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Abstract
This paper summarizes previous work on tool position esti-
mation on industrial manipulators, and emphasize the prob-
lems that must be taken care of in order to get a satisfied
result. The acceleration of the robot tool, measured by an
accelerometer, togheter with measurements of motor angles
are used. The states are estimated with an extended kalman
filter. A method for tuning the covariance matrices for the
noise, used in the observer, is suggested. The work has been
focused on a robot with two degrees of freedom.

1 Introduction
Current industrial robot development is focused
on increasing the robot performance, reducing the
robot cost, improving safety, and introducing new
functionalities as described in [1]. The need for cost
reduction results in the use of cost optimized robot
components with increased elasticity and larger in-
dividual variation, such as variation of gearbox
stiffness or in the parameters describing the me-
chanical arm. Cost reduction also implies weight-
optimized robots and thus lower mechanical stiff-
ness and more complicated vibration modes. To
maintain or improve the robot performance, the
motion control must be improved for this new gen-
eration of robots. For robots with traditional mea-
surement systems, where only the motor angular
position is measured, this can be obtained by im-
proving the model-based control as described in [2].
Another option is to use inertial sensors to improve
the estimation of the robot tool position. This pa-
per investigates how the tool position can be esti-
mated by the use of observers.
One early contribution is [3], which describes how

the nonlinear dynamics of elastic robots can be han-
dled. The problems of gravity compensation for
elastic robots is studied in [4]. One commonly used
observer is the linear Kalman filter (KF) or the
extended Kalman filter (EKF), used for nonlinear

systems. A KF is used for a single-axis robot arm
in [5] and [6]. EKFs are used in [7], and also in
[8], where a two-axis robot, with tool position and
joint speed measurements, are used. Estimation
using motor measurements only is studied in [9].
In [10], accelerometers are used, and estimation is
performed by particle filters as well as EKFs.

The estimated tool position can be used for on-
line feedback control as a mean of increasing both
the robust and the nominal performance of the
robot. Another possible use of tool estimation is
iterative learning control (ILC) [11]. In [12] it is
shown that motor side learning is insufficient if the
mechanical resonances are exited by the robot tra-
jectory. Other applications in need of tool position
estimation are, e.g., model identification, supervi-
sion, diagnostics, and automatic controller tuning.

The estimation problem can be divided into one
static (low frequencies) and one dynamic (mid to
high frequencies) estimation problem. A large in-
dustrial robot typically has a static volumetric ac-
curacy of 2–15mm due to gravity deflection, com-
ponent tolerance, and variations in the assembly
procedure. One common solution to the static
problem is to perform an off-line identification of
an extended kinematic model and an elasto-static
model, i.e., to solve the problem by model-based
control. In this way a static accuracy of 0.5mm
can be obtained. Thus, tool estimation by ob-
servers is most interesting to investigate for the
dynamic problem, i.e., for frequencies larger than,
e.g., 1Hz1. The static and dynamic estimates can
then be fused, for example, in the frequency do-
main.

This paper investigates methods for estimation
of the robot tool position. It is assumed that the
motor angular position and the tool acceleration

1The frequency should be well below the lowest mechan-
ical resonance of the robot.
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are measured. The observer considered is an EKF.
A method for tuning the observers is suggested and
the robustness of the methods is investigated. The
observer is evaluated on simulated data from a two
axes model of an industrial robot. However, it
is straight forward to adapt the methods to a six
degrees-of-freedom (DOF) industrial robot.

2 Problem Formulation
To achieve a satisfactory result of the estimation in
terms of the dynamic accuracy it is instrumental to
have a good model of the plant and to find the noise
covariances in the filter that minimizes the estima-
tion error. The challange lies in the high accuracy
that is required by the robot user. Typically, the
dynamic path error can be up to serveral millime-
ters, in some cases more than 10 mm. The high
accuracy is obtained using a combination of feed-
back and feedforward control using complex non-
linear dynamic models of the robot structure. One
problem with this approach is that by relying only
on more and more complex models there is an ob-
vious risk that the control system becomes less ro-
bust to model uncertainties. One solution to gain
robustness can be to use estimations of the accel-
eration, the velocity and the position for the joints
and the tool by fusing information from additional
sensors. Several fundamental problems related to
the estimation procedure have emerged in previous
work by the authors, see Section 3. In Section 4 the
open issues are further discussed and some sugges-
tions for possible improvements are presented.

3 Previous Work
This section gives a summary of the results in [13],
which is a continuation of [14]. The robot model
and sensor model are the same for these works. The
differences are that [14] only uses experimental data
and different types of EKFs based on reduced mod-
els while [13] only uses simulated data and the full
EKF. In [13] the tuning and the model errors are
considered in a more detailed study developing the
results from [14] even more.

