH; F', WT'SW), (19)

N———
/J'i

which can be motivated in two ways:
— Itis Gaussian if both;, and £, are Gaussian.
— It is approximately Gaussian by the central limit theoremmewdimr, <<

dim V; + dim F;, which happens if the data window is large enough. That
is, asymptotically in, it is Gaussian.



It follows from (19) that each fault is mapped onto a vegtor= W7 H; F* with a
covariance matrix¥? SWW. We can normalize the residual distribution as follows,
which will enable probability calculations in Section 4.2.

Definition 2 (Normalized parity space) The normalized parity space is defined
as

[Normalizedparityspacelr, = W (Y, — HU,), W = (WTSW)"V2wT,
(20)

for any parity spacé?”, whereS = Cov(Y; — H,U,) is defined in (6). The parity
space is unique up to a multiplication with a unitary matkive call|| /W7 H; F"|| =
|(WTSW)~-Y2WT H; F|| theFault to Noise RatigFNR).

The bar onr, i, W is here and in the sequel used to denotes normalized vasiable
The normalized residual satisfies (asymptotically)

(Felmf") = W (H,V, + E; + mH; F") (21a)
e N(mWTHF', I) = N(mp', I). (21b)
W—/

/:LZ

The FNR||z*|| explicitly reveals how much each fault contributes to theideal
relative to Gaussian unit noise.

One interpretation of this definition is that the parity speesidual is whitened spa-
tially and temporally. We stress that a transformation efésidual space affects
how the fault vectors look like, but not the ability to makeginosis. The point
to keep in mind is that there are many obtainable parity spabe sliding win-
dow sizeL affects their dimension, and the weighting matrix/” their stochastic
properties. The structured residual is a common choicea@nrliterature on fault
detection.

Definition 3 (Structured parity space) NormalizelV’ so the fault vectorg’ point
in perpendicular directions. The most common choices adives pattern are

[t 2, ™) =1 and [p', g% ... 0] =117 — 1,

both defining a set of corners on a unit cube. This approachpresn; = n,. The
design is done by solving

i ) = TWTH (1, @ I,) (22)
for T and takingiVX == TW?. Here® denotes the Kronecker product.

Figure 2 illustrates some fundamental differences of sired and normalized par-
ity spaces:



— Figure 2.a shows one example of a structured residual. mise4iree setting,
diagnosis is simple, but in the noisy case, the decisiororesgbecome quite
complicated non-linear surfaces.

— Figure 2.a shows normalized residuals. Here, the stachastertainty is a unit
sphere, and the decision regions are straight lines. The paid is non-perpendicular
fault vectorsi;.

Another important difference concerns the residual dintens

ny < n, The structured residual is truncated in some way, and ird&ion is lost.

ny = n, Thisisthe case in Figure 2.

ny > n, The structured residual concept does not work, while ismas still pos-
sible as outlined in the algorithm below as long as only srigllts are consid-
ered.

Structured Residual , L=2 Normalized Structured Residual L=2

(b)

Fig. 2. Structured and normalized residual fault pattet wihcertainty ellipsoids for fault
1 and 2, respectively. Solid line is for unnormalized realduand dashed line after nor-
malization. The dashed line is the optimal decision region.

4.2 Algorithm

Since(7;|f = 0) € N(0, 1) we have(7! 7| f = 0) € x*(n,). Thex? test provides
a thresholdh for detection, and fault isolation is performed by taking tllosest
fault vector in the sense of smallest angle difference ésthe magnituden of
is unknown).

Algorithm 1 On-line diagnosis
1. Compute a normalized parity spadg, e.g.(20).

10



2. Compute recursively:

Residual: 7, = W' (Y, — HyU,)
Detection: 77 > h

~

Isolation: i = arg n H

I tH ||M I

= arg min angle(7, ji")

wherert 7 € x*(n,) andangle(7;, ii') denotes the angle between the two vectprs
andji’. A detection may be rejected if no suitable isolation is fb@nin; angle(7;, %)
is too large) to improve false alarm rate.

