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Change detection based on filter banks (Chapter 7)
e Segmentation

e Local tree search
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Filter Banks for Parametric Changes
A changing regression model
Formulation 1:
Y = 0l 0(i) + e, whenk;, <t <k.
Formulation 2:

9,54.1 = (1 — 6t)0t + 5tvt
Y¢ = (P?Gt + €.

The measurement covariance is A(7) RR;, where (i) may be
unknown.
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Notation
Parameter estimate in segment ¢:
ki
06) = P(i) > @Ry

t=k;_1+1
-1

ki
Pi) = | Y, wRlel

t=k;_1+1
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Sufficient statistics in segment i:

Vi) = 3 oTB0)TR (e — T0)
D(i) = :lggldet P(1)
NG) = ki —kiy+1
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Segmentation
Off-line formulation of the segmentation problem:

k" = arg max V (k™).

nvklv'“vkn

The loss function depends on the sufficient statistics below:

Data Y1, Y2, - Yky Yki+1s - Yks Yk 1415 Yk,
———— ———— —_—
Segmentation Segment 1 Segment 2 e Segment n
LS estimates (1), P(1) 0(2), P(2) e (n), P(n)
Sufficient
statistics V(1),D(1),N(1) V(2),D(2),N(2) --- V(n),D(n),N(n)
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Optimality Criteria

Possible loss functions V' (k™)

e Statistical criterion: The maximum likelihood or maximum a
posteriori estimate of k™ is studied.

e Information based criterion: The information of data is >, V(i)
(the sum of squared residuals). Degenerated solution
k" =1,2,3,...,N gives ) ., V(i) = 0. A penalty term is needed.
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Computations

e All loss functions V' (k™) can be computed recursively using RLS.

e There are 2% loss functions V' (k™). Numerical or local search
approximation.
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Likelihoods and posteriors
Likelihood given everything:
—2log p(y™ |k", 0™, A") = Nplog(2m)
+ (S, logdet By ) S0, N(3) log(A(i)?)

n Ltk o1 0@ Ry (e—F 06)
Yo, T NG

Likelihood given only change times (marginalization)
P ) = [ 8 O e
on An

Possible to include prior information about change times using MAP

estimate: p(k"[y™) = p(y™|k") 2450,
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Filter bank Segmentation
o Examine every possible segmentation, parameterized in the
number of jumps n and jump times k™

e For each segment compute the LS parameter estimates and their
covariance matrices

e Compute the sum of the squared prediction errors V(z) and
D(i) = —logdet P(i)

o Minimize the posterior probabilities!

Lecture 6, 2005 9

F2E5216/TS1002

Explicit forms of posterior probabilities: Known noise variance:

o~ RN . . 1—g¢
k™ = arg E}}B; (D(i) + V(i) + 2nlog .
Unknown and constant noise variance A(7) = A:

= R ) - V(i) 1—gq
kn = arg I;}&géD(l)—i-(Np—nd—ﬂbgé m—%n log —
Unknown and abruptly changing noise variance A(7):

n

—~ ) ) ) V(i) 1—gq
n — nin D N —d—2log ——— I log —1
k arg IklnZ 1 ( () + (N(i)p—d—2)log NG >+2n og
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Prior: Assume a fixed probability of jump ¢ at each new time instant
(Bernoulli distribution)

Lindley’s paradox: The more non-informative prior (large P(0)), the
more the zero-hypothesis is favored.

Still, priority is often given to non-informative priors in order to reduce
the number of design parameters.
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Comparing On-line and Off-line
The density function for the measurements can equivalently be
computed from the residuals. With a little abuse of notation,

p(y™) = p(e"). The sum of squared on-line residuals relates to the
sum of squared off-line residuals as:

Z(yt - %Té(t - 1))T (SOtTP(t — D)o+ Rt)_l (yr — %Té(t -1))
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Comparing On-line and Off-line

The on-line residual covariances relate to the a posteriori parameter
covariance as:

Mz

Z log det P(t — 1Dy + Rt)

=

= Z log det R; 4 log det P(0) — log det P(N).
t=1

Together, this means that the likelihood given all available
measurements can be computed from off-line statistics as:

p(y™N) ~ p(y™ 0 )ps(On) (det Py)"?,

which holds for both a Gaussian prior py () and a flat non-informative
one pg(x) = 1.
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Off-line Global Optimization of 1/ (k")

Approaches

e Gradient based methods where small changes in the current
estimate k™ are evaluated.

e MCMC based methods, where random change points are
computed.

e The EM algorithm, which alternates between estimating the
parameters conditioned on the change points (trivial) and estimating
the change points, given the parameters.
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On-line Local Optimization of V' (k")

Algorithm
1. Choose an optimality criterion.