3.1 Robot and Accelerometer Models
The robot model is a joint flexible two axes model
from [15]. The model assumes rigid links and flexi-
ble joints. Each joint is described with two angles,
the arm angle qai, and the motor angle qmi. Now,

the difference qai − qmi describes the deflection in
joint i.

The state vector is given by

x =
(
qTa qTm q̇Ta q̇Tm

)T
, (3.1)

where qa =
(
qa1 qa2

)T , qm =
(
qm1 qm2

)T , con-
tain the arm angles qa and the motor angles qm of
both joints. The model accounts for flexibilities in
the joints via nonlinear stiffness, nonlinear friction
and linear viscous damping. A state space model
of the system is given by,

ẋ =


x3
x4

M−1
a (x1)

(
− C(x1, x3)−G(x1)−A(x)

)
M−1
m

(
A(x) + κ(x4) + u

)
 ,

(3.2)
where A(x) = D(x3 − x4) + τs(x1, x2). A(x) ac-
counts for the flexibilities in the joints, via the lin-
ear viscous damping D(x3 − x4) and the nonlin-
ear stiffness τs(x1, x2). In other words, if we dis-
pense with A(x), we are back at a standard rigid
robot model. Furthermore, Ma(x1) and Mm are
the mass matrices for the arm and motor, C(x1, x3)
accounts for the centrifugal and centripetal torques,
and G(x1) accounts for the effect of gravity on the
links. The nonlinear friction is described by κ(x3)
and u represents the motor torque applied to the
robot.

3.2 Observer
Given the general nonlinear model (3.2) the estima-
tion of the unknown states can be made in many
different ways. Here, an EKF [16] is used. The
EKF addresses the estimation problem for a gen-
eral nonlinear discrete-time system,

xk+1 = F (xk, uk) + vk, vk ∼ N (0, Qk), (3.3a)
zk = h(xk, uk) + wk, wk ∼ N (0, Rk). (3.3b)

In order to compute estimates of the states, the sys-
tem is linearized around the previous estimate and
the EKF is implemented as a two-step procedure,
consisting of measurement update

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1, uk)), (3.4a)
Pk|k = Pk|k−1 −KkHkPk|k−1, (3.4b)
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k +Rk)−1. (3.4c)
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and the time update

x̂k+1|k = F (x̂k|k, uk), (3.5a)
Pk+1|k = AkPk|kA

T
k +Qk. (3.5b)

The following representation is used for the lin-
earized system and output matrices,

Ak = ∂F (x, uk)
∂x

∣∣∣∣
x=x̂k|k

, Hk = ∂h(x, uk)
∂x

∣∣∣∣
x=x̂k|k−1

.

The measurement equation (3.3b) includes the
motor measurements as well as the accelerometer
measurements,

h(xk, uk) =
[

x2k
ρ̈s(xk)

]
, (3.6)

where

ρ̈s(xk) = Rsw(x1k)(J(x1k)ẋ3k + J̇(x1k)x3k +Gw).
(3.7)

Since ẋ3 is not a state, it is replaced by the ẋ3
equation in (3.2). J(x1) is the Jacobian of the ma-
nipulator kinematics and Gw is the gravity vector
measured by the accelerometer.
The tuning of the noise covariances in the EKF

can be stated as a general system identification
problem. It is here solved by minimizing the esti-
mation error using a set of measurement data where
the motor angles and the tool acceleration are avail-
able, together with measurements of the true tool
position. The covariance matrices are parameter-
ized as

Q̃λ =


λ1I

2×2 0 0 0
0 λ2I

2×2 0 0
0 0 λ3I

2×2 0
0 0 0 λ4I

2×2

 Q̃,
R̃λ =

[
λ5I

2×2 0
0 I2×2

]
R̃,

where Q̃ and R̃ are diagonal matrices and represent
initial guesses and λi, i = 1, . . . , 5 are free variables
in the optimization. The objective function is to
minimize the 2-norm of the estimation error in the
two Cartesian dimensions. The resulting optimiza-
tion problem was solved in [14] using ComplexRF,
see [17]. The method was changed to an Active Set
method (fmincon in Matlab) in [13] due to the
stochastic behaviour in ComplexRF.

Table 3.1: Max and mean error in mm for the EKF.