Fordiagnosabilityof single faults, the only requirement is that all faults mr&pped
to different directiongi’.

In the two-dimensional residual space, as in the examplegur€ 2, the probability
for false alarm Pr 4, (incorrect detection) can be computed explicitly as

1 i
PFA:/ —e "2 dr
rtTrt>h 27'('

27 oo 22
:/ / L% dudd

o Jn 27

_n2

which means that the threshold design is to choBsg and then lettingh =
—2log(Pr4). Note that the true false alarm rate may be lower if we rejiectes
wheremin; angle(7, ii*) is too large. A more precise analysis is given below.

4.3 Analysis

We can interpret the diagnosis step as a classification gmglkdnd compare it to
modulation in digital communication. Performance depeodshe SNR, which
here corresponds to FNR||z||. In modulation theory, using an additive Gaussian
error assumption, it is straightforward to compute the fkincorrect symbol
detection. We will here extend these expressions from ee@b (complex plane)
patterns to general vectors’Ri*.

The risk of incorrect diagnosis can be computed exactly endfise of only two
faults as follows. It relies on the symmetric distribution/g, where the decision
region becomes aline, as illustrated by the dashed linegur€2(b). The first step
is a change of coordinates to one where one axis is perpdadiouthe decision
plane. Because of the normalization, the Jacobian of gsformation equals one.
The second step is to marginalize all dimensions exceptileperpendicular to

11



the decision plane. All these marginals integrate to one.tfid step is to evaluate
the Gaussian error function. Here we use the (Matlab) dfimit

o 1
Tz 2T

The result inR? (cf. Figure 2) can be written

erfe(x) = 2 e " Pdy

, 1 , p—
P(diagnosis i|fault mf7) = aerfc <m||/ﬂ]| sin(a 5 4 )) .

In the general case, the decision line becomes a plane, adohéhperpendicular
to it is given by the projection distance to the intermediate ! + i* as

21 =1 ) 2
1 (B +p7)
m — + )

(“ NN ‘”)

where(a, b) = a’b denotes a scalar product, and we get the following algorithm

Algorithm 2 Off-line diagnosis analysis

1. Compute a normalized parity spaide, e.g.(20).

2. Compute the normalized fault vectgr'sin the parity space as in (21b).
3. The probability of incorrect diagnosis is approximately

([ + 1)
(7 + it 7 +

P(diagnosis i|fault mf7) = ierfc (m ‘ i — )(ﬂj + ')

)

(23)

Herem denotes the magnitude of the fault. If this is not constaetreplacen’ =
WTHF"in (21b) withi’ = WT H; (M, ® F*).

For more than two faults, this expression is an approximdiig, as in modulation
theory, generally quite a good one. The approximation besoworse when there
are several conflicting faults, which means that there asetbr more fault vectors
in about the same direction.

We can now define the diagnosability matfxas

pld) — P(diagnosis i|fault f7),i # j
pUi) — 1 — Z plid) (24)
i#]j

It tells us everything about fault association probalasitior normalized faults: =
1, and the off-diagonal elements are monotonically decnggsinctions of the fault
magnituden.

Furthermore, in the classification we should allow the raultf class (0), where
f = 0,to decrease the false alarm rate by neglecting residutdngethough having

12



large amplitude, being far from the known fault vectors. §ldar for instance the
residual; = (-1, —1)T in Figure 2(b). This would most likely be caused by noise,
not a fault. The missed detection probabilities are conguta similar way as

‘ 1 0’
P(diagnosis O|fault f7) = aerfc <m||; H) (25a)

po) _ 1 _ 3 PO < Py (25b)

J

5 Example: DC motor

Consider a sampled state space model of a DC motor with canigitime transfer
function
1 1

Gls) = s(s+1) T P2ts

The state variables are angi€ Jand angular velocity:(*) of the motor. Assume the
fault is either an input voltage disturbanggé ) (equivalent to a torque disturbance)
or a velocity sensor offsefft).

