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André C. Bittencourt
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Abstract

Most fault detection algorithms are based on residuals, i.e. the difference be-

tween a measured signal and the corresponding model based prediction. However, in

many more advanced sensors the raw measurements are internally processed before

refined information is provided to the user.

The contribution of this thesis is a study of the fault detection problem when only

the state estimate from an observer/Kalmanfilter is available and not the measured

residual/innovation. The idea is to look at an extended state space model where the

true states and the observer states are combined. This extended model is then used

to generate residuals viewing the observer outputs as measurements. Results for fault

observability of such extended models are given. The approach is rather straightfor-

ward in case the internal structure of the observer is exactly known. For the Kalman

filter this corresponds to knowing the observer gain. If this is not the case certain model

approximations can be done to generate a simplified model to be used for standard fault

detection.

Our motivating application has been mobile robots where the so-called pose, the

position and orientation of the robot, is an important quantity that has to be estimated.

The pose can be measured indirectly from several different sensor systems such as

odometry, computer vision, sonar and laser. The output from these so-called pose

providers are often state estimates together with, in best cases, an error covariance

matrix estimate from which it might be difficult or even impossible to access the raw

sensor data since the sensor and state estimator/observer are often integrated and

encapsulated. In this thesis we discuss some of the main pose estimators in mobile

robots and validate a fault detector filter through experiments using the our proposed

framework.
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Resumo Estendido

Grande parte dos algoritmos de detecção de falhas são baseados em resı́duos,

i.e. a diferença entre um sinal medido e uma correspondente predição baseada em

modelo. No entanto, em muitos sensores mais avançados, as medidas puras são

internamente processadas antes que informação refinada seja repassada ao usuário.

A primeira contribuição deste trabalho é o estudo do problema de detecção de

falhas quando somente estimação de estados obtidas por um observador ou filtro de

Kalman estão disponı́veis, mas não seus resı́duos/inovações. A idéia é olhar para

um modelo de espaço de estados extendido onde os estados reais e os estados do

observador estão combinados. Este modelo extendido pode então ser utilizado para

gerar resı́duos utilizando as saı́das do sensor integrado e suas entradas como valores

medidos. Resultados para observabilidade de falhas utilizando tal modelo extendido

são dadas. A abordagem é consideravelmente simples em caso a estrutura interna do

sensor é exatamente conhecida. Para o filtro de Kalman, correspondendo a saber o

ganho do observer usado no sensor. Se este não é o caso, simplificações podem ser

realizadas para gerar um modelo simplificado a ser usado na detecção de falhas.

Uma questão importante é discutir os ganhos utilizados usando-se tal mod-

elo, indicações para o problema são apresentados através da análise das funções de

transferência falha-resı́duo, para os diversos casos. Especialmente interessante é a

comparação entre as abordagens em que se utiliza do conhecimento da estrutura in-

terna do sensor (ganho do observador, por exemplo) em contrapartida ao que se faz

simplificações quanto ao sensor.

Nossa aplicação motivadora tem sido robótica móvel onde a conhecida pose

do robô, sua posição e orientação, é uma importante grandeza a ser estimada. A

pose pode ser medida indiretamente por diferentes sensores como odometria, visão

computacional, sonar e laser. A saı́da destes “provedores de pose” são geralmente es-

tados estimados, juntamente com, nos melhores dos casos, uma estimativa da matriz

de covariância de erros, pode ser difı́cil ou até mesmo impossı́vel de se ter acesso às

grandezas diretamente medidas por estes sensores, uma vez que os mesmos estão

geralmente integrados e encapsulados com observadores/estimadores de estados.
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Neste trabalho, nós também discutimos alguns dos provedores de pose em robôs

móveis e apresentamos e validamos uma framework para detecção e atuenação de

falhas de localização em alguns cenários relevantes.

Um sistema de monitoramento de condição supervisiona um sistema dinâmico

com o objetivo de:

• Detectar falhas: o sistema reconhece que uma falha ocorreu.

• Isolar falhas: o sistema reconhece onde e quando uma falha ocorreu (alguns

sistemas incluem as funções de reconhecer o tipo de falha, o tamanho ou a

causa da falha).

• Atenuar falhas: o sistema toma medidas necessárias para contra atuar os efeitos

das falhas.

Nossa framework define cada uma dessas funções. Para tal, primeiramente, apre-

sentamos dois provedores de localização utilizados comumente em robótica móvel,

odometria e sobreposição de scans laser. Suas princı́pias caracterı́sticas e alguns al-

goritmos são motivos de estudo. Os mesmos são utilizados em um robô móvel para

na nossa framework que inclue as tarefas de detecção de falhas, estimação do seu

tempo de ocorrência, estimação do seu tamanho e atenuação sobre as estimações de

pose providas pela odometria.

As contribuições mais relevantes deste trabalho são:

• As condições de detectabilidade de falhas para tais sensores integrados através

da análise de observabilidade do sistema augmentando as falhas nas matrizes

de dinâmica apresentadas no Capı́tulo 4.

• A análise da sensibilidade das funções de transferência falha-resı́duo para as

soluções propostas presente no Capı́tulo 4.

• A framework utilizada para detectar, isolar e atenuar falhas na localização de

robôs móveis, objeto de estudo do Capı́tulo 6.

• O paper aceito para o 7th IFAC Symposium on Fault Detection, Supervision and

Safety of Technical Processes incluso no Anexo A.
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1 Introduction

Sensors and observers/estimators are often closely integrated in intelligent sen-

sor systems. This situation is common in distributed sensor processing applications. It

may be very difficult or even impossible to access the raw sensor data since the sensor

and state estimator/observer are often integrated and encapsulated.

An important application of sensor based systems is model based fault detec-

tion, where the sensor information is used to detect abnormal behavior. The typical

approach is to study the size of certain residuals (differences between a direct mea-

sured output y(k) and a redundant model-based prediction of the same, ŷ(k)), that

should be small in case of no fault, and large in case of faults. Most of these methods

rely on the direct sensor measurements. The problem when only state estimates are

available, as depicted in Figure 1.1, is less studied. In [1] the fault detection using such

(a) Raw measurements available. (b) Only an integrated sensor output available.

Figure 1.1: Residual generation problem arising when raw measures are not available.

sensors in mobile robotics is discussed from mainly an experimental point of view. The

primary objective of this thesis is to investigate the theoretical foundation of observer

data only fault detection, where it is not possible to directly access the raw sensor data.

Our motivating application has been mobile robots, where the localization task

(estimating the robot positioning) plays an important role for increasing the general per-

formance and reliability of the robot. The methods available today commonly provide

an estimate which is the result of some internal computations from raw measurements,

including in this category relative localization methods, .i.e dead-reckoning, and even

global positioning systems, i.e. triangularization/trilateron. It may be difficult or or even

impossible to access the raw measured data used in such methods and one should

deal with the fault detection problem only with the estimates provided.
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Description: Study the system state space description considering the following

model:

x(k + 1) = Ax(k) +Buu0(k) +Bvv(k) + Fafa(k)

where x(k) denotes the states vector, u0(k) is a fault-free input to the system, fa(k)

models actuator faults unknown inputs and v(k) is process unknown disturbances.

The behavior of the system can be observed from sensors. To simplify the anal-

ysis we assume that sensors are integrated with standard observers/Kalman filters.

x̂j(k + 1) = Ax̂j(k) +Buu(k) + Lj(yj(k)− Cjx̂j(k))

The input to observer j is the measured output signal yj(k) and the input u(k) which

might also be subject to fault and noise as

u(k) = u0(k) + Fufu(k) + eu(k)

yj(k) = Cjx(k) + Fy,jfy,j(k) + ey,j(k)

The output from the observer is x̂j(t), i.e., an estimate of the state. If for example the

Kalman filter is used this could be come with a corresponding error covariance matrix

Cov(x̂j(t)− x(t)) = Pj

Problem: We will study the problem when it is only possible to obtain x̂j(k), and

not the raw data yj(k). This seems to be a severe restriction, but from a practical point

of view the measurement process could be integrated in the sensor system. One com-

mon example is standard GPS, where the measurement is based on satellite tracking

and triangularization based techniques. In many applications the state estimate is ob-

tained by more sophisticated methods then a simple linear observer. We will however

use this structure for analysis and design purposes.

So far we have not taken the fault contribution f(k) into account. One possibility

is to also estimate f(k) by for example extending the state vector to x̄(k) = [x(k) f(k)]T

and apply the Kalman filter or another observer method to estimate the extended state

vector x̄(k). Recently, there has been quite a lot of progress in the area of input esti-

mation using Kalman filtering, see [3].
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1.1: Residual Based Fault Detection using Observer Data
Only

Residual based techniques are all based on comparing the predicted output

ŷ(k), based on a model, with the observed output y(k). In case of a systematic differ-

ence we will alarm. If only x̂(k) is available the first two ideas for fault detection ideas

would be:

• Try to reconstruct y(k) using a model of the observer, e.g.

Ljyj(k) = x̂j(k + 1)− (A− LjCj)x̂j(k)−Buu(k)

Here we need a very accurate model and the internal structure of the observer,

e.g. the gain L, otherwise the estimations will be easily biased. In many practical

cases this would be difficult. Notice also that if Lj is not full rank, it allows for

multiple solutions.

• Assume that there are at least two observers providing x̂1(k) and x̂2(k). Define

the residual vector

ε(t) = x̂1(k)− x̂2(k)

which should be sensible to fault that affects the two observers in different ways,

e.g. sensor faults. This approach does not, however, make direct use of the model

of the system.

We will start by analyzing the case with only one observer.

Idea: View x̂(k) as the output from the extended system

x(k + 1) = Ax(k) +Buu(k) + Fafa(k)

x̂(k + 1) = Ax̂(k) +Buu(k) + L(y(k)− Cx̂(t))

ŷ(k) = C∗x̂(k), where y(k) = Cx(k) + Fyfy(k)

where C∗ depicts which estimates are available. By using the extended state x̄(k) =

[xT (k) x̂T (k)]T and the corresponding state space matrices we can interpret this a

standard fault detection problem, which could be approached by a parity space method

or a Kalman filter based method. The problem when we have m different observers

can be approached by augmenting the state space x(k) with all observer states x̂j(k),

j = 1, . . .m.
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There are some basic questions that need to be addressed with such framework

which are studied in this thesis:

• Are the faults detectable using this model?

• What to do if the sensor gain L is unknown?

• How to compare/validate the performance of different methods?

1.2: Outline

This thesis is divided in two parts. Part I approaches the problem in a more

theoretical manner, analyzing some of its properties and proposed solutions. Part II

presents a practical example in detection of localization faults in mobile robots. Starting

with Part I, it follows as:

Chapter 2 presents a review on fault detection with a brief introduction to the

main different methods and paradigms.

Chapter 3 is an introduction to state observers and some relevant properties for

this work.

Chapter 4 presents some theoretical analysis on observer-based fault detection

for both when one has access to y(k) or only ŷ(k), and addresses the questions on

fault observability, fault sensitivity and unknown sensor structure (for the latter case).

Chapter 5 starts Part II with our application example. It describes the platform

used, wheeled mobile robots. It includes a discussion on modeling and localization

methods with more emphases on odometry and laser scan matching.

Chapter 6 presents an approach for fault detection in wheeled mobile robots.

Different methods are used which are compared and analyzed.

Finally, Chapter 7 concludes this work and leave comments on remaining chal-

lenges.

Moreover, in Appendix A, we include the conference paper to be presented in

the 7th SAFEPROCESS.
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1.3: Contributions

The main contributions of this thesis are:

• The fault observability conditions for integrated sensors presented in Chapter 4.

• The analysis on residuals fault sensitivity for the different methods and compari-

son presented in Chapter 4.

• The fault detection framework for localization faults in mobile robots presented in

Chapter 6.

• The conference paper in Appendix A.



Part I

Fault detection
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2 Fault detection review

This Chapter presents a review on the main aspects of fault detection and isola-

tion (FDI) methods with focus on the application to localization fault detection in mobile

robots.

2.1: Fault Detection and Isolation Overview

This Section was based on [5, 12, 17] and provides the reader with a brief

overview of FDI (Fault Detection and Isolation) methods. Basically, the purpose of

FDI is to monitor dynamic systems and should be able to perform the following tasks:

• Fault detection: FDI recognizes that a fail has occurred.

• Fault isolation: FDI recognizes where and when a fail has occurred (some FDI

extend this concept to include the type, size or cause of the fail).

To choose the algorithm of the FDI it is important to know which kind of fault is

present in the system. Basically the fault types can be classified by its time behavior

and effects on the system.

The first category of fault can be summarized as:

• Abrupt: faults that affect the system in a stepwise manner. Ex: A wrong calibra-

tion of a sensor causing an offset like error.