2. Compute V' (k™) using a bank of filters matched to k™.
3. Pruning and splitting rules to keep M fixed.
a. Let only the most probable sequence split.

b. Cut off the least probable sequence.
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Additional rules

Local search with M=5
Measurements and real parameters

o

c. A minimum segment length 34
g 7 Wersdly
d. A minimum length of life E L ‘
s mEmn
Example
[jumphat, thseg, lamseqg, threc,Alfa, Xn]= 5
deteCtM(y,—l, [1 1],0.5,M, O) H 50 5 10 fs_rme[zsoamp‘e]z‘s 30

hypplot (Xn, jumphat)
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Optimal Segmentation: A First Inequality

=

Important Viterbi-like inequality:

[N
—
|
—

If we condition on a jump at time kg, then we only need to consider
sequences which start with the best possible subsequence

N
T

Number of change points
w

Consequence: a filter bank with M = N (and length of life N — 1)
finds the global optimum using N2/2 evaluations of the loss function.

. . . .
0 5 10 15 20 25 30 35 40
Time [sample]
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For MAP estimation, we have ¢t + 1 candidates for the global optimum
of the jump sequence at time ?.

5(0) = (0,0,...,0)
5(k) = (0%71,,1,0,...,0) k=1,2,..t

Step 1 in local search algorithm (let only the most probable branch
split) is optimal.
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Application: Speech Segmentation

A speech signal recorded in a car (upper plot) and a high-pass filtered
version (lower plot). Vertical lines indicate the segmentation

Noisy speech signal
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Comparison of local search with ¢ = 0.5 and M = 10 and a variant
of detect 2 using the CUSUM test, with different design parameter
for voiced and unvoiced sounds.

| Signal | Method | AR | Estimated change times |
Noisy Divergence 16 451 611 1450 1900 2125 2830 3626
Noisy Brandt's GLR 16 451 611 1450 1900 2125 2830 3626
Noisy Brandt's GLR 2 593 1450 2125 2830 3626
Noisy Approx ML 2 451 593 1608 2116 2741 2822 3626
Filtered Divergence 16 445 645 1550 1800 2151 2797 3626
Filtered Brandt's GLR 16 445 645 1550 1800 2151 2797 3626
Filtered Brandt's GLR 2 445 645 1550 1750 2151 2797 3400 3626
Filtered Approx ML 2 445 626 1609 2151 2797 3627

Conclusions: Under-modeling works well. Essentially the same
result for local search as the expert tuned model validation methods
(five design parameters).
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Application: Path Segmentation

Measurements of angular velocity of left and right (non-driven) wheels.
wi(t) + w,(t) .

t) = 5
1— 2l 4¢)
R = —=

L wheel base

r nominal wheel radius

€ relative difference in wheel radius The heading angle () and
global position (X (t), Y (t)) computed from

(t+1) = ¥(t) +ut) TR (1)
X(t+1) = X(t)+ ()T, cos(v(t))
Y(t+1) = Y(t)+v(t)T,sin(v(t))
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Data model. Assumption that steering wheel angle is piecewise
constant:
c9t+1 = (1 — 5t)‘9t + 5tUt
U = 0, +0t+ e
Eef = >\t

A = 0.05, M=10, lifelength=6 and minseg=0 give:
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Actual and segmented heading angle

-400)

Meter

-600|

-800)
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Exercises for Lectures 6
Exercise: 28, 29
Next Time

We have now covered the first three parts of the book. Next time, we
will start to study Part IV: State estimation, i.e. methods based on
Kalman filtering!
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