The derivation of the corresponding state space modelagystforward, and can
be found in any textbook in control theory. Sampling with gdarntervall, = 0.4
s gives

1 0.3297 0.0703 0.08 )
A= , By = , By = , @ =0.017,
0 0.6703 0.3297 0.16
0 0.0703 0 10
Bd = ) Bf = ) C= )
0 0.3297 0 01
0 0 00 ,
D.=| |.Di=|"|. D= CR=012-1.
0 0 01

It is assumed that both, andx, are measured. The matrices in the sliding window
model become fof = 2:

1 0 0 0 0 000

0 1 0 0 0 1060
O = R Hu = , Hf =

1 0.3297 0.0703 0 0.0703 000

0 0.6703 0.3297 0 0.3297 00 1

13



and

— —0.6930 —0.1901 0.6930 —0.0572
0.0405 —0.5466 —0.0405 0.8354

The residual space with structured residuals, as showrgur&i2, is

. ~1-0.3297 1 0
Wstruc - . (27)
0 —0.6703 01

The difference of the parity spaces generated by (26) and (@3pectively, is il-
lustrated in Figure 2. The faults in the normalized paritg@are not orthogonal,
but on the other hand the decision region is particularlypgem

The probability matrix (24) is here

0.995 0.005
0.005 0.995

P(1:2,1;2)

Note that this matrix is independent of the choice of origpaaity space (26), (27)
or if the Kalman filter approach (17) is used. By increasirgléngth of the sliding
window to L = 3, we get a much better performance with a probability matrix
that is very close to diagonal and a very small missed detegrobability. The
confidence circles of the structured residuals in Figuree3naore separated than
the ones in Figure 2.

Structured Residual , L=3 Normalized Structured Residual L=3

i
4\g

N2k

G |
1¥o¥2©

1
3 4 5

(@) (b)

Fig. 3. Similar to Fig. 2, but withl, increased fron2 to 3. The circles are now more
separated, decreasing the risk of incorrect decisions.

Figure 4 shows a systematic evaluation of the design paeahed larger L means
that it takes a longer time to get a complete window with fadkta, so the delay

14



for detection should increase with. On the other hand, the miss-classification
probabilities decrease quickly in

10 :
— P(1]2)
-~ P(O]1)
BTSN - P(0J2)

10°F >

Probability
=
c)I

2 25 3 35 4 4.5 5 5.5 6
Sliding window length L

Fig. 4. Miss-classification probabilities in diagnosis dsrection of sliding window length.

As a final illustration, one can investigate how much we losgarformance using
a cheaper velocity sensor with variance 10 instead of 1, leadesult is

pare _ [ 0:95 005

0.05 0.95

The ten times larger miss-classification probabilities bancompensated for by
sacrificing a short delay for detection and using a longeirsli window.

6 Data-driven approaches to compute the parity space

We will in this section briefly outline alternative approashto compute a corre-
spondance to a parity space residual in case of that no modehilablea priori.
To simplify, no state disturbance will be included in the gamson. It is suffi-
cient to obtain any residual in the parity space, normabpatan then be applied
afterwards.

To implement Algorithm 1, only¥/, S andx* are needed. For later comparison,
we first give a general approach to fault detection that omlgethds onV, no
matter howlV is computed. First the residuals are normalized by theimeséd
covariance matrix. The matri% in (20) can be computed analytically when the
model is known, but for conformity we use the same method lica@roaches.

15



From a fault-free data sef, with V samples, we take

r=w7"Z, (28a)
. 1 N .
R = o (28b)
N —L t=L+1 '
W=WR'? (28c)
7= RV, (28d)

Here, R corresponds tol/ 7 STV .

For diagnosis, a data s&f of length N* for each fault mode is needed. Usually,
these data sets are quite short. The fault vector is estimetmg averaging of
residuals

1 N

fii = ~ 7 (29)
N _Lt;—l '

The approaches are sorted in ascending order of model kdgele

6.1 System identification

The following cases of unknown model are plausible:

— If the model (2) is partially given, where certain subsgsteand integrators are
known, the data sef; can be used to estimate the free parameters.