• Incipient: faults that occur gradually with time (drift-like). Ex: increase of friction

inside a gearbox due to wear.

• Intermittent: faults that affect the system during certain time intervals, with inter-

rupts. Ex: undesired air bubbles in a gas pipeline.

7



CHAPTER 2. FAULT DETECTION REVIEW 8

The manner a fault affects the system’s behavior can be categorized as:

• Additive: faults that are effectively added to the system’s input or output. Ex:

sensor faults.

• Multiplicative: faults that changes the parameters of the system. Ex: resistance

changes in an electric motor caused by an overheat.

• Structural: faults that introduces new governing terms to the describing equations

of the system. Ex: a change on the dynamic behavior of an aircraft caused by a

loss of power in the engines.

Figure 2.1 illustrates additive faults in the input signal (fu) and output signal (fy)

as well as a multiplicative faults (fpar) of a system.

Figure 2.1: Additive and Multiplicative faults.

Remark 1 Localization faults are generally associated with a malfunction of a localiza-

tion provider and affects an output of the system. Therefore, it can be classified as an

additive fault that may occur abruptly or in an incipient manner.

Fault detection methods can either run on-line (concomitantly to the normal op-

eration of the system) or off-line (achieved for example with special experiments for

diagnosis). The methods and complexity for each of these category vary considerably,

with on-line methods remaining the biggest challenge.

2.1.1: Fault Detection and Isolation Methods

FDI methods can rely or not on a model of the system. Three convenient cate-

gories for model-free methods are:

• Hardware redundancy: these systems rely on extra hardware which are specially

used to detect faults.
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• Spectral analysis: utilize mechanical vibration, noise, ultrasonic, current or volt-

age signals to detect and diagnose faults.

• Expert/Logic systems: rely on previous knowledge about the behavior and char-

acteristics of the system (age, statistical data, operating condition, etc) under

different circumstances. It is a logical method therefore it does not need extra

hardware.

• Dimensionality reduction: PCA or Principal Component Analysis is a classical

approach that transforms a number of possibly correlated variables into a smaller

number of uncorrelated variables, called principal components. The first principal

components will explain the larger variances of the signal (system dynamics for

example), while smaller ones will relate to the parts carrying smaller variances,

noise for example. Whenever a fault appears, the PCA cannot explain the signal

and therefore detection is made possible.

Other methods are for example FDA (Fisher Discrimant Analysis) which is related

to PCA with the property of considering different classes of data into account and

PLS (Partial Least Squares). See [27] for more.

Model free methods have been applied successfully in the industry but these

methods present some clear drawbacks. In the case of hardware redundancy, extra

costs and weight is added to the system; model free methods make use of a priori (and

often empirical) knowledge of the system signal characteristics, which are dependent

on the system operational point and can be costly to define if no previous knowledge

about the signals are available.

As pointed in [32], model-free methods are not suitable for mobile robots applica-

tion since these systems operates over a wide range of different conditions and might

be difficult, too costly or even impossible to obtain data for the failure cases. There-

fore, this work will focus on the use of the so-called model-based methods. The next

Section gives an overview of the several model-based FDI techniques emphasizing its

application to robotic systems.

2.2: Model-based FDI methods

This class of methods are based on the principle of analytical redundancy. In-

stead of comparing several signals outputs for the same variable as in hardware redun-
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dancy, they compare system ouputs with analytically generated signals that resemble

to the ouput of the system.

Figure 2.2 displays the general flowchart of a model-based FDI method.

Figure 2.2: Model-based FDI flowchart

Residual is a fault indicator, based on a deviation between measurements and

model-equation-based computations. The residuals are usually generated by filtering

techniques that take measured signals (i.e. inputs and outputs) and transform them

into a sequence of residuals that resemble white noise before a change occurs and

drifts in case of a fault.

Regardless the method used to generate a residual, a residual generator, as

illustrated in Figure 2.3 is just a filter that takes as input measured inputs u(s) and

outputs y(s) from the monitored system. Where Hu(s) and Hy(s) are realizable transfer

Figure 2.3: General structure of a residual generator.

functions. Since the residual should be insensitive to the input u, we have the condition

that

Hu(s) +Hy(s)Gu = 0
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There are three main methods to generate residuals in a model-based approach:

• Parity space: the system model directly produces outputs that are comparable

with the measured outputs.

• Diagnostic observers or state estimators: an observer is designed to reconstruct

the states of a system, which are compared to the real states generating the

residual.

• Parameter estimation: an estimation of some physical parameters of the system

is compared with its healthy values generating the residuals.

Remark 2 According to [6], more than 50% of the applications to detect additive faults

uses observer methods while more than 50% of the applications to multiplicative faults

utilizes parameter estimation methods.

Nevertheless, one can find several successful applications of observer methods to

detect multiplicative faults utilizing for example augmented states where the unknown

parameters are modeled as a state of the system. The parity space will not be further

detailed since these methods work in an open-loop fashion which requires a precise

model of the system with fixed parameters, which is generally not the case in mobile

robots. An example of the use of a parity space approach to fault diagnosis in industrial

robots can be found at [22].

In the following Subsections, some of the methods for residual generation and

fault detection found in the literature are reviewed and discussed, the focus will be in

parameter estimation and diagnostic observers.

2.2.1: Residual generation methods - parameter estimation

Parameter estimation is the process of estimating some or all parameters of a

system model using its input and output measurements. Residuals can be generated

when the estimated parameters are compared with fault-free values of such parameters

(Figure 2.4). In [28] for example, the friction parameters inside an industrial robot arm

joint is estimated and monitored for diagnosis.

Since the measured signals are stochastic (corrupted by noise) and physical sys-

tems are generally nonlinear, recursive estimators like nonlinear observers, extended
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Kalman filters or recursive least squares are generally used to update the parameter

estimates. These parameters are usually initially guessed and then converge to a final

value after multiple recursive steps.

Figure 2.4: Parameter Estimation Block Diagram

There are various different but related conceptual bases for continuous-time sys-

tem parameter estimation see [26] for a basic literature in system identification. They

are briefly described here.

1. Output error methods, OE: this is maybe the most intuitive parameter estimation

approach. The parameters are estimated in order to minimize the error between

the model output and the system output.

ε(t) = y(t)− B̂

Â
u(t) (2.1)

where Â and B̂ are the estimates of the governing polynomials of the system.

In this case, no direct calculation of the parameters is possible, because ε(t)

is nonlinear in the parameters. The loss function is therefore minimized as an

optimization problem.

2. Equation error methods, EE: this approach is clearly derived from an analogy with

static regression analysis and linear least squares estimation. The error function

is generated directly from the input-output equations of the model.

ε(t) = Ây(t)− B̂u(t) (2.2)

From Equation 2.2 it is clearly seen that it implies the generation of the time

derivatives of the signal, which might be a problem when the signal is too noisy.
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Young, [21], proposes a solution for this utilizing a ’generalized equation error’

that filters the measured signals and provides filtered derivatives of the signals.

After sampling, the estimation can be solved as a least square estimate or in a

recursive form (recursive least squares). Isermann, [4], emphasizes that for nu-

merical properties improvement, square-root filters algorithms are recommended.

3. Prediction error methods, PE: the equation of the error is the same as the OE

case, Equation 2.1, the difference is that the output estimate is defined as a

“best prediction” depending on the current estimates of the parameters θ which

characterize the system and the noise models, ŷ(t)=̂ŷ(t|θ). ŷ(t|θ) is a conditional

estimate of y(t) given all current and past information of the system, while ε(t)

is an ’innovations’ process with serially uncorrelated white noise characteristics

(see [26] for more). The PE can be written as an OE (2.3) or EE (2.4) approach.

ε(t) =
Ĉ

D̂

[
y(t)− B̂

Â
u(t)

]
(2.3)

ε(t) =
Ĉ

D̂Â

[
Ây(t)− B̂u(t)

]
(2.4)

4. Maximum likelihood methods, ML: a special case of PE methods, separated here

because of its importance, with the additional restriction that the stochastic distur-

bances to the system have specified amplitude probability distribution functions.

In several applications, this assumption is restricted further for analytical tractabil-

ity to the case of a Gaussian distribution.

5. Bayesian methods: extension of ML where a priori information on the probability

distributions is included in the formulation of the problem. It is important in the FDI

context because most recursive methods can be interpreted as being a Bayesian

type.

An usual approach to deal with the problem of parameter estimation is to con-

sider linear models. Here we summarize the main parameter estimation methods for

linear continuous-time models based on sampled signals [9].

1. Least-squares parameter estimation:this is a well-known case of optimization

where the estimated parameters vector θ̂ are estimated by the non recursive es-

timation equation below.

θ̂ = [ψTψ]−1ψTy (2.5)
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where ψ is the data vector and y is the measured output. These parameters are

biased by any noise, therefore, a good signal-to-noise ratio must be achieved to

use this method.

2. Determination of the time derivatives: as mentioned before, the estimation of the

signals derivatives by numerical differentiation is not a good approach because

of the inherent noise in the signals. A state variable filter is therefore utilized that

calculates the derivatives and filter the noise.

3. Instrumental variables parameter estimation: instrumental variables can be used

to overcome the bias problem due to noise. The instrumental variables introduced

are only insignificantly correlated with the noise-free process output. A major

advantage of instrumental variables is that no strong assumptions and knowledge

on the noise is required. However, when dealing with closed loop configurations

biased estimates are obtained because the input signal is correlated with the

noise.

4. Parameter estimation via discrete-time models: one can try to estimate the vari-

ables in discrete-time models and then calculate the parameters of the continuous-

time model. These methods, however, require extensive computational effort and

are not so straightforward.

Parameter estimation for fault detection has been used successfully for several

applications. However, the fundamental tasks of modelling and identification in such

framework might not be trivial and certainly corresponds to its main design tasks. Con-

sider for example a chemical process, where there might be no precise physical model,

and operating in closed-loop, it would be very difficult or even unfeasible to either model

it or to perform an informative enough excitation for a proper identification.

2.2.2: Residual generation methods - state estimation (observers)

This category of FDI methods uses a state observer (a Kalman filter for example)

to reconstruct the unmeasurable state variables based on the measured inputs and

outputs. It can be shown that an additive fault is easily detected with this technique,

this kind of fault makes the residual (generally taken as the estimation error) deviate

from zero with a bias.
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Remark 3 The influence of multiplicative faults in residuals generated by state ob-

servers is not as straightforward recognizable because in this case the changes in the

residuals could be caused either by parameter, input and state variable changes and

are not easily seem in the system output.

The main advantage of observer-based methods is that they do not require spe-

cial excitation of the system, making it a good choice for on-line fault detection.

Observer-based FDI methods also require an accurate mathematical model of

the process, therefore it is important to try to robustify the residual evaluation in order

to cope with the inherited uncertainties of any physical model. Investigations of robust

observer-based approach can be found for example at [16, 14, 56].

The following FDI methods with state estimation are known, [4, 5]:

1. Dedicated observers for multi-output processes: the design of specific observers

allows the detection of specific faults, combining and arranging the observers one

can detect multiple faults.

(a) Observer excited by one input: one observer is driven by one sensor output

while the other outputs are estimated and compared with the measurements

allowing the detection of single sensor faults (additive faults).

(b) Bank of observers, excited by single outputs: several of the first case allow-

ing the detection of multiple sensor faults.

(c) Kalman filter, excited by all outputs: the residuum changes the characteristic

of zero mean white noise with known covariance if a fault appears, which is

detected by a hypothesis test.

(d) Bank of observers, excited by all outputs: several of the above designed to

detect a definite fault signal.

(e) Bank of observers, excited by all outputs except one: as before, but each

observer is excited by all outputs except one sensor output which is super-

vised.

2. Fault detection filters for multi-output processes: the feedback state observer is

chosen so that particular fault signals in the input change in a definite direction

and fault signals at the output change in a specific plane.
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3. Output observers: another possibility is the use of output observers (unknown

input observers) if the reconstruction of the state variable is not of primary inter-

est. A linear transformation is applied so that the residuals are dependent only

on additive input/output faults.

2.3: Change (fault) detection methods

After the generation of the residuals, it is needed to establish whether there was

a change (fault) on the system or not. This role is done by the change detector which

can be classified under three categories [17]:

1. One model approach: The filter residuals ε(k) are transformed to a distance mea-

sure s(k) (computed from the no-fault values), a stopping rule decide whether the

change is relevant or not. A schematic is show at Figure 2.5.

Figure 2.5: One model approach for change detection

The most natural distance measures are:

• Change in the mean, s(k) = ε(k).

• Change in the variance, s(k) = ε(k)2 − λ, where λ is a known fault-free

variance.

