
Notes for a Systems Biology course

Biochemical reaction networks

Claudio Altafini

November 2015

Contents

4 Biochemical reaction networks 1

4.1 Reaction networks and S-R graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4.2 Representing biochemical networks through their stoichiometry . . . . . . . . . . . . 3
4.3 Dynamical properties of reaction networks . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3.1 Invariance in R
n
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3.2 Conservation laws and left kernel of S . . . . . . . . . . . . . . . . . . . . . . 6
4.3.3 Steady states and right kernel of S . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3.4 Equilibria and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Biochemical reaction networks

In this Chapter we study structural and dynamical properties of networks of biochemical reactions.

4.1 Reaction networks and S-R graphs

Recall for instance that for a bimolecular reaction of association

X1 + X2

k
−−→ X3 (1)

where k is the reaction rate constant, the mass-action ODEs are:

dx1
dt

= −k x1x2

dx2
dt

= −k x1x2

dx3
dt

= k x1x2

(2)
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The ODEs are nonlinear (multilinear in this case, polynomial in general) and to have a nonambigu-
ous representation one uses a SR-graph (Species-Reaction graph), i.e., a bipartite graph with two
classes of nodes: molecular species and reactions, see Fig. 1. Notice in (2) that only the molecular
species “upstream” of the reaction (i.e., the substrates) enter into the right hand side of the ODE.
They enter with a minus sign in the equations for the substrates themselves (their concentration
decreases) and with a plus sign for that of the product.

REACTION SPECIESSPECIES

substrates products

X

1X

2

3X

Figure 1: Species-Reactions graph for a single reaction.

When the stoichiometric coefficients are non-trivial (i.e., different from 1) then they can be
indicated explicitly on the SR-graph. For instance for the reaction

pX1 + X2

k1−−−→
←−−−

k2
X3 (3)

of ODEs:

dx1
dt

= −p k1 x
p
1
x2 + pk2 x3

dx2
dt

= −k1 x
p
1
x2 + k2 x3

dx3
dt

= k1 x
p
1
x2 − k2 x3

(4)

the SR-graph is shown in Fig. 2.

REACTION SPECIESSPECIES

substrates products
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Figure 2: Species-Reactions graph with stoichiometric coefficients.

The reactions happen in a “compartment” (which for us could be anything from a tank reactor
to an in vivo organism). The compartment is “open” when there is inflow/outflow of a specie and
closed otherwise. A system can be open w.r.t. one specie and closed w.r.t. other species. Putting
together multiple reactions we get a biochemical reaction network.
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Example The “network” of reactions

X1 + X2

k1−−−→
←−−−

k2
X3

X1

k3−−−→
←−−−

k4
∅

(5)

is similar to (6) and in addition the system is open w.r.t. x1 (x1 is produced and degraded), but
not w.r.t. x2 and x3. The ODEs become (compare with (6)):

dx1
dt

= −k1 x1x2 + k2 x3 − k3 x1 + k4

dx2
dt

= −k1 x1x2 + k2 x3

dx3
dt

= k1 x1x2 − k2 x3

(6)

Notice in (6) that the inflow is a constant (independent of the concentration of x1) while the outflow
is a first order degradation term.

4.2 Representing biochemical networks through their stoichiometry

Consider a biochemical network involving n molecular species through r reactions. Call

x =







x1
...
xn






∈ R

n
+

the vector of concentrations of the molecular species. Then x ∈ R
n
+ because concentrations cannot

be negative. Assume that for the r reactions the substrates and products of each reaction (with
their stoichiometric coefficients) are known. These data can be though of as the entries of a
stoichiometric matrix

S ∈ R
n×r.

Each row of S corresponds to a molecular species and each column corresponds to a reaction. If
we look at S column-wise, there is a minus sign in front of the stoichiometric coefficients of the
substrates (species forming the substrates of a reaction are depleted by the reaction, hence the
reaction must contribute a negative term in the ODEs). The products instead have a plus sign.
Row-wise, instead, the nonzero entries of the i-th row of S correspond to the reactions in which xi
is involved either as substrate (with a − sign) or as a product (with a + sign). For example for
(3)-(4)

S =





−p p
−1 1
1 −1





while for (5)-(6):

S =





−1 1 −1 1
−1 1 0 0
1 −1 0 0



 . (7)
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Reversible reactions means linearly dependent columns in S (equal up to the sign).
To each reaction we can associate a flux vi(x, k), i.e., a compact expression of the kinetics action

(for us mass-action) involving the species “upstream” of the reaction (and therefore which enter
into the corresponding term of the ODE). Denote

v(x, k) =







v1(x, k)
...

vr(x, k)







the vector of such reaction fluxes. k is a vector of parameters, representing the reaction rate
constants. There is normally one rate constant per reaction, and these are nonnegative:

k =







k1
...
kr






∈ R

r
+.