— If only the structure of the model (2) is known, a subspaeatidication algo-
rithm can be used to estimate the state space matricesyéullby a prediction
error method to refine the model.

In either case, a function likeemin the system identification toolbox in Matlab
can be applied off-line to a fault-free data g2{15]. For diagnosis, the faulty data
setsZ; collected during fault are used to estimate¢ by averaging the residual.
The on-line residual is then computed as

Tt = NO(A,C‘)(L —HU(A, B., é))Zt- (30)

6.2 Subspace identification

If the state space model is only instrumental for diagndbisn one can instead
estimate the parity space directly, using a certain sulesjoi@ntification algorithm

16



[5]. This yields
Ty = -/\//?9(—[7 _E)Zt- (31)

The key step is a principal component analysis (PCA) of ayrbdf L x n, Hankel
matrices of past and future data:

T Yy B .
Z:7° = YT yr) =PT+ PT,
f“p U p p

f
where
y(t) y(t+1) ... ylt+n,—1)

y, = y(t?tl) y(t+2) ... y(t—l.—nx)
yt+L—-1)ylt+L)...yt+L+n,—2)
yt—L) yit—L+1)...yt—L+n,—1)

v yt—L+1)y(t—L+2)... ylt—L+ny)
y(t—1) y(t) ooyt +ng —2)

and similarly forU; andU,,. The data window is in this notation a bit different from
before, in that. past (index p) and + n, future (index f) data are used, rather than
just L past data.

The projection matrices are then computed frBras

from which we can take

No =P, (32)
(33)

and these estimates are plugged into the residual gené3ajoA fault-free data set
Z, provides an estimate ¢f, while the faulty data set8! can be used to estimate

)

A
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6.3 PCA

The model-free approach is to use principal component aisa{f’CA) [6,17] to
split up the data into two parts, modé) and residual;:

VAR
Zo=| "\ =2+ 2 = P, + P, (34)

U

The notation has been chosen to show the resemblence withdtlel-based ap-
proach, the model depends on the statand the other part is due to the residual
r;. We first describe how to compute this representation, aad tomment on
properties, relations and applications.

A singular value decomposition (SVD) is applied to the eatd covariance ma-
trix of Z, as follows:

1

N
=~—7 > 4z =PDP". (35)

t=L+1

Ry

Here P is a square unitary matrix, thatABTP = PPT = ], andD is a diagonal
matrix containing the singular values &f,. We will split the SVD into two parts
as

D, 0
P = (Pm PT> , D= (36)
0 D,

The split assigns the, largest singular values to the model, and the othesin-
gular values are assumed to belong to the residual spacearyraction, we have
rP'p,=1,,P'P.=0,P'P, =0, P'P, =1, andP,PT + P,PT =1, ...
Using these properties, the split in (34) is computed by

Z, = P,PTZ, (37a)
Z, = P.P'Z, (37b)

For fault identification, we take the residuals

Tt = PTTZt (38)
7, =D V2pTz, (39)

where the transformation impli€Sov(r;) = I in the limit N — oc.

What is the relation to the parity space? To answer this,dsstthe model (3) in
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(34):

Y;‘, (@) Hfa Hua Hva I
Zy = = Ti_r4+1+
U, 0 0, I, 0, 0

We conclude the following:

= P.xy + Py, (40)

& < S

— The split of eigenvalues should givenk(P,) = n,.

— The inputs in the data are revealed by zero rowR,irso causality is cleared out.

— The rangeP, is the same as the range®f if these zero rows are omitted.

— The residual part must also explain dynamics in the inptd,dand changes in
input dynamics can be mixed up with system changes.

— It cannot be guaranteed that the eigenvalues of the systeitarger than the
other ones, so the PCA split based on sorted eigenvalueseadundious.

Despite the two last points, the examples to follow demanstexcellent perfor-
mance, though these points should be kept in mind.