• Change in correlation, s(k) = ε(k)y(k− d) or s(k) = ε(k)u(k− d) for some d.

• Change in sign correlation, s(k) = sign(ε(k)ε(k− 1)), this test is used due to

the fact that white residuals should change sign every second sample in the

average.

2. Two model approach: In this case the residuals are generated by two filters, a

slow (with a great data window or the whole data) and a fast one (with a small data

window) which are compared, Figure 2.6 illustrates the procedure. If the model

based on the smaller data window gives larger residuals a change is detected.

The main problem is to choose an adequate norm for the comparison, typical

norms are:
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Figure 2.6: Two residual generators running in parallel, one slow to get good noise attenuation
and other fast to get fast tracking. The switch decides whether a change occurred or not.

• The Generalized Likelihood Ratio (correlation between fault signatures).

• The divergence test.

• Change in spectral distance.

3. Multi-model approach: This approach makes use of the so-called matched fil-

ters, that can generate white residuals for a specific change even after it was

inserted in the system. The idea is to enumerate all conceivable hyphoteses

about changes and compare the residuals generated from the matched filters,

the one with the ’smallest’ residuals will be an indication of the change, Figure

2.7 shows the procedure. Since a batch of data is needed, this approach is off-

line, but many proposed algorithms makes the calculations recursively, and are

consequently on-line.

Figure 2.7: Several matched filters (residual generators) that are compared in a hyphotesis
test.

Remark 4 The performance of change detection method will always be a trade-off

between speed (how fast the method detect a fault) and false alarm rate.
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2.4: Concluding Remarks

The Chapter presented a review of some fault detection methods. Emphasis has

been given on methods for monitoring unmeasurable quantities like process parame-

ters and process state variables.

In designing of a model-based FDI method, the following aspects should be

considered [9]:

• Process models: since the methods are based on the deviation of a normal oper-

ation, one should define the normal operation of the system (for example, nominal

values of parameters) and also which kind of model. If the system or process is

running only with small changes of the variables, linearized models can be used.

However for many applications this is not the case ([15, 13, 23]).

Besides the use of analytical models, a diagnosis system can be combined with

heuristics of the system, which can be translated for example in fault-symptom-

trees or fuzzy logic and are important for the fault isolation.

• Parameter and state estimation: as discussed through the Chapter, state esti-

mation has its main applications in the detection of additive faults and has the

drawback that it is difficult to identify the source of the fault since the residuals

are deviations of the system states.

On the other hand, parameter estimation techniques are the most indicated ap-

proach for the identification of multiplicative faults. In [8, 18] several multiplicative

faults could be identified utilizing parameter estimation, testifying its relevance. A

main drawback of parameter estimation however is that the system input signal

must be informative enough to perform identification, which makes it difficult to

implement in on-line diagnosis systems.

In a complete diagnosis system, where both additive and multiplicative faults are

required, the FDI methods utilizing parameter and state estimation complements

each other. For example, an observer-based FDI method that detects faults on

sensor and actuators could run on-line, whether an actuator fail is detected an

off-line test utilizing a parameter estimation FDI method could be used to fault

diagnosis and isolation.

• Faults: the way that a fault affects the system is very important when designing

FDI methods. One should also map the faults that affect the system.
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• Performance: fault detectors must be sensitive to the appearance of faults but

insensitive to other changes (noise, operating points, modeling errors, etc.). Be-

cause these requirements often contradict each other, the following trade-offs

must be analyzed:

– size of fault vs detection time;

– speed of fault appearance vs detection time;

– speed of fault appearance vs process response time;

– size and speed of fault vs speed of process parameters changes;

– detection time vs false alarm rate.

Methods that are sensitive to abrupt faults for example, might not be suitable to

detect incipient faults.

• Practical aspects: a FDI method should consider the practical aspects when

defining the experiments to detect the faults, for example safety-critical system,

systems under a closed-loop, network system, etc. and should be robust enough

to cope with them.

• Testing: the introduction of artificial faults is also important to validate the system

reliability and should try to approximate to real faults.



3 State observers

As mentioned in the previous Chapter, one of the most important tasks in a fault

detection scheme is the residual generation method design. A state observer takes

the system input and output signals and utilizing a system model, estimates its states,

which can be used as an analytical redundancy for fault detection.

In this Chapter, we introduce the concept of state observers depicting some of

its properties and different configurations.

3.1: State observers

Given a liner-time invariant system described by the state equations below:

x(k + 1) = Ax(k) +Buu(k)

y(k) = Cx(k) (3.1)

Here x(k) denotes the state vector, u(k) is a known input signal, y(k) are the measured

output signals.

Under the condition that the system is observable (see Section 3.3) and assump-

tions of a known model structure and parameters, the internal state variables x(k) can

estimated with the Luenberger observer:

x̂(k + 1) = (A− LC)x̂(k) + L(y(k)) +Buu(k)

ŷ(k) = Cx̂(k) (3.2)

If system and model parameters are equal, the state error

x̃(k + 1) = x(k + 1)− x̂(k + 1)

20
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becomes

x̃(k + 1) = (A− LC)x̃(k)

And hence,

lim
k→∞

x̃(k) = 0

for any initial state error x̃(0) = x(0)− x̂(0) if the A− LC has only stable poles and will

be zero if the initial error is zero.

When L = 0, Equation 3.2 is turned into a pure simulator, in which the measured

output does not affect the observer. With A = LC, the observer is called a predictor

and the estimates are taken directly from the measurements.

The observer gain L is an important design parameter that will influence the

observer behavior, it can be adjust for example with pole placement methods.

3.2: State estimation - The Kalman filter

The Kalman filter, initially presented in 1960 [29] is a special case of observer.

Also called estate estimator, it minimizes the mean of squared error for the observa-

tions of stochastic systems in the form below:

x(k + 1) = Ax(k) +Buu(k) + w(k)

y(k) = Cx(k) + v(k) (3.3)

in which w(k), process noise, and v(k), measurement noise, are assumed to be inde-

pendent from each other, and to attend a white gaussian distribution,

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)

with process and measurement covariances, Q andR. Given the a priori state estimate

x̂(k|k − 1), computed with knowledge on the process before time k and a posteriori

estimate x̂(k|k) given measurement z(k), one can define the a priori and a posteriori

covariance error estimates as

P (k|k − 1) = E[e(k|k − 1) : e(k|k − 1)T ], where : e(k|k − 1) = x(k)− x̂(k|k − 1)

P (k|k) = E[e(k|k) : e(k|k)T ], where : e(k|k) = x(k)− x̂(k|k)
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The Kalman filter finds a linear relation between the a posteriori estimate and a priori

estimate and measurement as

x̂(k|k) = x̂(k|k − 1) +K(y(k)− Cx̂(k|k − 1)) (3.4)

where the term (y(k)−Cx̂(k|k− 1)) is also known as the filter innovations, x̃(k), which

under the above mentioned conditions will follow a white gaussian distribution. The also

called Kalman filter gain, K, is the optimal solution that minimizes the a posteriori error

covariance, P (k|k), and therefore the estimates. A possible solution for the problem is

the form as:

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1 (3.5)

The above Equation can be achieved by minimizing the trace of the error covariance

in respect to K given the state estimate in form of Equation (3.4). Check [29] for a

detailed proof.

Analyzing Equation (3.5), one can depict the smaller measurement noise covari-

ance, R, the greater is the computed gain and therefore, the greater will the innovations

influence be in the estimates. In other words, the filter will thrust more on the measures

when the measures itself are more reliable.

On the other hand, the greater a priori error covariance P (k|k − 1), which is

directly related to the process covariance Q, the smaller is the gain. Which in other

words, means that the estimate update will thrust more on the model, rather than the

innovations process.

3.2.1: The filter algorithm

The Kalman filter can be written in a recursive manner, separated in two steps.

First, a prediction of the estimations given the previous estimate and system model.

This prediction is then corrected by the, so-called, innovations process in which the

measures are taken in a feedback manner.

The prediction step (or time update) equations fall in the group:

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu(k − 1) (3.6)

P (k|k − 1) = AP (k − 1|k − 1)AT +Q (3.7)
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In the correction step the actual measurements are used to correct the estima-

tions and filter equations:

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1 (3.8)

x̂(k|k) = x̂(k|k − 1) +K(k) (y(k)− Cx̂(k|k − 1)) (3.9)

P (k|k) = (I −K(k)C)P (k|k − 1) (3.10)

The algorithm steps can be translated as:

Prediction
(3.6) State prediction given model
(3.7) Covariance prediction given model

Correction
(3.8) Gain computation
(3.9) State correction given innovations

(3.10) Covariance update

Table 3.1: Kalman filter algorithm steps

Finally, an initial guess for P (0) and x̂(0) is needed. A comparison with the state

observer shown in Section 3.1 shows that the observer only uses past information and

not predicted ones.

Under the assumption of constant Q, R, and model, the gain will converge

quickly and can be pre-computed in an off-line manner solving a Riccati equation of

the error covariance matrix P . In such case the gain is computed as

K̄ = PCT
(
CPCT +R

)−1

and it can be shown, [5], that, with the prediction inserted, the filter becomes

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) + AK̄ (y(k)− Cx̂(k|k − 1))

which in comparison, is the same as an observer with L = AK̄.

3.2.2: The extended Kalman filter

The Kalman filter as presented until now is the optimal solution for the state

estimation problem in stochastic linear systems and supposes that both the transition

state matrix A and measurement matrix C to be constant.
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It is still possible to use the Kalman filter for nonlinear systems by linearizing

the system at each time step and computing the gain and covariance error. With this

approach, the filter is not optimal but still finds itself useful in several cases, for example

in GPS and navigation systems.

Considering the non-linear system:

x(k + 1) = f (x(k), u(k)) + w(k)

y(k) = h (x(k)) + v(k) (3.11)

The nonlinear functions f and h can be used to compute the predicted estate and

measurement from the previous estimations, Equation 3.6. However, to update the

covariance and, consequently, the gain, these functions should be linearized over the

system operational point at each time step, using, for example Jacobian matrices.

3.3: Observability conditions

A system is said observable if its internal states at a time can be computed from

a finite set of output observations and the respective inputs. It is an internal property

of the system determined by the system matrices A and C.

Below we present two different but equivalent criteria for the observability of a

system, these are not new results but will be relevant for the continuation of this thesis.

The demonstrations are based in [30], but might be found in any usual system theory

book.

3.3.1: The observability matrix

With the representation of the system output as a time series, the system equa-

tions can be rewritten as



∆y(k0)

∆y(k0 + 1)
...

∆y(k0 + p− 1)




=




C

CA
...

CA(p−1)



x(k0) (3.12)



CHAPTER 3. STATE OBSERVERS 25

where ∆y(k) represents all know terms, function of the measured output y(k) and input

u(k):

∆y(k0) = y(k0)−Du(k0)

∆y(k0 + 1) = y(k0 + 1)− CBu(k0)−Du(k0 + 1)

∆y(k0 + 2) = y(k0 + 2)− CABu(k0)− CBu(k0 + 1)−Du(k0 + 2)
...

∆y(k0 + p− 1) = y(k0 + p− 1)− CA(p−2)Bu(k0)− . . .
−CBu(k0 − p− 2)−Du(k0 + p− 1)

Equation 3.12 has a unique solution for x(k0) if and only if the matrix that multiplies

x(k0) has the same rank as the n total states in the system.

The Cayley-Hamilton theorem, shows that any matrix An linearly depend on

I, A, . . . , A(n−1) (see [30] for a proof), and therefore the criteria can be checked directly

from the matrix:

O =




C

CA
...

CA(n−1)




(3.13)

The matrix O is known as the observability matrix and shows that the system is ob-

servable if

rank O = n

Which is equivalent to check if O has full column rank since it has n columns.

3.3.2: The Popov-Belevitch-Hautus criteria

Another important criteria for testing the observability of systems is known as the

Popov-Belevith-Hautus criteria (PBH), firstly studied by these authors. The test depicts

a pair (A C) to be observable if and only if

rank

(
C

A− sI

)
= n ∀s (3.14)

Where n is the dimension of A. It is easy to see that these conditions are met for all

s that are not eigenvalues of A. The relevance of the theorem is that the rank must
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be n even when s is an eigenvalue of A. For a proof and more insights on system

observability and its dual, controllability, the reader is advised to check [49].

3.4: Concluding remarks

This brief Chapter presented a review on state observers and state estimators

(Kalman filter) as well as relevant observability conditions. The theory of observers

has developed mainly in the 60’s and has been, since then, used successfully in both

industry and academy, specially the (optimal) Kalman filter is applied in different areas

and is still an important tool. The Kalman filter was first designed for linear systems,

and with such constrain, it is actually optimal. For non-linear systems, approaches as

the Extended Kalman filter may work considerably well, but there is no guarantee on

optimality.

