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Lecture 9

Parity space fault detection

• Deterministic parity space: residual generation, design, examples
and sensitivity (Chapter 11)
• Mixed deterministic–stochastic parity space: analysis and design
tools (article draft)
• PCA for model-free residual generation
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Fault detection in parity spaces
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• A subspace algorithm and variants.
• Alternate approaches.
• Two application examples.
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Data model

State space model:

xt+1 = Atxt + Bu,tut + Bd,tdt + Bf,tft

yt = Ctxt + Du,tut + Dd,tdt + Df,tft.

Model over sliding window:

Yt = Oxt−L+1 + HuUt + HdDt + HfFt

where
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The algorithm
Given: a state space model.
Design parameters: sliding window size L and residual structure R.
Compute recursively:
1. The data vectors Yt and Ut and the model matrices O, Hd, Hf .
2. Let N be a any basis for the null space of [O, Hd], so
N T [O, Hd] = 0. In Matlab formalism:

[U,D,V]=svd([O Hd]);
n=rank(D);
N=U(:,n+1:end);

3. Rotate and scale the null space to w = TN , so the response to
unit faults is R, that is, wTHfF

i
t = N T T T HfF

i
t = R:,i. In matlab

formalism:

T = R / (N*Hf*kron(ones(L,1),[f1 f2 f3]));
w = (T*N)’;
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4. Compute the residual r = wT (Yt − HuUt),

r=w’*(Y-Hu*U);

5. Change detection if rT r > 0, or rT r > h considering model
uncertainties.
6. Change isolation. Fault i in direction f i where
i = arg maxi r

T Ri. Ri denotes column i of R.

[dum,i]=max(r’*R);

Example on R:

Fault f 1 f 2 f 3

r
(1)
t 1 0 0

r
(2)
t 0 1 0

r
(3)
t 0 0 1

Lecture 9, 2005 5



F2E5216/TS1002

Does it work?

When does a parity equation exist? Condition: rank(N ) > 0.

rank(N ) = nyL − rank(O) − rank(Hd)

rank(O) = nx

rank(Hd) = ndL

⇒ rank(N ) = L(ny − nd) − nx

Assumption: the column spaces of O and Hd no not overlap
rank(N ) ≥ L(ny − nd) − nx.
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Comments

• What are the requirements for isolation?
• What is the minimal filter order (the “dead-beat detector”)? Will give
minimum delay for detection.
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Alternate approaches

• Most papers assume continuous time!
• An observer can be written as

x̂t = Cy(q)yt + Cu(q)ut,

The residual can be taken as a linear combination of the state

rt = Lx̂t
∆
= A(q)yt − B(q)ut.

• An input-output approach

yt = Hu(q)ut + Hd(q)dt + Hf(q)ft
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A residual generator may be taken as

rt = W T (q)

(
yt

ut

)

= W T (q)

(
Hu(q) Hd(q)

I 0

)

︸ ︷︷ ︸

M(q)

(
ut

dt

)

+ W T (q)

(
Hf(q)

0

)

ft

Design: M(q) must belong to the left null space of W T (q), a filter of
order L.
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Simulation example: DC motor

G(s) =
1

s(s + 1)

sampled with sample interval Ts = 0.4s. The state space matrices
with x1 being the angle and x2 the angular velocity.

• Matlab demo lecture(’11a’)
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Vertical aircraft dynamics
Inputs Outputs States

u1 : spoiler angle [0.1deg] y1 : relative altitude [m] x1 : altitude [m]

u2 : forward acceleration [m/s2] y2 : forward speed [m/s] x2 : forward speed [m/s]

u3 : elevator angle [deg] y3 : pitch angle [deg] x3 : pitch angle [deg]

x4 : pitch rate [deg/s]

x5 : vertical speed [deg/s]

• Matlab demo lecture(’11b’)
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Result
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Structured residuals for L = 5 and minimum order filter

Residuals for sliding window L = 5 for the aircraft model. Upper plot
shows unstructured residuals and middle plot structured residuals.
Lower plot shows minimal order residuals.
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Result with very small noise
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Residuals for sliding window L = 5 and L = 10, respectively, for the
aircraft model. Upper plot shows unstructured residuals and middle
plot structured residuals. Lower plot shows minimal order residuals.
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Noisy observations

rt = wT (Yt + Et − HuUt) = wTEt.

Et stacked vector of measurement noises

Cov(Et) = E(EtE
T
t ) = IL ⊗ R.

The covariance matrix of the residuals is given by

Cov(rt) = wT Cov Etw = wT (IL ⊗ R)w.

Note: the algorithm produces a w where the components of w differ
in order of magnitudes.
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Mixed stochastic–deterministic model

Linear state space model.

xt+1 =Atxt + Bu,tut + Bd,tdt + Bf ,tft + Bv,tvt

yt =Ctxt + Du,tut + Dd,tdt + Df ,tft + et.