7 Example: DC motor revisited

Let us return to the DC motor example in Section 5, where thgypspace ap-
proach was investigated. We there got the null space (26¢jwvgives the following
data projection matrix:

—0.6930 —0.1901 0.6930 —0.0572 —0.0299 0
No(I, —H,) = (41)

0.0405 —0.5466 —0.0405 0.8354 —0.2726 0

7.1 Identification approach

The state space matrices, B, C) are estimated from fault-free data, and then the
parity space is computed from these. The numerical result is

—0.7059 —0.0358 0.7066 —0.0320 0.0017 0
No(I, —H,) = (42)

—0.0009 —0.6664 —0.0008 0.7456 —0.0721 0

which is close to the analytical projection in (41).
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7.2 Subspace identification approach

The result should be identical to the one in the previousextti, if the same
subspace approach is used. The main difference is thatateesgtace matrices are
never estimated explicitly.

7.3 PCA approach

The SVD of estimated data covariance mattlsv(Z;) gives the singular values
of (35)

diag(D) = (1.1208, 0.8136, 0.1860, 0.0475, 0.0105, 0.0088).

and projection matrix

—0.0035 0.0687 0.7008 —0.0560 —0.6109 0.3575
0.0092 0.0510 —0.0043 0.7203 0.2995 0.6235

| 0.0028 0.0650 0.7070 0.0468 0.6106 —0.3478
<Px PT) —0.0594 —0.0169 0.0101 0.6886 —0.4037 —0.5992
—0.7137 —0.6940 0.0651 —0.0073 0.0359 0.0589
0.6979 —0.7117 0.0682 0.0412 —0.0072 0.0042

pP=

The question is how to split between model and residual. iEhhbw many columns
n, belongs toP,? This choice of., is not a clear cut, since there is no obvious
threshold for the singular values, =2, 3 or 4 are all plausible choices. One might
first try n, = 4 in the light of the parity space approach above, and the ¢tieat
dimension of the residual in (12). This would be the directrderpart to the parity
space. We then take

W = P.D /2

In Section 7.5, we investigate what happens for the chejce 2.
7.4 Comparison

As mentioned, only the choice & differs between the different approaches. To
guantify the similarity of two approaches, we measure tloseariess of two sub-
spaced/V; andW, using the gap metric as a generalization of the angle between
vectors.
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PCA residuals
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Fig. 5. Convex hull and covariance for residuals generatewh the parity space (a) and
PCA (b) two-dimensionalr{ = 4) residuals when no fault, fault 1 and fault 2 is present,

respectively.
We fix the false alarm rate (FAR) to 0.05, and compute the tiulelsas
h:#(g: > h) =N -FAR,

on the fault free dat-?}Y",. We can then evaluate isolation performance experi-
mentally as

pi(m) = P(g; > hlfaulti of magnituden)

on the data set§/}',. The thresholds and achieved FAR are summarized in Table
1. Figure 5 shows the residuals from parity space and PCAydesespectively.
Figure 6 showg;(m). These plots are quite similar and, as can be expected, the
more prior knowledge the better performance, although tifierence is minor.

Table 1
Comparison of parameters. The theoretigaln,.) thresholds are 5.99%( = 2) and 9.49

(n, = 4), respectively.

Method Gap metric Threshold false alarm rate
True parity space 0 5.76 0.052

System identification 0.0066 5.79 0.052

PCA 2D residual 0.0386 6.02 0.052

PCA 4D residual — 141 0.062
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Fig. 6. Empirical probabilityp; (m) of detection of no fault, fault 1 and fault 2 is present,
respectively. For PCAy, = 4 in (a) andn, = 2 in (b) in (36), respectively.

P(detection | fault 2)

L \ ]

P(detection | fault 2)
\

7.5 Extending the dimension of the PCA residual

In the PCA approach, the splitin model and residual was ntga cut. Choosing
n, = 2 yields a four-dimensional residual, and this reveals a u@sresting fact.
According to Figure 6(b), the model-free PCA approach adigpms the model-
based parity space approach! The only explanation for ighithat there are sub-
spaces in the data that are almost in the parity space, babngiletely. The design
of less conservative parity spaces might be an interestsgarch area. That is, one
should check the singular values of the observability mai and include almost
singular directions as well. This means that the residudlsuwder the no-fault
assumption normally be somewhat larger (so the threshaddbe increased to
keep the false alarm rate), but the detectability increaBes size of the 'almost’
parity space should be optimized to maximize isolationgrenfince.