With the theoretical background presented so far, the next Section finalizes this

Part presenting the problem of observer-based fault detection in a more thorough man-

ner, holding a discussion on our primary problem description, fault detection through

integrated sensors.



4 Observer-based fault detection

With the introduction to state observers given in the previous Chapter, we finally

present a framework for residual generation using state observers.

We present both the classical approach for residual generation through state ob-

servers (when the raw measurements are available) and the problem that arises when

these measurements are not available but only an estimated output. Such situation

is common in many more advanced sensors where raw measurements are internally

processed before refined information is provided to the user.

The problem of fault detection (mostly related here to the residual generation

task) is studied in both the classical and in the case of observer-integrated sensors.

Conditions for fault observability using the concepts found in the previous Chapter are

depicted as well as a discussion on the methods performance and residual analysis.

4.1: Observer-based residual generation - classical approach

Considering the following system description:

x(k + 1) = Ax(k) +Buu0(k) + Fafa(k) (4.1)

where x(k) denotes the states vector, u0(k) is a fault-free input to the system and fa(k)

model actuator fault inputs, treated as unknown.

When the system inputs and outputs are measured through sensors, which can

also be subject to additive faults as

u(k) = u0(k) + Fufu(k) (4.2)

y(k) = Cx(k) + Fyfy(k) (4.3)

we can use the measured u(k), y(k) and a system model to design a state observer

27
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(see earlier Chapter) as

x̂(k + 1) = (A− LC)x̂(k) + L(y(k)) +Buu(k)

ŷ(k) = C∗x̂(k) (4.4)

where C∗ depicts which estimates are available. The output of the observer ŷ(k) can

then be used to generate a residual ε(k) that is the difference between observer and

system output

ε(k) = y(k)− ŷ(k)

which can be used for fault detection purposes. This is the classical approach for

residual generation through observers. Section 4.1.1 presents some analysis on fault

observability while Section 4.1.2 analyzes the residual behavior.

4.1.1: Fault observability

As described in [55], stochastic biases in linear time invariant systems can be

identified by augmenting the system state with a bias and implement a Kalman filter.

The author utilizes this technique to identify biases in noisy measurements.

In Chapter 3 in [52] these results are extended to check the observability of

additive faults with the constraint that f(t+ 1) = f(t) (faults moving as a random walk).

The faults fa and fy are augmented in the system states, so that we have

x̄ =
[
x fa fy

]T

Ā =




A Fa 0

0 I 0

0 0 I




C̄ =
[
C 0 Fy

]
(4.5)

Given that the pair (A,C) is observable, the author depicts that the augmented system

observability is provided by checking the rank of the matrix
(

C Fy

(A− I) Fa

)

It is also shown that for the especial cases when only measurement or process fault

are present we have the especial conditions:
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• For output measurement faults only (fy)

If the system has no integrator dynamics, the faults will be observable as long

as Fy is full rank.

If there is an integrator in the system dynamics, then the system is not observ-

able if Fy is full column rank and the faults should be orthogonal to the measured

integrating part of the system (modes with eigenvalue equals to 1).

• For process faults only (fa)

Changes introduced by the dynamics of the system which are not directly

measured must be distinguishable (orthogonal) to the disturbances.

In Section 4.2.1 this approach is used to analyze the fault observability for sys-

tems with observer-integrated sensors where the conditions are presented in a more

thorough manner.

4.1.2: Residual analysis

Assuming zero as initial conditions, with C∗ = C and q as the time shift operator,

the observer as in Equation 4.4 can be rewritten in an input output form

ŷ(k) = CH(A−LC)Bu u(k) + CH(A−LC)L y(k)

where HM = [qI −M ]−1

HM is also known as the matrix resolvent ofM and represents the dynamics introduced

by M . The residual is then

ε(k) = (I − CH(A−LC)L) y(k)− CH(A−LC) u(k)

Using Equations (4.1)-(4.3) we can finally write the residual as function of u0(k) and

faults

ε(k) =
[
(I − CH(A−LC)L)CHA − CH(A−LC)

]
Bu u0(k)

+
[
(I − CH(A−LC)L)CHA

]
Fa fa(k)

+
[
(I − CH(A−LC)L)

]
Fy fy(k)

+
[
−CH(A−LC)Bu

]
Fu fu(k) (4.6)

Also, using the matrix identity below



CHAPTER 4. OBSERVER-BASED FAULT DETECTION 30

Theorem 5

A−1 −B−1 = A−1(B − A)B−1

Proof:

A−1 −B−1 = A−1 −B−1

= A−1BB−1 − A−1AB−1

= A−1(BB−1 − AB−1)

= A−1(B − A)B−1

we can show that
[
(I − CH(A−LC)L)CHA − CH(A−LC)

]
= 0, meaning that the residual

is not influenced by the system input, only by the faults. Note that we are not consid-

ering noise and model uncertainties.

This is a very important property for the observer based residual and the faults

will appear in the residual governed by the observer and system dynamics as described

in Equation (4.6).

4.1.2.1: Fault sensitivity

As presented in [30], the sensitivity of the residual to a fault is a transfer function

relating a fault to the residual

Sf (q) =
∂ε

∂f

These functions are easily seem in Equation (4.6). We will analyze them as a function

of the observer gain L. The results are related to [50] in which the observer gain is

analyzed for linear interval models (models including uncertainties in the parameters).

For additive input sensor faults we have

Sfu(q) = −CH(A−LC)Bu Fu (4.7)

= −C [qI − (A− LC)]−1Bu Fu
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Analyzing its value at instant times k = 0 and k →∞ we have

Sfu(0) = lim
q→∞

Sfu(q) = 0 (4.8)

Sfu(∞) = lim
q→1

Sfu(q)

= −C [I − (A− LC)]−1Bu Fu (4.9)

Showing that at time instant k = 0 the fault is not visible, which is due to the fact that the

fault needs to travel through the observer dynamics before it is visible in the output. We

also depict that the value of the fault in steady state is larger than at the initial instant,

that is

‖Sfu(∞)‖ > ‖Sfu(0)‖ (4.10)

and evolves as a function of the observer dynamics only. We can also check the

influence of the gain in steady-state for two extreme cases. The simulator, L = 0, and

the predictor, LC = A, configurations.

Sfu(∞)|L=0 = −C [I − A]−1Bu Fu (4.11)

Sfu(∞)|LC=A = −CBu Fu (4.12)

Considering a positive A (all its elements positive) and a stable observer with ‖L‖ > 0,

can compare Equations (4.9), (4.11) and (4.12) to conclude

‖Sfu(∞)|L=0‖ > ‖Sfu(∞)|0<LC<A‖ > ‖Sfu(∞)|LC=A‖ (4.13)

The condition above is related to the fact that ‖[qI − (A − LC)]‖ ≥ 1 for any stable

observer. Which comes from the fact that for any consistent norm, such that ‖AB‖ ≤
‖A‖ · ‖B‖, we have [53]:

Theorem 6

‖HM‖ =
∥∥(sI −M)−1

∥∥ ≥ 1

min
1≤i≤n

|s− λi|

Proof: Let (λi, v) be an eigenvector-value pair of M , then:

(sI −M)v = sv −Mv = (s− λi)v

showing that (s− λi) is an eigenvalue of (sI −M). (s− λi)−1 is then an eigenvalue of

(sI −M)−1 finally, since for any consistent norm |λ| ≤ ‖M‖, we have:

max
1≤i≤n

1

|s− λi|
≤ ‖(sI −M)−1‖



CHAPTER 4. OBSERVER-BASED FAULT DETECTION 32

whence

‖HM‖ = ‖(sI −M)−1‖ ≥ 1

min
1≤i≤n

|s− λi|

A physical interpretation of Theorem (6) is that the eigenvalue measures the gain of

a matrix only in one direction (given by eigenvectors) and must be smaller than for

the whole matrix which allows any direction [60]. The norm of the resolvent matrix
∥∥(qI −M)−1

∥∥ has, in fact, its lowest bound as 1
min

1≤i≤n
|s−λi| .

Since the observer is considered stable, we have that all its eigenvalues are

smaller than 1, λA−LCi < 1, depicting a relation to the norm and the eigenvalues of

M . As faster it becomes (smaller eigenvalues), the smaller becomes ‖Sfu‖ (worst

case when LC = A, observer configured as a predictor). Notice that this is just an

indication, the resolvent norm will vary, for example, with frequency.

The above condition gives some insights on the effect of the observer gain L.

Because the predictor configuration uses the measurements directly in the estima-

tions, these estimations will be contaminated by the fault very quickly (depending on

the system order), while in the observer case, the estimations are balanced with the

observer dynamics. Ultimately, for the simulator case, no measurements are used and

the sensitivity function is directly taken by its dynamics in the system.

For additive process faults the sensitivity function is

Sfa(q) =
(
I − CH(A−LC)L

)
CHA Fa

=
(
I − C [qI − (A− LC)]−1 L

)
C [qI − A]−1 Fa

Which can be simplified using Theorem (5) as

Sfa(q) =
(
I − CH(A−LC)L

)
CHA Fa

=
(
CHA − CH(A−LC)LCHA

)
Fa

= C
(
HA −H(A−LC)LCHA

)
Fa

= C
(
HA +H(A−LC) −HA

)
Fa

= CH(A−LC) Fa

(4.14)
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Which depicts that though fa affects the states of the system, it appears in the residual

only as a function of the observer dynamics. And has a similar form as Sfu, but with

opposing signals.

Similarly to an additive input fault, fa will only be visible after a short interval and

dependent only on the observer dynamics since the system dynamics does not affect

fa. The remain analysis follows similar to Sfu(q).

For additive output sensor faults we have

Sfy(q) =
(
I − CH(A−LC)L

)
Fy

=
(
I − C [qI − (A− LC)]−1 L

)
Fy

Analyzing its value at instant times k = 0 and k →∞ we have

Sfy(0) = lim
q→∞

Sfy(q) = Fy (4.15)

Sfy(∞) = lim
q→1

Sfy(q) =
(
I − C [I − (A− LC)]−1 L

)
Fy (4.16)

Showing that at time k = 0, it is independent of L and that the value of the fault in

steady state is smaller than at the initial instant and is a function of the observer gain

and its dynamics only. With ‖L‖ > 0 we have ([50])

‖Sfy(∞)‖ < ‖Sfy(0)‖ (4.17)

Checking the influence of the gain,

Sfy(∞)|L=0 = Fy (4.18)

Sfy(∞)|LC=A = lim
q→1

Sfy(q)|LC=A = (I − CL) Fy (4.19)

Yielding, for a stable observer with ‖L‖ > 0 and a positive A (all its elements positive):

‖Sfy(∞)|L=0‖ > ‖Sfy(∞)|0<LC<A‖ > ‖Sfy(∞)|LC=A‖ (4.20)
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Moreover, in the especial case where C = I, Sfy(q) can be simplified as:

Sfy(q) =
(
I − CH(A−LC)L

)
Fy

=
(
I −H(A−L)L

)
Fy

=
(
H(A−L)H−1

(A−L) −H(A−L)L
)
Fy

= H(A−L)

(
H−1

(A−L) − L
)
Fy

= H(A−L)H−1
A Fy

= H(A−LC)H−1
A Fy (4.21)

The result of the simplification in Equation (4.21) shows (using Theorem (6)), that Sfy
is related to the relative speed of the observer (eigenvalues of A − LC) and system

(eigenvalues of A). That is, if the observer is faster than the system indicates, ‖Sfy‖ <
‖Fy‖, conversely, if system has faster dynamics would cause ‖Sfy‖ > ‖Fy‖ and if they

are equal (L = 0 for instance) ‖Sfy‖ = ‖Fy‖.

4.1.2.2: Some remarks

Observe that fu and fa have similar effects in the residual (check Equations

(4.14) and (4.8)). Both are dependent only on the observer dynamics but affect the

residual in opposite directions, that is, if fa and fu are affecting the same state, for

example Fa = BuFu, and growimg in the same direction, their effects in the residual will

be opposing to each other and with same value.

Moreover, notice that the simplification for deriving Sfa in Equation (4.14) implies

a perfect system model while Sfu was derived directly and the user should be careful

when analyzing it in a practical situation.

4.2: Observer-based residual generation through integrated
sensors

The previous approach requires the availability of y(k). As pointed in the intro-

ductory Chapter, a sensor output might be provided only after the raw measurements

have been internally processed. Here, we will approach this problem with the simplifi-

cation that such sensors are integrated with standard obsevers/Kalman filters.