Then the ODEs for the biochemical network can be compactly expressed as

dx

dt
= S v(x, k) (8)

i.e., as a system of polynomial ODEs. For example, for (3)-(4), v1(x, k) = k1 x
p
1
x2 and v2(x, k) =

k2 x3 so that (4) can be written as

dx

dt
=





−p p
−1 1
1 −1





[

k1 x
p
1
x2

k2 x3

]

Notice that in (8) S contains the whole information about the topology of the network. Under the
mass-action assumption, an arbitrarily complex network of biochemical reactions can be expressed
in this way once S is given.

If in S reversible reactions are all broken down into irreversible forward and backward reactions
as e.g. in (7) then v(x, k) ≥ 0.

To unveil completely the structure of the system of ODEs (8), it is convenient to introduce
a further vector z(x) of “complexes”, intending with that all compounds of species appearing
upstream and downstream of an arrow in a reaction diagram, represented as mass-action terms.
For example, in (3) the complexes are pX1 +X2 and X3 and

z(x) =

[

xp
1
x2

x3

]

.

In other words, z(x) contains all basic multinomial terms appearing in v(x, k), plus the “zero
complex” (represented by a 1) to capture the inflow-outflow from the compartment. Assume m is
the dimension of z(x), m ≤ 2r (if all reversible reactions are split into pairs of irreversible reactions
and r counts them twice, then m ≤ r). Each reaction flux of v(x, k) is obtained multiplying one
of the multinomials by the corresponding reaction rate in k: vi(x, k) = kizj(x). To select from
the vector z(x) the term zj(x) entering into vi(x, k), we need an “index matrix” I : Rm → R

r to
map the complexes z(x) into the fluxes v(x, k). The entire system of ODEs is then given by the
composite map
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species complexes
indexed

compexes
fluxes ODEs

R
n → R

m → R
r → R

r → R
n

x 7→ z(x) 7→ I z(x) 7→ v(x, k) = diag(k)I z(x) 7→ ẋ = S diag(k)I z(x)

The only nonlinear step is the first, all others are linear maps.

Example Let us look at the example (5)-(6). In this case n = 3 and r = 4. The complexes are
the following 4 compounds appearing in the reaction diagram (5): {X1 +X2, X1, X3, ∅}. Written
in mass-action form, then,

z(x) =









x1x2
x1
x3
1









are all multinomial terms in the ODEs (6). If we list the 4 reactions according to the indices of the
rate constants ki given in (5), then the stoichiometric matrix is given in (7), and the index matrix
is

I =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









Computing explicitly ẋ = S diag(k)I z(x) leads to (6). In particular the stoichiometric map is a
linear map S : Rr → R

n and contains all the information on the topology of the system and on its
dynamics.

4.3 Dynamical properties of reaction networks

Consider the biochemical reaction network

dx

dt
= S v(x, k) = S diag(k)I z(x) (9)

Notice that all parameters of the models (i.e., k) are concentrated in a single step of the cascade.
Furthermore, since ki > 0 and diag(k) is an invertible matrix, this step does not change any of
the “structural” properties of the system. We want to study the dynamical behavior of the system
independently from the numerical value of these parameters.

4.3.1 Invariance in R
n
+

The vector x represents concentrations of molecular species and as such it must be and remain
nonnegative.

Theorem 4.1 If x(0) ∈ R
n
+ then the solution of (9) is such that x(t) ∈ R

n
+ ∀ t ≥ 0 and ∀ k ≥ 0.
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To “prove” this theorem, it is enough to observe that all negative terms in the ODEs for xi
vanish when xi crosses the zero axis (i.e., the negative terms of the ODEs are homogeneous in
x) hence ẋi can never become negative if x(0) ≥ 0. The positive terms are not required to be
homogeneous in xi. For example the inflow terms by definition are positive constants.

4.3.2 Conservation laws and left kernel of S

Consider the example (6). The ODEs are clearly redundant and we have already seen that there
exist conservation laws. If we sum the first and third, or first and second equations

d(x1 + x3)

dt
= 0 =⇒ x1(t) + x3(t) = const ∀ t ≥ 0

d(x2 + x3)

dt
= 0 =⇒ x2(t) + x3(t) = const ∀ t ≥ 0

(10)

which implies that x1(t) + x3(t) and x2(t) + x3(t) are constants of motion of the dynamical system
(6). These constants express conservation of the total amount of a specie: x1, by itself or bound
with x2 (in the form of the complex x3), is conserved throughout the evolution, and similarly for
x2. Calling ξ1 and ξ2 the two constants in (10), by writing x1 = ξ1 − x3 and x2 = ξ2 − x3, the
system (6) can be reduced to

dx3
dt

= k1 (ξ1 − x3)(ξ2 − x3)− k2 x3

x1 = ξ1 − x3

x2 = ξ2 − x3

i.e., each conservation law allows to replace an ODE with an algebraic equation (to be solved off-
line). Notice that assigning the initial condition xo to the system ξ1 and ξ2 are uniquely identified.
Changing the initial conditions also the ξi change.

