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Filter Banks for State Changes

e Explicit modeling of additive change: GLR and MLR

e Multiple models: pruning, merging and off-line algorithms

Lecture 8, 2005 1

F2E5216/TS1002

Likelihood Ratio based Change Detection

Tests
Hypothesis test:
Hy :  nojump
Hi(k,v) : ajump of magnitude v at time k.

Likelihood ratio: In previous notation,

P )P (Yhi)
p(y')
e g;(k) is just a normalized version of the likelihood.

e g;(k) is a distance measure between H, and H; (k).
e v = 0, when 8y = 0 is assumed.

gi(k) =
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Recursive Formulation

)y
gi(k) = ———=—
p(y")
(yt|yk+1>
= gt—l(k)i
p(yely'™1)
or in the negative logarithm
—loggi(k) = —loggii(k)+(—logp(yelyisy) +logplyely' ™))
Gu(k) G (k) S (h)
Fits the general stopping rule framework.
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Gaussian Case

The jump v can be ML estimated (the generalized likelihood ratio test)
or marginalized (the marginalized likelihood ratio test)

) = g 2 h
g (k) = %—bg(%ﬁ%)%()

The noise variance R is assumed known.

Remark 1: It is the product R/ that determines the performance of
GLR.

Remark 2: There is no threshold to design in MLR

(implicitly given by R).
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Implementation Aspects

All 0 < k < t are involved in the test.

Approximation 1: Consider only change times in a sliding window
t—L<k<t.

Approximation 2: Consider only one change time k =t — L

(Brandt's GLR).

Off-line algorithm:
1. Forward filter computes p(y*), V.
2. Backward filter computes p(yy, ), Vk.

(" )p(yp, )

3. MLR combines these as ~
p(y™)
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Data Models
Explicit modeling of additive pulse change (Ch. 9 and 11):

i1 = Ay + Bugu + By vy + 6, Bov
vy = Cuy+ep+ Dyguy + 61 Do .
Step changes are modeled by changing notation d < o (step
function).

Multiple models with mode parameter ¢, usually 0 or 1 in Ch. 10, or

Markov chain in jump Markov models
Tip1 = Ai(0)xy + Buy(6
v = Ci(d)xs + Dyy(d
N(mq(5), Q¢ (6))
N(me(6), Re(0)).
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Assume step changes. Augmented state space model

Tl =
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A Direct Approach
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Adaptive Filter or Whiteness Test Approach

Disregards explicit use of d;_; changes. Parameter (change)
estimator:

étJrl\t = ét|t71 + K] (g — CiZyp—1 — Do Oyi—1 — Dyyuy),

K=z prx PxO
Kt:(Kte)7 Pt:(Pte:c Pteo>'
t t t

e Adaptive filtering with state noise covariance

0, = ( Q 0 )

.
0 Qf

e Whiteness based residual test, where Q? is momentarily increased
when a change is detected.
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Multiple-Model Approach

Run N matched filters (standard KF) to each hypothesis H1 (k).

Compare likelihoods (or likelihood ratios) computed from st(k) and
S, (k).

High gain (QY = ;o)

U .
" Ui Filters 4(k), Pi(k)
. 0 A
No Taln Q¢ =0 Hyp. tost |k
—5] Zy, Py

Yt Filter
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Idea of GLR

Kalman filter matchedto Hy — Iy, K; (gain), &;, S; = Cov(g;)
Kalman filter matched to Hy(k) — &:(k), ei(k), @i(k), ue(k)
Identification under H, (k) — (k) = ¢! (k)v(k) + e
Compensation under Hy(k) — (k) = & + pu(k)v (k).

e Note: linear regression for change magnitude!

e Need: one KF and ¢ RLS filters = (k)

e First: update equations for £,(k) and (k).
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GLR Lemma

Linear model — influence of change linear — postulate

(k) = Ty + pe(k)v
ei(k) = e+ ot (k).

Lemma Update recursion

SOtT+1<k> = (O <H A — Atﬂt(k))

i=k
(k) = Ayu(k) + Kooty (),
initialized by 11 (k) = 0 and (k) = 0.
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GLR Algorithm

Main filter: Kalman filter assuming no jump.

Filter bank: Regressors ¢, (k) and the LS quantities
Ri(k) = X1y @i(k)S; ] () and
fi(k) =30 wi(k)S; e, foreach b, 1 < k < t.