The idea is to model the sensor as an augmented system model that includes
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both the system and observer dynamics with only the estimates available

x(k + 1) = Ax(k) +Buu0(k) + Fafa(k)

x̂(k + 1) = Ax̂(k) +Buu(k) + L(y(k)− Cx̂(k))

ŷ(k) = C∗x̂(k) (4.22)

where C∗ depicts which estimates are available. With measured inputs u(k) and out-

puts y(k) also subject to additive faults as

u(k) = u0(k) + Fufu(k) (4.23)

y(k) = Cx(k) + Fyfy(k) (4.24)

Notice that only x̂(k) are affected by fu(k) but not x(k).

By using the extended state x̄(k) = [xT (k) x̂T (k)]T and the corresponding state

space matrices

Ā =

[
A 0

LC (A− LC)

]
B̄u =

[
Bu

Bu

]
C̄ =

[
0 C∗

]
(4.25)

we can interpret this a standard fault detection problem, which could be approached

by a parity space method or a Kalman filter based method and use for example

ε̄(k) = ŷ(k)− ˆ̄y(k)

where ŷ(k) is output from the integrated sensor simplified as Equation (4.22) and ˆ̄y(k)

is the observed output using the extended model as in Equation (4.25).

4.2.1: Fault observability

Considering a system as in Equation (4.22), where only estimated outputs ŷ(k)

are available but not y(k), we can augment the faults in the states as

x̄(t) = [x(k)T x̂(k)T fa(k)T fy(k)T fu(k)T ]T
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with the resulting matrices

C̄ =
[

0 C∗ 0 0 0
]

(4.26)

Ā =




A 0 Fa 0 0

LC (A− LC) 0 LFy BuFu

0 I




(4.27)

we can now analyze the observability for such system when considering faults as driven

by the random-walk, f(k + 1) = f(k). We summarize the results first and present a

more detailed proof in the sequence.

Given that the original pair (A,C) is observable, if the followings conditions are

met:

1. All estimates are available and distinguishable (C is full column rank, for instance,

C∗ = I).

2. L is full column rank, such that

Lz = 0 ⇒ z = 0

the extended system observability can be tested by checking the rank of the matrix
(

(A− I) Fa 0 0

LC 0 LFy BuFu

)

which has a similar form as for the case when the actual measurements are available.

This can be explained by the fact that the conditions on the gain and state availability

provides the same information as when we have access to the raw measurements.

The same conditions for process and sensor output faults are achieved as for

the usual case. While input sensor faults fu follows similar conditions as fy:

• For measurement faults only (fy or fu)

If the system has no integrator dynamics, the faults will be observable as long

as Fy (or BuFu) is full rank.

If there is an integrator in the system dynamics, then the system is not ob-

servable if Fy (or BuFu) is full column rank and the states through which the fault
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propagates should be orthogonal to the measured integrating part of the system

(modes with eigenvalue equals to 1).

• For process faults only (fa)

Changes introduced by the dynamics of the system which are not directly

measured must distinguishable (orthogonal) to the disturbances.

The demonstrations follows below.

Demonstration: We will use the Popov- Belevitch-Hautus (PHB) criteria, as pre-

sented in Chapter 3, to check the augmented system observability. The PHB depicts a

pair (A,C) to be observable if (
C

A− sI

)

has rank equals n (the number of states) for all s. We will use the following theorems

Theorem 7 The matrix (
A

B

)

has full column rank if NA ∩NB = 0.

Proof: (
A

B

)

has full column rank if for any v 6= 0

(
A

B

)
v =

(
Av

Bv

)
6= 0

which means that the null spaces of A and B are non-intersecting, or

NA ∩NB = 0

Theorem 8 Given K is full column rank, for any B we have:

NKB = NB
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Proof: Suppose NK = ∅. Such that

Kv = 0 → v = 0

Now, let us check the null space of KB

(KB)w = 0, K(Bw) = 0 → Bw = r ∈ NK → Bw = 0

finally, the solution for Bw = 0 is the null-space of B and therefore,

NKB = NB

The faults modes, as shown in Equation (4.27), are s = 1, therefore the analysis will be

separated for s 6= 1 and s = 1.

For s 6= 1 the observability is given by:



0 C∗ 0 0 0

A− sI 0 Fa 0 0

LC (A− LC)− sI 0 LFy BuFu

0 (1− s)I




Following similar simplifications as in [52], we can check that the matrices (1− s)I will

have full rank and with row operations (rank conserving) it can be rewritten as:



0 C∗ 0 0 0

A− sI 0 0 0 0

LC (A− LC)− sI 0 0 0

0 (1− s)I




And therefore, it is sufficient to check the rank of the matrix:



0 C∗

A− sI 0

LC (A− LC)− sI


 (4.28)
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which for C∗ full rank, i.e C∗ = I is equivalent to analyze
(
A− sI
LC

)

Finally, using Theorem 7 we have the condition that NA−sI ∩ NLC = ∅ which using

Theorem 8 is equivalent toNA−sI∩NC = ∅ which is known to be true since we consider

that the pair (A,C) is observable and the observability for s 6= 1 is achieved.

Notice that last step depicts that the observability is independent on the observer

dynamics in case C∗ is full rank. In case this is not true, C∗ = C for example with C

non full rank, it is possible to find a full column rank L and a pair (A,C) that turns the

system not observable and each case should be considered separately using Equation

(4.28).

Example 9 Take C∗ = C and

A =

(
1 1

−2 −2

)
C =

(
1 0

)
L =

(
l1

l2

)

Note that we have NA∩NC = ∅ (the system is observable). Considering that analyzing

if a matrix M is full column rank is equivalent to

Mv = 0 ⇔ v = 0

Then, the conditions are achieved by checking Equation (4.28) (with s = 0 for instance):



0 C

A 0

LC (A− LC)




(
x

y

)
= 0

From which we get that LCx + (A − LC)y = 0. Moreover, since we also have that

y ∈ NC and x ∈ NA it is equivalent to analyze x and y for such. To do so, we can

form a basis Ã which is formed by the eigenvectors of NA, (1 − 1)T for example, and

equivalently take C̃ formed by eigenvectors ofNC , for instance (0 1)T . And the criteria

can be rewritten as

LCÃw + (A− LC)C̃v = 0

yielding

l1w + v = 0

l2w − 2v = 0
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which only implies w = v = 0 if −2l1 6= l2 and therefore, there is a full column rank L

that makes the system not observable (even when (A− LC) is stable).

For s = 1, the observability matrix is



0 C∗ 0 0 0

A− I 0 Fa 0 0

LC (A− LC)− I 0 LFy BuFu

0 0




and it is equivalent to analyze
(
A− I Fa 0 0

LC 0 LFy BuFu

)

For process faults only we can analyze
(
A− I Fa

LC 0

)(
x

y

)

and we have the conditions, (A− I)x+Fay = 0 and x ∈ NLC . For a full column rank L,

the last condition can be rewritten as x ∈ NC . And it is equivalent to analyze such x, to

do so we take a basis C̃ formed by the eigenvectors NC and rewrite the first condition

as

(A− I)C̃w + Fay = 0

. This condition can only be true if (A − I)C̃ and Fa share image spaces and the

condition on the observability can be rewritten as

R(A−I)C̃ ∩RFa = ∅

Depicting that changes introduced by the dynamics of the system which are not directly

measured must distinguishable (orthogonal) to the disturbances.
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For measurement faults only we can analyze
(

(A− I) 0

LC W

)(
x

y

)

where W can either relate to input sensor faults (W = BuFu) or output sensor faults

(W = LFy). We have the conditions that x ∈ NA−I and LCx + Wy = 0. The first

condition is true if and only if x is zero or an eigenvector of A with eigenvalue equals to

1. Hence, it is sufficient to analyze such x. Notice, though, that if A has no integrators

(no eigenvalues equals to 1), then the conditions is achieved by checking if W = BuFu

(for input faults) or W = LFy (for output sensor faults) is full column rank.

If there are integrators in A with a basis Ã formed by the eigenvectors of NA−I
the condition is rewritten as LCÃv +Wy = 0

For fy we have LCÃv + LFyy = 0. Which can be rewritten as

RLCÃ ∩RLFy = ∅

Which means that the system is not observable if LFy is full rank and the states through

which fy propagates should be orthogonal to the measured integrating part of the sys-

tem propagated by L.

For fu we have

RLCÃ ∩RBuFu = ∅

Which means that the system is not observable if BuFu is full rank and the states

through which fu propagates should be orthogonal to the measured integrating part of

the system propagated by L.

4.2.2: Residual analysis

As proposed in Section 4.2, we can use the extended state space model, with

C∗ = C

Ā =

[
A 0

LC (A− LC)

]
B̄u =

[
Bu

Bu

]
C̄ =

[
0 C

]
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to design an observer producing a redundancy ˆ̄y

ˆ̄x(k + 1) = (Ā−KC̄)ˆ̄x(k) +K(y(k)) + B̄uu(k)

ˆ̄y(k) = C̄ ˆ̄x(k) where K = [KT
1 KT

2 ]T

and use the residual

ε̄(k) = ŷ(k)− ˆ̄y(k)

to fault detection purposes.

Following similar steps as in Section 4.1.2, we rewrite the residual in an input-

output form yielding

ε̄(k) =
[(
I − C̄H̄KK

)
CHL (I + LCHA)Bu − C̄H̄KB̄u

]
u0(k)

+
[
(I − C̄H̄KK)CHLLCHA

]
Fa fa(k)

+
[
(I − C̄H̄KK)CHLL

]
Fy fy(k)

+
[(
I − C̄H̄KK

)
CHLBu − C̄H̄KB̄u

]
Fu fu(k) (4.29)

to simplify the notation, we have written

H(A−LC) = HL

H(Ā−KC̄) = H̄K

where

HM = (qI −N)−1

Using the block matrix inversion:

Theorem 10 If A is invertible then:
[
A B

C D

]
=

[
A−1 + A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

]

where ∆, known as the Schur complement, is

∆ =
(
D − CA−1B

)

Proof: found in any linear algebra book, [53] for example.

we can solve H̄K and show that the term multiplying the fault-free input u0 equals to

zero.
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4.2.2.1: Fault sensitivity

As presented before, we can analyze the transfer functions Sf (q) = ∂ε
∂f

from each

fault to the residual in order to analyze how the faults will behave.

For additive input sensor faults we have:

S̄fu(q) =
[(
I − C̄H̄KK

)
CHLBu − C̄H̄KB̄u

]
Fu

= [
(
I − C̄

(
qI − (Ā−KC̄)

)−1
K
)
C (qI − (A− LC))−1Bu

−C̄
(
qI − (Ā−KC̄)

)−1
B̄u]Fu

which can be simplified using Theorem 10 and matrix identities to

S̄fu(q) = −C∆−1LC (qI − A)−1BuFu

= −C∆−1LCHABuFu (4.30)

where ∆ is the Schur complement of Ā as

∆ =
(
qI − (A− LC −K2C) + LC (qI − A)−1K1C

)

=
(
H−1

(A−LC−K2C) + LCHAK1C
)

(4.31)

Equation (4.30) shows that the fu will depend only on the sensor gain L and the aug-

mented states observer and system dynamics. The system dynamics appear because

the sensor is affected by the input fault also which is propagated by the augmented

observer. The sensor dynamics however are compensated with use of the augmented

observer, though, the sensor gain L still affects the residual.

Analyzing S̄fu at instant times k = 0 and k →∞ we have

S̄fu(0) = lim
q→∞

S̄fu(q) = 0 (4.32)

S̄fu(∞) = lim
q→1

S̄fu(q)

= −C
[
I − (A− LC −K2C) + LC (I − A)−1K1C

]−1

LC (I − A)−1Bu Fu (4.33)

and consequently

‖S̄fu(∞)‖ > ‖S̄fu(0)‖ (4.34)



CHAPTER 4. OBSERVER-BASED FAULT DETECTION 44

It might be difficult to analyze the influence of the gainK in such residual through

∆. One should notice, for example, that it will be impossible to have KC̄ = Ā because

C̄ = [0 C] is not full column rank and KC̄ will have the form

KC̄ =

[
0 K1C

0 K2C

]

To be feasible to have KC̄ = Ā would require that the raw measurements, y(k), are

also available.

Some special cases are:

S̄fu(∞)|K=0 = −CBuFu (4.35)

S̄fu(∞)|K1=0 = −C [I − (A− LC −K2C)]−1

LC [I − A]−1Bu Fu (4.36)

S̄fu(∞)|K2=0 = −C
[
I − (A− LC) + LC (I − A)−1K1C

]−1

LC [I − A]−1Bu Fu (4.37)

S̄fu(∞)|K2=−L = −C
[
I − (A) + LC (I − A)−1K1C

]−1

LC [I − A]−1Bu Fu (4.38)

S̄fu(∞)|K2C=−(I−A+LC) = −C
[
LC (I − A)−1K1C

]−1

LC [I − A]−1Bu Fu (4.39)

S̄fu(∞)|K2C=−(I−A+LC),K1=0 = 0 (4.40)

For additive process faults we have:

S̄fa(q) =
[
(I − C̄H̄KK)CHLLCHA

]
Fa

which can be simplified similarly as for S̄fu to

S̄fa(q) = C∆−1LC (qI − A)−1 Fa

= C∆−1LCHAFa (4.41)

where ∆ is the Schur complement of Ā as in Equation (4.31). Which as in the case

when the raw measurements were available, is similar to S̄fu with opposite direction.