Let us look at conservation laws for the general formulation (8). the left null space of S,
ker(ST ) = {c ∈ R

n s. t. ST c = 0} is a vector subspace representing all conservation laws of the
biochemical network. Assume rank(S) = q ≤ min(n, r). Then dim(ker(ST )) = n − q, i.e., the
system (8) has n − q constants of motion. If c1, . . . , cn−q are vectors forming a basis of ker(ST ),

then Nℓ =







cT1
...

cTn−q






is such that NℓS = 0. But then Nℓẋ = 0 and therefore, integrating, Nℓx(t) =

const = ξ ∈ R
n−q is a systematic expression of the constants of motion of the system. This can be

used to reduce the dimension of (8) to q ODEs and n − q algebraic equations of x(t). In fact, if

Nℓ =
[

Nℓ,1 Nℓ,2

]

with (Nℓ,2) ∈ R
n−q,n−q invertible, from the block splitting

[

Nℓ,1 Nℓ,2

]

[

x1
x2

]

= ξ

one has x2 = N−1

ℓ,2 (ξ−Nℓ,1x1), and the ODEs for x2 can be dropped. Alternatively, one can say that
the presence of conservation laws foliates Rn into stoichiometric classes invariant for the dynamics.
Each stoichiometric class is uniquely identified by the initial condition xo and is expressed as the
affine space

SC(xo) = {xo + Im(S)} ∩ R
n
+

Given xo, the evolution of (8) is necessarily living in SC(xo) for all times: x(t) ∈ SC(xo) ∀ t ≥ 0.
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Figure 3: Stoichiometric map, with its subspaces.

4.3.3 Steady states and right kernel of S

In terms of the fluxes v(x, k) ∈ R
r
+, the steady states of the system lie in the vector space ker(S) =

{v ∈ R
r s. t. Sv = 0}. From rank(S) = q, dim(ker(S)) = r − q. Since we have broken reversible

reactions into pairs of irreversible reactions, we have imposed v(x, k) ≥ 0 and our S has “twin”

columns (differing only in sign, as in (7)) in correspondence of each pair of arrows “
−−→
←−−”. If all

reactions are reversible, it is not complicated to show that this representation can be translated
instead into an S with half columns and v(x, k) that can assume any sign (i.e., the reversibility is
“swapped” from the stoichiometry to the fluxes). If not all reactions are reversible, however, ker(S)
should be restricted accordingly, leading in general to a convex cone in the space of fluxes. More
details on this in next Chapter.

4.3.4 Equilibria and stability

We are interested in investigating the existence of (positive) equilibria, counting them, and under-
standing their stability properties. In particular, we want to study these properties independently
of the numerical values of the parameters k. To analyze these properties, we need to introduce
another class of graphs associated to the reaction network (9): the C-graph (Complex graph), whose
nodes are the complexes and whose edges are the reactions. We must assume that the C-graphs
are in “normal form” i.e., each complex label appears only once. Compare (a) and (b) of Fig. 4.

1X X 2 3X

1X

3X
X 2

0
0

0

+

(a)

1X X 2 3X

0 X 21X

+

(b)

Figure 4: C graph. (a): not in normal form; (b): in normal form.
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A reaction network is said weakly reversible ∃ a directed path of reactions connecting any two
nodes of the C-graph (i.e., if the C-graph is strongly connected). For example the C-graph of
Fig. 4 (b) is strongly connected, while that of (11) is not, hence the reaction network is not weakly
reversible. Call ℓ (= linkage classes) the number of connected components of the C-graph.

If q = rank(S), then q = dim(Im(S)), i.e., the dimension of the so-called stoichiometric space
Im(S).

We will need an integer index, associated to the structure of a reaction network, called the
deficiency index δ:

δ := m− ℓ− q

(recall that m = number of complexes).

Examples

• In the example of Fig. 4

S =





−1 1 −1 1 0 0 0 0
−1 1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1





and hence q = 3, ℓ = 1 and m = 5, hence δ = m− ℓ− q = 1.

• In the example of (5)-(6), instead, m = 4, ℓ = 2 and q = 2, hence δ = m− ℓ− q = 0.

The case δ = 0 (zero deficiency) is special, because very sharp stability results are available for
it. For zero deficiency networks the following theorem in fact holds.

Theorem 4.2 For any reaction network of zero deficiency we have:

1. if the network is not weakly reversible then for arbitrary kinetics (i.e., mass-action, Michaelis-
Menten, etc.) the system cannot have an equilibrium point in int(Rn

+) and cannot have
sustained oscillations.