GLR Test: Attime ¢ = NV, the test statistic is given by
In(k, 0(k)) = [X(k)Ry' (k) fu (k).

A~

A jump candidate is given by £ = arg max x(k, 7(k)).
Itis accepted if [ (K, 7(k)) > h

Identification: Dy (k) = Ry (k) f (k).
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Comments on GLR

e The system is (often) not persistently excited. That is, ¢, decays to
zero. Intuitively, this means that the KF compensates itself, making
identification of v unnecessary after a while.

e Test statistic X2 distributed.

e Regressors pre-computable, decay rather fast to zero for many
systems and depend only on ¢ — k for time-invariant systems. —
Efficient implementations might exist.

e RLS better to use — matrix inversion of R (k) not needed:

lt(kv’?(k)) = ftT(k)ﬁt(k),
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MLR versus GLR

e In GLR, the threshold is sensitive to incorrectly specified noise
scalings (which does not affect the KF).

_ _ — - Hy
R=MAR, Po=MAP, Q=XQ=Iyk)=Ink)/\< h.
Hy
In MLR, there is no threshold. The noise scaling can be incorporated

as a nuissance parameter.

e Complexity. GLR requires N2 filter updates. Sliding window
approximation requires IV L filter updates. Two-filter MLR requires
2N filter updates.
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Multiple Models

Tpp1 = A(0)xy + By i(0)uy + By i(0)vy
e = Cy(0)xy + Dyy(6)us + €
v € N(my(0), Q(6))
er € N(mei(0), Re(9)).

Discrete parameter J is the mode, or discrete state, of the system.

1. 0, has S possible outcomes. Mostly S = 2 considered.

2. 0; has S Markov states with transition matrix I (jump Markov
models, hidden Markov model (HMM)). Difficult on-line. EM-algorithm
or Baum-Welch method off-line.

Lecture 8, 2005 15

F2E5216/TS1002

Example 1: Q(5) = (1 + 99)Q can be used to model additive state
changes implicitly.

Example 2: A() can be used to model different turn rates in target
tracking, with (1, 1, T2, 79)" as states.

Formulation incorporates: change detection, segmentation, model
structure selection, equalization, blind equalization, outliers and
missing data!
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Basic Strategy

1. Conditional Kalman filter given the mode sequence gives
e(6"), Pupe(0").
2. Compute the posterior probability of the mode sequence
p(&'y").

3. There are S* different sequences ¢", labelled §* (i),
i=1,2,...,S" Theorem of total probability gives the Gaussian
mixture:

plaly’) = ST Zp

Lecture 8, 2005 17

N (&4(8" (1)), Pye(8'(2))) -

F2E5216/TS1002

Approximations

p(rly') = ZP
Zz 1

4. On-line: Merging (1imm) Add overlapping distributions

N (&4:(0°(3)), Pye(6(2)))

Pruning sequences (detectM) Remove components with small
coefficients p(0*(7)|y")

5. Off-line: numerical approaches based on the EM algorithm and
MCMC methods (mcmc, gibbs).
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Pruning versus Merging

Pruning: cut off branches.
Merging: represent several branches by one.
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A Merging Formula

The best approximation of a sum of L Gaussian distributions

L
Za N(#7, P7) ~ aN(, P),

where o« = Za(i), T = éZa(z):ﬁ(z)
Po= =3 al) (PO)+ () — ) () - 1))

Second term: spread of the mean.
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GPB Merging Strategy

Generalized Pseudo Bayesian

1 =1 GPB(n): n is the size of sliding
i =2 memory (n = 0 standard)

i =3 GPB(0): merge all sequences
i —4 (1-8).

i —5 GPB(1): merge sequences
i —6 (1,3,5,7) and (2,4,6,8).

GPB(2): merge sequences (1,5),
(2,6), (3,7) and (4,8).
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Interacting Multiple Model (IMM) by Bar-Shalom and Li. Essentially
as GPB, but merging after time update, rather than after measurement
update.
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Summary: State Detection

Abrupt state changes can be detected and isolated with either:

e Likelihood ratio (MLR, GLR) hypothesis test, using the statistical
approach.

e Multiple models (IMM,GPB)
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Exercises:

41, 42 (should be (8.100) in 2000-edition), 43.

Next Time

Parity space change detection (deterministic approach)

Lecture 8, 2005 24