The remaining analysis follows similarly to S̄fu.
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For additive output sensor faults we have:

S̄fy(q) =
[
(I − C̄H̄KK)CHLL

]
Fy

which can be simplified to

S̄fy(q) = C∆−1LFy (4.42)

where ∆ is the Schur complement of Ā as in Equation (4.31).

It is interesting to notice here that the S̄fy is only dependent on the augmented

observer dynamics through ∆ and on the sensor gain L. As occurred with S̄fu, and

consequently to S̄fa, the augmented observer took away the influence of the sensor

dynamics HL.

Continuing the analysis for initial and steady conditions we have:

S̄fy(0) = lim
q→∞

S̄fy(q) = 0 (4.43)

S̄fy(∞) = lim
q→1

S̄fy(q)

= −C
[
I − (A− LC −K2C) + LC (I − A)−1K1C

]−1
LFy (4.44)

and consequently

‖S̄fy(∞)‖ > ‖S̄fy(0)‖ (4.45)

Again, it might be difficult to analyze the behavior of ∆ with K. We can extend the

results presented for fu from Equations (4.35) to (4.40) by noticing that S̄fu = S̄fy when

Fy = CHABuFu.

4.2.2.2: Some remarks

With the use of the augmented observer, the influence of the sensor dynamics

H(A−LC) is taken away for all Sf .

However, it might be difficult to analyze the influence of the augmented observer

gain K through ∆. K1 will affect the estimation of x (and consequently of x̄ through the

term LC) as it can be seem in the augmented observer matrix Ā−KC̄
[

A −K1C

LC (A− LC)−K2C

]
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while K2 will affect the estimation of x̂ only. Choosing K1 = 0 would assume a perfect

model for the internal structure of the measurement system, conversely K2 = 0 as-

sumes a perfect model of the sensor. A typical case would be when, in fact, the sensor

is integrated through an observer (such as a Kalman filter or an extended Kalman filter)

while the internal structure of the system is rather complex or nonlinear, in this case,

if we are interested in state estimation for instance, one should choose a large K1 but

small K2.

A great restriction with this approach is that it requires some knowledge of L. In

fact, in case we have little knowledge on L, we can compensate it increasing K2, that

would try to correct its influence. In the next Section we present an approach where no

knowledge at all in L is needed.

4.2.3: Residual generation - Unknown sensor structure

We study now, the case when the observer structure is not given, for example

if L is unknown, we cannot directly use the augmented observer from Equation (4.22)

for fault detection because we cannot build the extended model. To overcome this

problem, let us make two approximations. Looking at the integrated sensor model

x(k + 1) = Ax(k) +Buu0(k) + Fafa(k)

x̂(k + 1) = Ax̂(k) +Buu(k) + L(y(k)− Cx̂(t))

ŷ(k) = C∗x̂(k)

With both sensor faults

y(k) = Cx(k) + Fyfy(k)

u(k) = Bu (u(k) + Fufu(k))

The first approximation is

L(Cxf (k) + Fyfy(k)) ≈ F̄f f̄(k)

Here

xf (k + 1) = Axf (k) + Fafa(k) (4.46)

and xf (k) is the fault contribution in x(k). Since fi(k) is zero or a constant vector it is

most important that this approximation holds stationary i.e. after transients.
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The second approximation is

L(y(k)− Cx̂(k)) ≈ v̄(k)

where v̄(k) is a white noise process with a certain covariance matrix. This makes sense

from a Kalman filter point of view where the innovations can be viewed as process

noise, v̄(k) = Lε(k) where ε(k) = y(k)− Cx̂(k) is a white innovation process.

This leads to the simplified model

x̂(k + 1) = Ax̂(k) +Buu(t) + F̄f f̄(k) + v̄(k)

ȳ(k) = C∗x̂(k) + ē(k) (4.47)

The artificial measurement noise ē(k) can be used to cope with unmodeled char-

acteristics of the system. For example, for sensors over a network or with a weak real-

time performance, one can use ē(k) to include jitter, missed samples, delays, etc. or to

cope with sensor/system unknown dynamics.

After defining ē(k), it can be used to tune a Kalman filter observer for the sys-

tem as in Equation (4.47) and a standard parity space method or Kalman filter based

method can be used to design a fault detection algorithm. For notation reasons, we will

call the above filter a tracker.

4.2.3.1: Residual analysis

A residual defined as

ε̆(k) = ŷ(k)− y̆(k) (4.48)

can be used to perform the detection. Here y̆(k) is the output estimated from an ob-

server tuned from the model in Equation (4.47) and can be represented by the model

x̆(k + 1) = (A−KtC
∗) x̆(k) +Buu(k) +Ktŷ(k)

y̆(k) = C∗x̆(k) (4.49)
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Writing the residual in an input-output form we have

ε̆(k) =
[(
I − C∗H(A−KtC)Kt

)
CH(A−LC) (I + LCHA)− C∗H(A−KtC)

]
Buu0(k)

+
(
I − C∗H(A−KtC)Kt

)
CH(A−LC)LCHAFa fa(k)

+
(
I − C∗H(A−KtC)Kt

)
CH(A−LC)LFy fy(k)

+
[(
I − C∗H(A−KtC)Kt

)
CH(A−LC) − C∗H(A−KtC)

]
BuFu fu(k) (4.50)

from which is easy to show that is independent to u0(k) when C∗ = C.

4.2.3.2: Fault sensitivity

We can analyze the fault sensitivity transfer functions in this case for each fault.

We will consider C∗ = C for all the analysis.

For additive input sensor faults we have:

S̆fu(q) =
[(
I − CH(A−KtC)Kt

)
CH(A−LC) − CH(A−KtC)

]
BuFu

which can be simplified to

S̆fu(q) = −CH(A−KtC)LCH(A−LC)BuFu (4.51)

which reveals that it will be sensitive to both sensor and tracker dynamics, but not to

system dynamics.

Analyzing it for initial and steady states:

S̆fu(0) = lim
q→∞

S̆fu(q) = 0 (4.52)

S̆fu(∞) = lim
q→1

S̆fu(q)

= −C [I − (A−KtC)]−1 LC [I − (A− LC)]−1BuFu (4.53)

yielding

‖S̆fu(∞)‖ > ‖S̆fu(0)‖ (4.54)

Checking Equation (4.51) and Theorem (6) that the S̆fu is related to the speed of the

tracker filter, which will eventually have smaller values as it becomes faster.

Analyzing the tracker gain Kt for some cases we can depict the steady state
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relations

S̆fu(∞)|Kt=0 = −C [I − A]−1 LC [I − (A− LC)]−1BuFu (4.55)

S̆fu(∞)|Kt=L = −C [I − (A− LC)]−1 LC [I − (A− LC)]−1BuFu (4.56)

S̆fu(∞)|KtC=A = −CLC [I − (A− LC)]−1BuFu (4.57)

For additive process faults we have:

S̆fa(q) =
(
I − CH(A−KtC)Kt

)
CH(A−LC)LCHAFa

which can be simplified, to

S̆fa(q) = CH(A−KtC)LCH(A−LC)Fa (4.58)

and can be analyzed in a similar manner as for an additive input sensor fault, fu.

For additive output sensor faults we have:

S̆fy(q) =
(
I − CH(A−KtC)Kt

)
CH(A−LC)LFy

which can be simplified to

S̆fy(q) = CH(A−KtC)H−1
A H(A−LC)LFy (4.59)

which reveals that it will be sensitive to system, sensor and tracker dynamics. Notice

though that is has a similar form as Sfy when C = I (see Section 4.1.2.1).

Analyzing it for initial and steady states:

S̆fy(0) = lim
q→∞

S̆fy(q) = 0 (4.60)

S̆fy(∞) = lim
q→1

S̆fy(q)

= C [I − (A−KtC)]−1 [I − A] [I − (A− LC)]−1 LFy (4.61)

yielding

‖S̆fy(∞)‖ > ‖S̆fy(0)‖ (4.62)

Similarly to Sfy when C = I in Section 4.1.2.1, the value of ‖S̆fu‖ will be related to the

relative location of the eigenvalues of the tracker filter, sensor and system.
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We can analyze the influence of Kt for some cases in steady state:

S̆fy(∞)|Kt=0 = C [I − A− LC]−1 LFy (4.63)

S̆fy(∞)|Kt=L = C [I − (A− LC)]−1 [I − A]

[I − (A− LC)]−1 Fy (4.64)

S̆fy(∞)|KtC=A = −C [I − A] [I − (A− LC)]−1 LFy (4.65)

4.2.3.3: Some remarks

The results are similar to when we have access to the raw measurements, with

the inclusion of the tracker dynamics in the fault sensitivity transfer functions.

4.3: Concluding remarks

In this Chapter, we presented some characteristics of observer based residual

generation for fault detection. Special attention was paid for the case when there is

no direct access to the raw measurements y(k), only to the output of an observer-

integrated sensor. ŷ.

We addressed the question on fault observability for both cases and have shown

that under the conditions for sensor gain L and state availability through C∗

1. All estimates are available (for instance, C∗ = I).

2. L is full column rank, such that

Lz = 0 ⇒ z = 0

one will have a similar case as if the original output was available.

In section 4.2 we proposed two solutions for the case when one has only access

to ŷ(k): using an augmented observer which requires knowledge on the sensor gain L

and estimates both sensor and system states; using a regular observer (tracker) with

the sensor output with a simplified model, with this approach, no a priori knowledge on

L is needed.

The fault sensitivities functions for additive faults have been analyzed for

• ε(k): the residual generated when y(k) is available
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• ε̄(k): the residual generated with augmented observer (requires some knowledge

on L) and only ŷ(k) is available.

• ε̆(k): the residual generated with tracker observer and only ŷ is available.

We summarize these results in Table 4.1. The reason why ε̆(k) would be worse than

ε(k) = y(k)− ŷ(k) ε̄(k) = ŷ(k)− ˆ̄y(k) ε̆(k) = ŷ(k)− y̆(k)

Sfu −CH(A−LC)Bu Fu −C∆−1LCHABu Fu −CH(A−Kt)LCH(A−LC)Bu Fu
Sfa CH(A−LC) Fa C∆−1LCHA Fa CH(A−Kt)LCH(A−LC) Fa
Sfy

(
I − CH(A−LC)L

)
Fy C∆−1L Fy CH(A−Kt)H−1

A H(A−LC) Fy

Pros Straightforward. Good
fault sensitivity. Easy
to tune.

Does not require y(k).
Simplify the sensor in-
fluence in the sensitivity
functions.

Simple. Easy to tune. Does
not require L. Does not require
y(k).

Cons Require y(k). Require L. Complex. Dif-
ficult to tune.

Influenced by sensor. Low fault
sensitivity.

Table 4.1: Comparison of residual generation approaches.

ε̄ is related to the fact that we have the sensor dynamics affecting the fault sensitivity

functions as design invariant while with ε̄(k) they are affected by the system dynamics

as design invariant, which are slower, therefore increasing the sensitivity function (see

Theorem (6)). For similar reasons we have also that ε(k) would yield a possible best

residual.

Noise and uncertainties The reasoning that the simulator should always be used is

only true when dealing with a perfect system model and no noise, which is not practical.

Nevertheless, it would be advisable to choose lower values for the gain since that would

increase the fault sensitivity. In [30], Chapter 12, the author presents a more detailed

discussion on modeling errors, how they affect the residual relative to input u(k) (first

order error effect) and to the faults fi(k) (second order error effect).

Optimal residual and the observer design The problem of selecting the gain of the

observer is actually an optimization problem where we would like to have the least in-

fluence of model uncertainties and disturbances in the residual with the most sensitivity

to faults. The way faults, noise and model disturbances affect the system is usually dif-

ferent. It is expected that noise, for example, would appear with low power and high fre-

quency, while model disturbances with an average power and low frequencies. These
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information are important and can be used to design the residual generator. However,

it might be difficult or even impossible to quantify/estimate the effects of these variables

in the output.