Cov1 Cov2 Cov3
Max Mean Max Mean Max Mean

Sim1 0.078 0.025 0.080 0.025 0.080 0.026
Sim2 1.681 0.550 1.577 0.543 1.910 0.661
Sim3 0.400 0.113 0.903 0.172 0.079 0.027

3.3 Results
The results here are short versions of [13] on simu-
lated data, more results on experimental data can
be found in [14]. The path in Figure 3.1 was used
during the simulation. The simulation was made
without errors (Sim1) with calibration errors, offset
and model errors (Sim2) and with only calibration
errors and offset (Sim3). Optimization of the co-
variance matrices were made on these three sets of
simulated data, called Cov1, Cov2 and Cov3 in the
rest of this text. All nine combinations of simula-
tions and covariance matrices were used to estimate
the tool position.

Figure 3.2 shows the true path for Sim1, Sim2
and Sim3 togheter with the estimated paths using
the three sets of covariance matrices in each figure.
Figure 3.2(a) shows that the estimated path for
Cov1, Cov2 and Cov3 are very similar to the true
path which is expected since Sim1 is without any
errors. The estimates differ more in Figure 3.2(b)
than in Figure 3.2(c) and the reason is model errors
which is to be expected as well. Model errors are
a big problem which in practice is inevitable. The
observer must therefore be robust against model er-
rors. Table 3.1 shows the maximum and the mean
path errors for the estimations. The smallest max-
imum path error is indicated with bold numbers
and the smallest mean path error is indicated with
italic numbers for each set of simulated data. We
can see that Cov1 gives minimum path errors for
Sim1 and so on which is good since Cov1 is opti-
mized on Sim1. But this is not a general result,
sometimes can for instance Cov3 give a better esti-
mation for Sim2 than Cov2. The conclusion is that
the optimization gives a local minimum. The sim-
ulation in [13] was made on other types of paths
as well. The estimations on these paths were made
with the covariance matrices that are optimized for
the path in Figure 3.1. The path errors for these
paths are larger than for the path in Figure 3.1
which could imply that the covariance matrices are
dependent of the states.
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Figure 3.1: Reference for the path that has been simulated.
The path starts at the star and the robot moves clockwise.
The circle indicates the tool position for the zero-position,
and the thicker segment of the path shows which part that
is magnified in Figure 3.2, to see better.

4 Conclusions and Future Work
The prevoius work has so far introduced more prob-
lems than solutions as mentioned earlier. Most of
these problems have not been solved yet and are
put to future work. To begin with, the noise model
for the process must be investigated in more detail.
Now, the noise is an additive term independent of
the states in (3.3a). A more accurate noise model
could be

ẋ =


x3
x4

M−1
a (x1)

(
− C(x1, x3)−G(x1)−A(x) + va

)
M−1
m

(
A(x) + κ(x4) + u+ vm

)
 ,

(4.1)
with the discretized model in the form

xk+1 = F (xk, uk) +B(xk)vk, vk ∼ N (0, Qk).
(4.2)

This new model could reduce the state dependence
in the covariance matrices as discussed in Sec-
tion 3.3, since B(xk) is a matrix that depends on
the states.
Another problem that has come up during the

work is the discretization of the continious state
space model. Euler forward has been used to
discretize the model, but the errors that are in-
truduced can be significant for the EKF. One way
to solve this is of course to use a more accurate dis-
cretization method which leads to more complex
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(a) Sim1
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(b) Sim2
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(c) Sim3

Figure 3.2: Estimation of the three different sets of simu-
lated datar with Cov1 (-), Cov2 (--) and Cov3 (-.). The grey
line is the true path.
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expressions. A simpler way can be to decrease the
sample time during the time update (3.5), i.e., per-
form the time update several times during one it-
eration in the EKF.
One important thing to also investigate further is

how the estimate is affected by the magnitude of the
model errors, the calibration errors and the offset,
which requires a structuralized sensitivity analysis.
How to choose the covariance matrices is crucial

for the estimated result, and must be investigated
more carefully. The proposed optimization method
is one obvious choice but other directions should be
analysed as well.
When the above problems have been solved it

is natural to fully use the 6-DOF capabilities of
the robot and extend the robot model to this case.
The computational complexity of the EKF will in-
crease even more and therefore other implementa-
tions based on numerical computation of the Ja-
cobian should be tested. One such example is the
Unscented Kalman Filter [18]. The sensor system
could be extended as well and a first step would be
to include a gyro to get a 6-DOF measurement. An-
other important issue is the robustness with respect
to trajectory and configuration in work area, i.e.,
to investigate the need for observer gain schedul-
ing. Robustness for different robot individuals and
tools must also be further studied.
Finally, it is also important to do new experi-

ments and validate the result more thorough. An
important thing concerning experimental data is to
validate the models that are used in the filter. This
is not a problem during the simulations since it is
the same models that are simulated and used in the
filter with some differences in the parameter values.
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