8 Simulation example: F16 vertical dynamics

The fault detection algorithm is applied to a model of thetieat dynamics of
an F-16 aircraft. The model is taken from [10], which is a skdprersion of a
model in [16]. Preliminary results are also reported in [I3d}e involved signals
and their generation in the simulations are summarized laeTZ Input, state and
measurement noises are all simulated as independent @auwssiables, whose
variance is given in the same table.

We have the following numerical values for the matrices mriodel (2):
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Table 2

Signals in the F16 simulation study. Size means the variforcéhe inputs, measurement
noise variance for the outputs, state noise variance fostées and constant magnitude
for the faults, respectively.

Signal Not. Meaning Size

Inputs  wuy spoiler angle (0.1 deg) 1

up  forward accelerations (mfs 1

us3 elevator angle (deg) 1
Outputs y;  relative altitude (m) 104
yo  forward speed (m/s) 1076
y3  pitch angle (deg) 1076
Disturb. d; speed disturbance -
States x;  altitude (m) 1074
xo  forward speed (m/s) 1074
x3  pitch angle (deg) 10~4
x4  pitch rate (deg/s) 104
x5  vertical speed (deg/s) 1074
Faults f; spoiler angle actuator 0.5

fo forward acceleration actuator0.1

/3 elevator angle actuator 1
fa relative altitude sensor 1
f5 forward speed sensor 1
f6 pitch angle sensor 1

1 0.0014 0.1133 0.0004 —0.0997
0 0.9945 —0.0171 —0.0005 0.0070
A= 10 0.0003 1.0000 0.0957 —0.0049 (43a)
0 0.0061 —0.0000 0.9130 —0.0966
0 —0.0286 0.0002 0.1004 0.9879
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—0.0078 0.0000 0.0003
—0.0115 0.0997  0.0000
B, = | 0.0212 0.0000 —0.0081 (43b)
0.4150  0.0003 —0.1589
0.1794 —0.0014 —0.0158

Bd=(01oo®T (43c)

—0.0078 0.0000 0.0003 000
—0.0115 0.0997 0.0000 00 0
Br=1 0.0212 0.0000 —0.0081 00 0 (43d)
0.4150  0.0003 —0.1589 0 0 0
0.1794 —0.0014 —0.0158 0 0 0

10000 000100
C=101000|,D,=]000010 (43e)
00100 000001

D, andD, are zero matrices of appropriate dimensions.

Residuals were computed for the fault-free case, and fosthdifferent single
faults described in Table 2, according to Algorithm 1, theckastic parity space
approach. The time window was selected to 3. This gives a four-dimensional
(n, = Ln, —n, = 3-3 — 5 = 4) residual, which is illustrated in Figure 7.

It is clear from the figure that some of the faults are easy ted@nd isolate, while
some (where the residuals are closer to the origin) are hdrdelt f,, fault in the
relative altitude sensor, gives a zero residual, so it celpedetected. The threshold
is chosen tch = 9.3 to get a false alarm rate of 0.05. The probability of correct
isolation is in this simulation and for this threshold, 1, 0.96, 0.05, 0.72, 1,
respectively. That is, fault 4 is not possible to isolateetedt P, = Pr4 = 0.05).
Note that the fault size, as well as the noise level, will etftbe detectability and
isolability of the faults. This can be analyzed using Algfom 2.

The probability of incorrect diagnosis, Equation (23), ¢cencalculated analyti-
cally. The matrix below contains these probabilities, veher

P@3) = prob(diagnosisi|fault ). (44)
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Parity space residuals Parity space residuals

(@) (b)

Fig. 7. lllustration of the four-dimensional residualsrirgarity space for no fault (0) and
fault 1-6, respectively. The mean value, estimated covegianatrix and convex hull of
each group of residuals are illustrated. Fault 4 is obvioost diagnosable, and residual
contains almost no information.