Optimal residual generation is a live research topic in the research community,

see for example [56, 57, 58, 59]. In [56], the author presents closed form solutions for

the optimal residual generator in relation to disturbances, however, it requires enough

information on disturbances and faults (a perfect model). A main limitation common to

the techniques developed so far is that the faults need to be directly contained in the

output y(k). In other words, considering the model

x(k + 1) = Ax(k) +Buu(k) +Bdd(k) +Bff(k)

y(k) = Cx(k) +Duu(k) +Ddd(k) +Dff(k)

would recquire Df to be full column rank ([56], page 18). This is usually not the case

for process faults and in case we only have the output from a sensor integrated with an

observer,

x̂(k + 1) = (A− LC)x̂(k) +Buu(k) + Ly(k,d, f)

ŷ(k) = Cx̂(k) +Duu(k)

this will never be the case, since the faults appear through the observer dynamics in

the output ŷ(k).

Kalman filtering Notice that the application of a Kalman filter for fault detection

is similar to the one with an observer. As shown in the previous Chapter, under the

assumptions of constant known noises covariances and model, the Kalman filter is

analogous to an observer with L = AKo, where Ko is the Kalman filter gain. Its use

is specially suitable for systems with large noise since it will attenuate its influence,

however it demands the user extra information about the system and sensors.
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Application example
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5 Wheeled Mobile robots

A wheeled mobile robot (WMR) is an automatic machine that is capable to move

within an environment utilizing wheels for this purpose. As illustrated in Figure 5.1,

WMRs finds a very wide range of applications in both industry and service, with very

different demands.

Figure 5.1: A container AGV, a robot car, aan utomated vacuum cleaner and a multi-purpose
mobile platform illustrates the wide range of applications of mobile robots.

Independent of the robot structure and wheel configuration, the task of localiza-

tion is crucial. This is probably still the biggest challenge for the research community

in the area and there has been several improvements and development of different

methods and sensors to achieve this task. So far, the main focus has been in the im-

provement of sensors accuracy and reliability of the methods. It is a great challenge for

any localization method to deal with unexpected changes/conditions in both environ-

ment and robot. Localization reliability can be improved by adding constraints to the

environment the robot interacts with, for example restricting a robot use to even floor,

with a drawback of restricting its application.

Fault/change detection can be used to improve these systems reliability with

relaxed operational constraints. By detecting a fault in the localization system of the

robot, its consequences can be attenuated, increasing the system robustness. In the

past decades, there has been an increased interest in change detection methods for

54
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mobile robots, for example [31, 32, 1]. The field, however, is comparatively recent in

the mobile robots research community with a lot of space for improvements.

In this work we discuss observer-based fault detection for WMR localization sys-

tems. As in any model-based detection framework, the understanding of the system

is crucial. In this Chapter, we present both WMR modeling and localization methods

characteristics. We focus our analysis in differential wheel drive robots and in odome-

try and scan matching localization methods which will provide an introduction to main

challenges to the problem and to the following Chapter which presents a localization

fault detection framework and provide some comparative analyses.

5.1: Robot modeling

A mobile robot is a complex system where the dynamics and kinematics aspects

are very important to its general performance. Different models are required according

to different robot structures and applications. Though kinematic models have been suc-

cessfully used in several applications, for fast moving robots, such as cars, dynamical

models are crucial for performance increase.

Different robot structures will, obviously, require different models. The usual

approach to model a robot mobility is to analyze the contribution of each wheel to its

motion [33]. Active wheels enable the robot to move but also add constraints to the

motion (for example, a car can not move in a 0 radius circular path).

In this work we will only consider a simple kinematic model, assuming the robot

as a rigid body moving in a horizontal plane. The Figure below illustrates the robot in a

global reference frame, where θ is the orientation of the robot relative to the reference

frame, [uf uw]T are the forward and rotational velocities of the robot in respect to its

own frame. It is easy to show the following relation between the robot position and

orientation in the place, called here as pose, [x y θ]T , and its directional speeds,

[uf uw]T :



x

y

θ



t+1

=




x

y

θ



t

+




T cos(θ) 0

T sin(θ) 0

0 T



t

[
uf

uw

]

t

(5.1)

where T is the sampling period. Though this model is a rough approximation, it will be

enough for the use within the scope of this thesis. For a more thorough modeling, the
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Figure 5.2: A mobile robot in a reference frame.

reader is advised to check the vast literature on vehicle modeling, [34] for example.

For a differential wheel drive robot, the following relation can be depicted be-

tween the directional speeds [uf uw] and the wheel speeds:
[
uf

uw

]

t

=

[
rR
2

rL
2

rR
b

rL
b

]

t

[
wR

wL

]

t

(5.2)

where b is the distance between wheels along their common axis, ri and wi are the

wheel radius and wheel rotational speed at side i. This model consider the parameters

ri and b to be constant and, also common, with rR = rL, these are simplifications that

the wheels and chassis are rigid with only one contact point to the ground.

5.2: Pose providers

There are several sensors/methods available to estimate a robot pose, from sim-

ple odometry to Global Positioning Systems (GPS). One might argue that with the ad-

vent of global positioning systems such as GPS, the localization problem is now solved,

this reasoning is partly true and, in fact, such sensors play a significant role in solving

the problem. However, the achieved accuracy for a GPS may vary from centimeters to

tenths of meters (depending, amongst other factors, on atmospheric conditions) which

is unviable in more demanding applications such as service robots.

The Figure below, extracted from [35] gives a scaling perspective of the several

different pose providers methods/sensors:

In the following Section we explore two of the several available methods available
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Figure 5.3: Pose providers methods/sensors in a navigation scale.

for pose estimation. At first, odometry, calculated from wheel speeds rotation is ana-

lyzed, followed by scan matching. A discussion on the error sources and challenges

with the methods is also held.

5.3: Odometry

Odometry was one of the first localization methods developed historically and is

still important for its simplicity, low cost and good short-term accuracy.

The position estimations are achieved by first solving the robot kinematics

from wheel speeds to directional speeds using a kinematics model such as found in

Equation (5.2) for a differential drive robot. With the estimates uf and uw, and given an

initial pose, it is possible to achieve an estimate of the current pose through the model

presented in Equation (5.1).

The velocity can be measured in several different manners. A common and very

usual one is the use of optical encoders. As presented in Figure 5.4, such devices,

when coupled to a rotating axis, estimate velocity by checking the time interval between

consecutive blanks seen by a photo sensor. There are several different configurations

for the device with increased accuracy depending on the number of ticks in the en-

coder wheels and the clock speed. For the application in mobile robots, the errors with

these measures remain bounded and in a much smaller range when compared to other

uncertainty sources and are often assumed to be insignificant [33].

5.3.1: Error sources

Odometry is based on the assumption that wheel revolutions can directly relate

to linear displacements, for example, Equation (5.2) presents such relations for a dif-

ferential drive robot. This model is only valid under some simplifications such as a

robot moving in a fixed plan, a constant and unique contact point to the wheels, perfect

alignment of wheels and so on. These simplifications and other stochastic effects may
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Figure 5.4: Optical encoder scheme. Extracted from the Wikipedia.

and will lead to errors in the odometry readings.

The errors can be categorized under two groups, systematic and random er-

rors. Systematic errors are caused by known sources and/or assumptions that can be

(sometimes) easily handled, some examples:

• Error introduced by uneven wheel radii.

Caused for example by a badly calibrated tire.

• Actual wheelbase differing from nominal (used to solve the odometry equations).

Caused for example by the use of a thick inflatable tire with several and not

constant contact point to the ground.

• Misalignment of wheels.

Introduced by a bad mechanical design or fatigue caused by extensive use.

• Finite wheel encoder resolution and finite sampling rate.

A wheel encoder based sensor measures a discrete quantity and therefore

resolution and sampling rate should be considered.

While most of the systematic error can be reduced with a better calibration of

the system (see [36] for an example), there are other sources of error that affect the

system in a stochastic manner and cannot be compensated for in a predictive manner,

some examples:

• Travel over uneven floors.

Should be faced in any outdoor application in which the robot path may vary

considerable.
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• Unexpected interaction with other entities.

A common situation for robots that are designed to interact with people, when

someone may push it away for example.

• Wheel slippage.

There are several causes for wheel slippage: overacceleration of the wheels,

driving over slippery floors, forces due to the castor wheels, skidding, etc.

Depending on where the robot is being operated, systematic errors can be less

or more important to the overall performance of the robot. For example, if the robot

is traveling in a flat and clean floor, the systematic errors will be much larger than the

random ones.

5.3.2: Error modeling

A good understanding of the errors evolution, causes and behavior is of great

relevance for the localization task as well as for a detection scheme. There has been

several efforts in modeling odometry errors, [33, 37, 38], a model for odometry errors

is very important in allowing sensor fusion techniques and the use of Kalman filter

observers.

In [33], for example, the equations for the covariance error matrix of odometry

are derived for differential drive robots by considering piecewise travel motions up-

dated according to a kinematics robot model, Equation (5.1), and robot mobility model,

Equation (5.2). The incremental traveled distances are:

pt+∆t =




x

y

θ



t+∆t

=




x

y

θ



t

+




∆s cos(θt + ∆θ
2

)

∆s sin(θt + ∆θ
2

)

∆θ


 (5.3)

with

∆θ =
∆sR −∆sL

b
, ∆s =

∆sR + ∆sL
2

where ∆si is the traveled distance at side i. The final odometry position update is then
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written as:

pt+∆t = pt +




∆sR+∆sL

2
cos(θt + ∆sR−∆sL

2b
)

∆sR+∆sL

2
sin(θt + ∆sR−∆sL

2b
)

∆sR−∆sL

b


 (5.4)

Which is a function f (pt,∆sL,∆sR). Finally, with the assumptions that ∆sL and ∆sR are

uncorrelated and proportional to the absolute traveled distance |∆sL|, |∆sR| respec-

tively, the covariance matrix Σ is computed as

Σt+∆t = ∇pt(f) Σpt ∇pt(f)T + ∇∆sL,sR
(f) Σ∆sL,sR

∇∆sL,sR
(f)T

where∇i is the Jacobian matrix in relation to i. From the Equation above, Σpt is resulted

from the previous estimation of Σ, while Σ∆sL,sR
at initial condition is a design parameter

that include motion errors due to a deformed wheel, slippage, encoder errors, etc.

Figure 5.5 shows the odometry error estimated using this approach for a straight line

Figure 5.5: Odometry error for a straight line path following. The ellipses represents the
computed uncertainty in x and y directions.

path. It is easy to depict the larger influences on the perpendicular direction of motion,

which is due to the integration of the uncertainty of the robots orientation.

5.4: Laser scan matching

A laser range finder is a device that measures distances from a laser source and

objects in the surroundings. There are several ways to estimate the distance, one is to

measure the time of flight a laser beam takes to return to the device after reflected by

an object, it can be expressed as d = c t
2

, where c is the speed of light.

With the use of a mechanical mechanism with a mirror, the device sweeps the

surroundings generating a rough estimate of the scene over a plane or even in 3D.

Figure 5.6 shows a SICK LMS200, which can be configured with a 180◦ scanning angle,
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Figure 5.6: Laser range finder from SICK.

resolution of 0.5◦ and 10m range, the device takes 4 scans in 1 second. A result of such

scan is shown in Figure 5.7 where 361 points are taken in one scan.

Figure 5.7: 2D laser scan over 180◦. The (0, 0) position coincides to the laser source.

Scan matching consists of estimating the roto-translation relation between two

different scans. Consider, for example, Figure 5.8 where two scans were taken from

a laser range finder mounted in a mobile robot that was rotated clockwise from time

t0 to tk. The scan matching algorithm finds the transform between the scans and

consequently an estimate of how the robot has moved.

There are many algorithms available to perform scan matching. They might differ

considerably from the scope of localization (global or local). Global localization takes

no prior information of the robot position while for local localization some knowledge of

previous estimates are available (from odometry for example).

Scan matching algorithms also differ by the kind of information they look into

the scans in order to find the transform, some algorithms might only compare points in

the scans while others might look at scene features (searching for lines for example),

which in turn requires some assumptions on the environment. In the following Sections
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Figure 5.8: 2D laser scans over 180◦ with a rotation clockwise rotation between them.

we present two approaches for scan matching.

5.4.1: Iterative Closest Point - ICP

As the name points out, this is an iterative method which compares the scans

in a point to point manner. It is one of the most common approaches for local scan

matching and has a wide number of variants. It was first proposed in [40]. Given a

reference, a current scan and an initial estimate of the transform relating them, ICP

consists of the following tasks:

• Transform the new scan using the current estimate of the transformation.

• Selection of some set of points in one or both scans.

Since the robot is moving, some points in the new scan might not even be

seen in the reference scan, choosing which point should be used is therefore

very important.

• Matching the selected points between the scans.

In this task the points selected in one of the scans are corresponded to points

in the other scan.

