Problem 1.1

Consider the detection problem

$$
\begin{array}{ll}
H_{0} & : x[0]=w[0] \\
H_{1} & : x[0]=1+w[0]
\end{array}
$$

where $w[0]$ is zero mean Gaussian random variable with variance σ^{2}. If the detector decides H_{1} if $x[0]>1 / 2$, find the probability of making a wrong decision when H_{0} is true. To do so, determine the probability of deciding H_{1} when H_{0} is true or $P_{0}=\operatorname{Pr}\left\{x[0]>1 / 2 ; H_{0}\right\}$. For this to be 10^{-3} what must σ^{2} be?

Problem 1.2

Consider the detection problem

$$
\begin{aligned}
H_{0} & : x[0]=w[0] \\
H_{1} & : x[0]=1+w[0]
\end{aligned}
$$

where $w[0]$ is uniformly distributed random variable on the interval $[-a, a]$ for $a>1$. Discuss the performance of the detector that decides H_{1} if $x[0]>1 / 2$ as a increases.

Problem 1.4

In Problem 1.1 now assume that the probability of H_{0} being true is $1 / 2$. If we decide H_{1} if $x[0]>1 / 2$, find the total probability of error or

$$
P_{e}=\operatorname{Pr}\left\{x[0]>1 / 2 \mid H_{0}\right\} \operatorname{Pr}\left\{H_{0}\right\}+\operatorname{Pr}\left\{x[0]<1 / 2 \mid H_{1}\right\} \operatorname{Pr}\left\{H_{1}\right\}
$$

Plot P_{e} versus σ^{2} and explain your result.

Problem 2.2

Derive (2.4) by nothing that

$$
\begin{equation*}
Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi} t} t e^{-\frac{t^{2}}{2}} d t \tag{1}
\end{equation*}
$$

and using integration by parts. Also, explain why the approximation improves as x increases.

Problem 3.1

Determine the NP test for distinguishing between the hypotheses $H_{0}: \mu=0$ versus $H_{1}: \mu=1$ based on the observed sample $x[0] N(\mu, 1)$. Then, find the Type I error $\left(P_{F A}\right)$ and the type II error $\left(P_{M}=1-P_{d}\right.$, where P_{m} is the probability of miss). Finally, plot P_{M} versus $P_{F A}$.

Problem 3.8

Find the NP test to distinguish between the hypotheses that a single sample $x[0]$ is observed from the possible PDF's

$$
\begin{array}{ll}
H_{0} & : p(x[0])=\frac{1}{2} e^{(-|x[0]|)} \\
H_{1} & : p(x[0])=\frac{1}{\sqrt{2 \pi}} e^{\left(-x[0]^{2} / 2\right)}
\end{array}
$$

Show the decision regions. Hint: You will need to solve a quadratic inequality

Problem 3.13

Prove that the ROC for the NP detector is a concave function over the interval $[0,1]$. A concave function is one for which

$$
\alpha g\left(x_{1}\right)+(1-\alpha) g\left(x_{2}\right)<g\left(\alpha x_{1}+(1-\alpha) x_{2}\right)
$$

for $0<\alpha<1$ and any two points x_{1} and x_{2}. To do so consider two points on the $\operatorname{ROC}\left(p_{1}, P_{D}\left(p_{1}\right)\right)$ and $\left(p_{2}, P_{D}\left(p_{2}\right)\right)$ and find P_{D} for a randomized test. A randomized test first flips a coin with $\operatorname{Pr}\{$ head $\}=\alpha$. If the outcome is a head, we employ the detector whose performance is $\left(p_{1}, P_{D}\left(p_{1}\right)\right)$. Otherwise, we employ the detector whose performance is $\left(p_{2}, P_{D}\left(p_{2}\right)\right)$. We decide H_{1} if the chosen detector decides H_{1}. Hint: For a given $P_{F A}$ the detection performance of the randomized detector must be less than or equal to that of the NP detector.