2. if the network is weakly reversible, then for mass-action kinetics the network has a single
positive equilibrium point x∗ in each stoichiometric class SC(xo) and x∗ is “globally” asymp-
totically stable in SC(xo).

Meaning of 1.: lack of weak reversibility implies that one or more species will disappear asymp-
totically, hence x∗ cannot be positive (i.e., x∗ /∈ int(Rn

+)), but it must touch one or more of the
axes of Rn

+ (remember that by construction, x(t) nonnegative ∀ t ≥ 0).

Meaning of 2.: in each leaf SC(xo) in which R
n
+ is foliated, the system has a single equilibrium

point in int(Rn
+) ∩ SC(xo) and within SC(xo) this equilibrium point is globally asymptotically

stable. Notice that since there is a continuum of stoichiometric classes (as we change xo) there
is also a continuum of equilibria, hence, as soon as conservation laws are present, we loose the
usual notion of asymptotic stability, because every neighborhood of x∗ contains infinitely many
other equilibrium points. This notion is sometimes called “semistability”, for example in the paper
by Chellaboina et. al. mentioned at the begin. (Question: do you see any similarity with the
“consensus” problem nowadays very popular??). Only when there are no conservation laws we
have the “usual” asymptotic stability concept (Rn

+ lies all in one stoichiometric class in this case).
A simple way to avoid conservation laws is to have inflow/outflow for all reactions.
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Example: enzyme-catalyzed reaction Consider the single substrate - single product enzyme-
catalyzed reaction we saw in the first lecture, shown again in Fig. 5, whose reaction diagram is

substrate

product

enzyme

Figure 5: Sketch of an enzyme-catalyzed reaction

X1 +X2

k1−−−→
←−−−

k2
X3

k3−−−→ X2 +X4 (11)

The mass-action ODEs without any approximation are

dx1
dt

= −k1x1x2 + k2x3

dx2
dt

= −k1x1x2 + (k2 + k3)x3

dx3
dt

= k1x1x2 − (k2 + k3)x3

dx4
dt

= k3x3

The stoichiometric matrix in this case is

S =









−1 1 0
−1 1 1
1 −1 −1
0 0 1









(12)

Computing the deficiency index, q = 2, ℓ = 2 while m = 3. Hence δ = m − ℓ − q = 0. However,
the network is not weakly reversible, hence Theorem 4.2 predicts no (strictly) positive equilibrium.
Let us compute the equilibria explicitly. From ẋ4 = 0 =⇒x3 = 0. Consequently, from ẋ1 = 0
=⇒x1x2 = 0. Hence x∗ /∈ int(R4

+). The meaning is the following: since the substrate x1 is
transformed into product x4 and not resupplied, x1 → 0 and consequently also x2 → 0 as t →∞.
This is the concrete meaning of the reaction network not being weakly reversible and hence, from
Theorem 4.2, not admitting a positive equilibrium. Notice that there are two conservation laws in
the system: x2 + x3 = ξ1 and x1 + x3 + x4 = ξ2.

Example (5)-(6) The network is reversible, δ = 0, hence Theorem 4.2 applies and predicts that, in
each stoichiometric class, the system has a unique positive equilibrium point which is asymptotically
stable for all points in SC(xo). Let us compute explicitly the equilibrium/a. From (6)

dx3
dt

= 0 =⇒ x3 =
k1
k2

x1x2
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Plugging into dx1

dt
= 0, we get x1 =

k4
k3
, hence

x3 =
k1k4
k2k3

x2 (13)

Eq. (13) apparently says that there is an entire ray of equilibria in the (x2, x3) plane, see Fig. 6.
However, q = rank(S) = 2 =⇒n− q = 3− 2 = 1 =⇒∃ a conservation law. ker(ST ) is generated for
example by

c =





0
1
1





meaning that the constant of motion is determined by cTx = x2 + x3 = ξ or

x3 = ξ − x2 (14)

In the plane (x2, x3) this constant of motion intersects (13) in a single point, see Fig. 6, meaning
that on SC(xo) the system has indeed a unique equilibrium point. Changing xo means changing the

x2

k k

k k
1

2 3

4 x2=3x

x3

conservation law

ξ

x*

Figure 6: Steady states and conservation laws: 2D-slice of the phase plane for example (5)-(6)

value of the constant ξ, hence “sliding” the constraint (14) (i.e., passing to another stoichiometric
class).

For networks of higher deficiency (δ > 0) other conditions exist, although they are mostly
focused on studying the “capacity for multistationarity” i.e., the possibility that for some choice of
the parameters k the system may exhibit multiple equilibria in R

n
+. As they are usually formulated

as necessary but not sufficient conditions for multistationarity, they are not directly constructive,
although algorithms exist to test them.
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