• Deterministic known input ut.
• Deterministic unknown disturbance dt.
• Deterministic unknown additive fault input ft = mtf

i (f i unit
vector i).
• Stochastic unknown state disturbance vt and measurement noise
et.
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• Residual as FIR filter of observations (length L)

rt = wT (Yt − HuUt)

= wT (Oxt−L+1 + HdDt + Hf Ft + HvVt + Et)

= wT (Hf Ft + HvVt + Et).

• Parity space defined by wTO = 0 and wT Hd = 0.
• The Kalman filter approach, neglecting disturbance Dt, estimating
xt−L+1 using the minimum variance principle, plugging in the
estimate above, also ensures wTO = 0! Parity space and Kalman
filter are dual approaches.
• With w defined as above, the residual follows

rt = N(Hf Ft, Hv Cov(Vt)H
T
v + Cov(Et)).
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DC motor example

A DC motor

G(s) =
1

s(s + 1)
=

1

s2 + s
,

sampled with 0.4 second, facilitates the geometrical interpretation.

Faults: Torque and sensor offsets.

Measurements: Angle and angular velocity.

Noise: Measurement and torque noise.

Disturbances: None.
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Background

Traditionally, either a stochastic (dt = 0) or a deterministic
(vt = 0, et = 0) framework is analysed in the literature, with a few
exceptions.

Gertler, 1998:

“It is possible to design a matrix filter which whitens the
complete residual vector, this procedure however is quite
complex and, to our understanding, does not allow for the
preservation of the geometric residual properties. Therefore,
here we will restrict ourselves to the scalar whitening
problem.”
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Suitable basis for residuals

Any non-singular transformation can be applied to the residual
rt = wT (Yt − HuUt).

Alternative 1. Structured residual as a basis in the algebraic
approach. Examples:

Res\ Fault f 1 f 2 f 3

r1 1 0 0

r2 0 1 0

r3 0 0 1

or

Res\ Fault f 1 f 2 f 3

r1 0 1 1

r2 1 0 1

r3 1 1 0

Alternative 2. Rotate and scale residuals to get a Cov(rt) = I .
Advantage: facilitate multidimensional integration to calculate
probabilities.
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Stochastic normalization of residual basis
Structured residual Normalized residual

L = 2:
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Motivation 1 for stochastic normalization

Gives simple geometric interpretation of which faults are easy to
detect and diagnose, and which will give quite similar residuals.

Example: Response in structured residual as a function of time for
both faults, without measurement noise and with (small) measurement
noise.
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Motivation 2 for stochastic normalization
Enables evaluation of probability for incorrect diagnosis. Similar to the
Gaussian vector model in telecommunication for computing
probabilities for incorrect symbol detection.

Idea: approximate the multi-dimensional integral with a
one-dimensional one perpendicular to each decision line
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Example: algorithm design

Question: How does the detection and diagnosis design parameter L
affect incorrect decisions??

Answer: For a typical fault magnitude, the miss-classification
probabilities change as follows:
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Example: system design

Question: What about replacing the expensive velocity sensor with a
cheaper one, increasing the noise variance from 1 to 10??

Answer: For a typical fault magnitude and L = 2, the diagnosis
matrix changes as

P (1:2,1;2) =

(
0.995 0.005

0.005 0.995

)

⇒ P (1:2,1;2) =

(
0.95 0.05

0.05 0.95

)

.

Action: increase L and accept longer delay for detection.
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Conclusions on stochastic parity spaces

Idea: Mixed deterministic fault/disturbance and stochastic
process/measurement noise framework, that extends KF and parity
space approaches.

Results: Explicit analytical formulas (no Monte Carlo simulations) for
probabilities of incorrect diagnosis. Besides geometrical insights, it
provides an interactive tool for system and algorithm design, and
sensitivity analysis.

Assumptions and limitations:
• Additive faults (multiplicative faults harder to analyze!)
• Linear system (EKF-like approximations otherwise)
• Known model (but a model-free PCA approach exists)
• Gaussian noise (but central limit theorem often applies anyway)
• FIR residuals (but fairly easy to generalize to IIR residuals)
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PCA: A data-based approach

PCA common approach in chemical engineering. Typically, they have
thousands of measurements and no obvious causality (data zt cannot
be split into input ut and output yt).

Idea: Split data into model and residual

Zt =

(
Yt

Ut

)

= Ẑt + Z̃t = Pxxt + Prrt,

and compute recursively the residual

rt = P T
r Zt

Cov(rt) = Dr

r̄t = D−1/2
r P T

r Zt.
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Algorithm:
1. Covariance matrix estimation and SVD.

R̂Z =
1

N − L

N∑

t=L+1

ZtZ
T
t = PDP T .

where P T P = PP T = I .

2. Split the SVD into two parts:

P =
(
Px Pr

)
, D =

(
Dx 0

0 Dr

)

3. Model and residuals are now computed as

Ẑt = PxP
T
x Zt

Z̃t = PrP
T
r Zt.
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