Parity space theoretical residuals

Parity space theoretical residuals

(@) (b)

Fig. 8. lllustration of the residuals from parity space forfault (0) and fault 1-6, respec-
tively, but here in another basis. This confirms that faukt Adt diagnosable. The decision
lines for fault isolation are indicated.

The residual for faulf, is zero, the relative altitude fault cannot be detected imp
because we do not measure absolute height. This meansdbabyity of incorrect
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PCA residuals PCA residuals
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Fig. 9. lllustration of the residuals from PCA for no fault) @d fault 1-6, respectively.
The mean value, estimated covariance matrix and convexohelhch group of residuals
are illustrated. These can however not directly be compiardélae residual components in
Figures 7 and 8 due to that the bases are different. Agaitt,4da not diagnosable, and
here residual; contains little information.

-4

as well as correct diagnosis all can be considered zefd)(and P(*")).

1.0000 0.0000 0.0000 0 0.0000 0.0000
0.0000 0.5980 0.0000 0 0.4020 0.0001
0.0000 0.0000 0.9999 0 0.0001 0.0000
P = (45)
0 0 0 0 O 0
0.0000 0.4020 0.0001 0 0.5415 0.0564

0.0000 0.0001 0.0000 0 0.0564 0.9436

The probability for incorrect diagnosis is very small in rhoases. The case that
poses the most problems is to distinguish fagijtand f5. These two faults are also
very close in Figure 8, in the sense that they are almostlphrétt, the interesting
fact is that more faults than residuals actually can be iedla

Simulations of PCA are shown in Figure 9. The dimensignof the residuals
(the dimension of?, in Equation (36)) is selected to 4, to facilitate a compariso
with the parity space approach. Figure 9 shows the residNate that the residual
components are not the same as in the parity space approkjune 7, since we
have another basis for the residual space. The threshddsen toh = 9.7 to get

a false alarm rate of 0.05. The probability of correct idolais in this simulation
and this threshold, 1, 0.96, 0.05, 0.67, 1, respectively. That is, compared to the
parity space approach these are almost the same. Thereyia @tightly worse
performance for isolating fault 5.
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The residual component from the PCA method is very small for all faults. This
suggests that it does not contain information about thedaahd that the residual
space is indeed only three-dimensional. From the simulatemd analysis of the
stochastic parity space approach, it appears that theusdsidmponent, plays a
similar role, and contain very little information for faudolation.

9 Conclusions

We have here introduced the normalized parity residualesfracadditive faults in

linear stochastic systems. It was shown how this parity sgan be derived in a
Kalman filter framework. We have derived explicit formulas incorrect diagnosis
probabilities, and these depend critically on the fault dise ratio. An example
illustrated how the diagnosability matrix can be used assagdetool with respect
to sensor quality and design parameters.

Further, several approaches to fault detection and isolatere compared, where
parity space approach and principle components analySia)Bre the conceptu-
ally most interesting ones. A detailed interpretation ofAP&halysis in terms of

parity space notation was given. The assumptions, advesitaigd drawbacks of
these approaches are summarized below:

— The parity space approach starts with a state space motle system. The use
of prior model knowledge improves the performance compardlCA. With a
partially known model, system identification techniques ba applied. Gener-
ally, the more prior structural knowledge, the better penfance. Another ad-
vantage is thaa priori probabilities of incorrect diagnosis can be calculated.

— PCA requires absolutely no prior knowledge, not even daygahich ones of
the known signals in; are inputsu; and outputsy,, respectively). The perfor-
mance has been demonstrated to be only slightly worse cempathe case of
perfect model knowledge. Determination of the state dinoens one critical
step in PCA, and it is based on the singular values of the aatalation matrix.
Over-estimating the state dimension gives too few resglwhich decreases per-
formance. Under-estimating state dimension can give veoglgperformance, in
that new residuals almost belonging to the parity spaceswé for detection and
diagnosis. One major risk here, is that when the systemsataew operating
point which was never reached in the training data, thigltedimight increase
in magnitude and cause a false alarm.
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