• Rejecting some of the pairs that might deviate too much.

The matching is not perfect and some pairs should be discarded.

• Updating the transform given the matched points.

The algorithm iterates until it converges to a match exceeding some criteria. There are

several variants of the algorithm, differing in how it solves the above tasks see [39, 41]
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for example. The ICP tries to find the transform, T , that minimizes the total squared

error between the scans.

Tmin = arg min
T

1

N

N∑

i=1

‖Tri − s− i‖ (5.5)

where ri and si are points in a reference and a current scan.

Rather than presenting a full proof of the solution of the above equation, we shall

present a simple implementation of the algorithm, based in [40].

Given two scans (R, S) and an initial roto-translation transform T0 between them,

the algorithm iterates in a loop as shown in Algorithm (1) until some criteria is reached.

To simplify some of the calculations one can use an homogeneous transform, including

both rotation and translation in a joint transform as below:

T =

[
Rot Trans

0 1

]
=




cos(θ) sin(θ) tx

− sin(θ) cos(θ) ty

0 0 1




Algorithm 1 (T ) = match(R, S, T0). Main scan matching loop.

Require: T0 6= 0
T = T0

while ∆T > criteria do
(S∗) = T × S {apply current transform.}
(assoc) = getAssociatons(R, S∗) {get p2p associations between scans.}
(R′, S ′) = rejectOutliers(R, S∗, assoc)
(∆T ) = getTransform(R′, S ′) {get matching transform.}
(T ) = ∆T × T {update transform estimate.}

end while
return T

The getAssociatons function simply relates a point in the R scan with the clos-

est point in the S scan, assuring that only one point is associated to another.

Due to changes in the scene between the scans, it could happen that a point in S

is not present in R, the use of such points should be avoided in the matching process.

The function rejectOutliers performs the task of excluding such points. There are

several ways to reject outliers, here we use a very simple approach, taking away points

that are below the median value of the distances of all associations.

Finally, the function getTransform takes the scans and current associations and

return the transform between them.
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Algorithm 2 (T ) = getTransform(R, S). Compute the roto-translation transform
between scans R and S.

mR = 1
N

∑N
i=1 ri {compute the centroid.}

mS = 1
N

∑N
i=1 si

R′ = R−mR {subtract the centroid.}
S ′ = S −mS

M =
[∑N

i=1 r
′
ix s

′
ix

∑N
i=1 r

′
iy s
′
ix ;

∑N
i=1 r

′
ix s

′
iy

∑N
i=1 r

′
iy s
′
iy

]

R = V UT where M = UDV T {Singular Value Decomposition to solve rotation.}
t = mR −RmS {translation parameters estimate.}
T = [R t ; 0 1] {return the transform in homogeneous coordinates.}
return T

As pointed out in [40] the ICP will always converge to a local minima. However,

there are still important practical aspects that should be considered when utilizing ICP

for localization.

• Speed of convergence: when the scans differ too much, the number of iterations

needed might be to large in order to make it useful in practice. Some modifi-

cations of the original algorithm have been presented in order to increase the

convergence speed [1, 39].

• Update points of the reference scan: one could always take two consecutive

scans in order to perform the match, accumulating the pose estimates over time

in order to get the robot current pose. However, in this manner, the current pose

estimate will accumulate all past matching errors.

Having a more invariant reference scan would then keep the errors on the current

estimate lower.

However, unless the robot mobility is previously constrained, the reference scan

should always vary. For example, take a robot equipped with a 180◦ laser scan-

ning range rotating around its initial position, the matching is expected to worsen

as the reference scan is too far from the actual scan, with the worst case when

they are 180◦ delayed.

• Scene dependence: the quality of the matching will be related to the scene. It

is easy to understand that is easier to perform the matching for a robot moving in

a squared room (rectilinear environment) rather than for a robot navigating in a

jungle or in a crowded place (changing environment).

In some cases, the estimates could be totally wrong. For instance, when the robot

is following a straight path in a corridor longer than its laser range, the matchings
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will be ’blind’ to the changes occurring in the robot direction of movement. It is

also the case for the orientation estimates for a robot navigating in a circle whose

variance would be, theoretically, unbounded.

• Error modeling: for all the above mentioned aspects, modeling the error co-

variance of scan matching algorithms is a comprehensive task. There has been

efforts in this direction, se for example [42, 43, 44].

A main drawback of the method is its need of a initial estimate of the transform

relating the scans. A common approach is to use odometry measurements for this

purpose. However, the estimates from scan matching would be coupled to odometry,

which is not desirable in a fault detection scheme. The ICP algorithm would converge

faster also in case there was some a priori knowledge on the rotation, since it is the

parameter that recquires more iterations to be solved.

There are different algorithms to achieve global localization, [45, 46], in the next

Section we shall elucidate the matching in the Hough domain as proposed in [46], with

focus on the rotation estimations.

5.4.2: Matching in the Hough domain - HSM

The Hough transform describes an image in terms of the parameters of a fea-

ture, by doing so, it makes easy to identify features in an image by searching for local

maxima in the Hough (parameters) domain. It was first introduced in a patent by P.

Hough, [47], in 1962 as a method to detect lines in images, but later on the results

were extended to detect also other features, such as circles and ellipses.

Background theory

The Hough transform for line extraction describes the image in line parameters.

The idea is to vary the parameters of a straight line for each pair (x, y) in an image,

representing the image in the line parameters domain.

Because the usual representation of straight lines as y = ax + b produces un-

bounded values for both slope and intercept parameters, a more convenient line rep-

resentation [48] is

y =

(
−cos(θ)

sin(θ)

)
x+

(
ρ

sin(θ)

)

The parameter ρ is the length of a normal from the origin to this line while θ is the
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orientation of ρ in respect to the abscissas, see Figure 5.9. Finally, the representation

Figure 5.9: (ρ, θ) line parametrization.

can be rewritten as:

ρ = x cos(θ) + y sin(θ) (5.6)

The result of a Hough transform for a selected set of points in a scan can be

seen in Figure 5.10.

(a) Orginal scan (b) After HT

Figure 5.10: Hough transform representation.

If we restrict the θ domain to [0, π), than ρ is unique for a line. Some other

interesting properties of the transform [48]:

• A point in the (x, y) domain corresponds to a sinusoid in the (ρ, θ) domain.

• A point in the (ρ, θ) domain corresponds to a line in the (x, y) domain.

• Collinear points in the (x, y) corresponds to intercepting curves in the (ρ, θ) do-

main.

• Points on the same curve in the (ρ, θ) domain corresponds to lines through the

same point in the (x, y) domain.
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Finally, and most relevant for our purposes, is the analysis of rigid body transfor-

mations ([46]):

• A rotation φ in the (x, y) domain corresponds to a translation in the (ρ, θ) domain.

• A translation T in the (x, y) produces a bend over ρ in the (ρ, θ) domain.

These properties are illustrated in Figure 5.11.

(a) Rotation φ (b) Translation |T |

Figure 5.11: Effects of image transformation in the Hough domain.

5.4.2.1: Rotation estimation through spectra correlation

As proposed by Censi in [46], it is possible to get an estimate of the rotation, φ,

by searching for local maxima in the Hough transform spectra cross-correlation. The

author computes the spectrum over a function g that is translation invariant. That is, for

f ′(x, y) = f(Rφ(x, y) + T ):

HSg[f ](θ) = HSg[f
′](θ + φ) (5.7)

where HS denotes the Hough spectrum. A simple choice for g, considered by the

author, is the energy sequence, others could be used such as the Fourier transform,

but only increasing the computational efforts.

Given a reference scan R and an actual scan S, because of (5.7), the rotation

φ between the scans can be estimated by correlating the HSR and HSS. The author

uses a circular correlation as:

corr(φ) =
∑

θ∈Θ

HSS(θ)×HSR(θ − φ), ∀φ ∈ Θ
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Figure 5.12 shows an example of the computed spectrum and its cross-correlation for

two scans.

(a) Original scans (b) Spectrum and cross-correlation (sinusoid like
curve in the background)

Figure 5.12: φ estimation by spectra correlation.

The number of hypotheses generated using this method can be chosen arbitrar-

ily, allowing global localization. The different hypotheses are relevant for example in a

SLAM (simultaneous localization and mapping) context. Here, however, we are only

interested in the pose tracking which is related to the previous estimations, this infor-

mation can be used to restrict the search domain for φ, reducing the computational

efforts.

With the φ hypotheses, it is possible to estimate the translation in several man-

ners, for example using ICP. In [46] the author proposes its estimate in the Hough

domain.

It is important to note that, even though the estimates are taken in the Hough

domain, no assumptions on the scene geometry are needed, but the estimations are

improved for rectilinear environments.

5.4.2.2: Complexity

As shown in [46] the complexity for finding the rotation estimation is

O
(
Rσφ + φmaxσ

2
φ

)

where R are the number of points in the scan, σφ is the required angular discretization

(resolution of the solution) and φmax is a bound for the search of φ. That is, linear in the
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number of data points and quadratic on the resolution.

5.5: Concluding remarks

In this Chapter we have presented some relevant aspects of wheeled mobile

robots, including some approaches to modeling and, most relevant to this work, the

characteristics of two common pose providers. We summarize the relevant results:

In Section 5.1:

• The kinematics model for pose update as in Equation 5.1.

This model, regardless its simplicity, can be used for sensor fusion, for exam-

ple in an Extended Kalman filter.

• The model relating wheel speeds to direction speeds for a differential drive robot.

This model is what is commonly used in pose estimation for odometry and an

analysis of the assumptions in which the model is valid is important to understand

what kind of model disturbances can affect odometry.

In Section 5.3 we explored odometry with a more comprehensive analysis in-

cluding:

• Presentation of its principle of operation.

Giving the reader a general understanding of the instrumentation used in

odometry.

• Discussion on the main error sources.

Very important to help the understanding of the estimates and behavior under

different conditions.

• Discussion on error covariance matrix estimation.

The unbounded error behavior related to the integrative method used in odom-

etry was presented with a simple error modeling. Noticeable is the fact that it in-

creases with the navigation time, with more impact in the direction perpendicular

to the movement.

Finally, Section 5.4 explored the use of laser range finder sensors dealing with

the localization problem, some remarks:
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• Presentation of its principle of operation.

• Description of the Iterative Closes Point (ICP) scan matching algorithm.

This is one of the most common approaches to scan matching and a version

of the algorithm was presented. It has also been pointed out its current main

challenges and a discussion on error modeling.

A remarkable characteristic is its need for an initial transform to perform the

matching with a reasonable convergence speed.

• Method for global estimate of the rotation transform between scans.

We presented a method to estimate scan rotations using the Hough transform

that has a bounded computational complexity. For this purpose we presented the

basics of the Hough transform and its application to scan matching.

The estimate of the rotation with such method can be used, for example, as a

initial guess for an ICP algorithm.



6 Fault detection and recovery

The past Chapters have built the needed knowledge to design a detection and

recovery framework. Part I introduced concepts and presented the observer-based

fault detection while Chapter 5 introduced mobile robots and the main challenges aris-

ing in the localization task.

The objective of this Chapter is to define a localization fault detection and recov-

ery method and to explore its performance over some case studies.

The platform used for our tests is shown in Figure 6.1. It is a Powerbot robot

Figure 6.1: Wheeled mobile robot platform used for the tests.

from MobileRobots, weighing 120kg and is designed for high payload tasks, able to

carry more than 100kg total. Some important characteristics for our application:

• Custom programs: C/C++ programs can be used to control the robot. We here

have two simple routines, one that handles the navigation of the robot while the

second logs data from its sensors to a file, which is used as input for our algo-

rithms.

• Client-server communication: the platform uses a client-server communication

from applications to robot drives. It is important to note that this communication

71



CHAPTER 6. FAULT DETECTION AND RECOVERY 72

is not deterministic and jitters/delays might occur and therefore the sampling rate

will not be constant.

• Differential drive: the robot’s mobility is achieved through two wheels driven by

DC motors and two extra rear caster wheels for balance in an almost holonomic

robot.

The robot uses 25cm diameter inflatable tires. This type of tires requires more

careful when using odometry, since the basic assumptions of constant wheels

radii and one contact point between wheel and floor are weakened. It is then

expected an increase of odometry errors caused by model uncertainties.

The robot is equipped with odometry and a SICK laser range finder which are used to

provide two redundant localization outputs.

Our objective is to detect and attenuate faults causing a bias in the odometry

pose estimation. Two different faults are prioritized:

• Hard faults, caused by external disturbances such as the robot being pushed, that

affects considerably the robot pose, but are not visible in the odometry estimates.

• Slippage faults, that affects the robot positioning but slower and with smaller am-

plitudes. It can be caused for example by a robot navigating in a dusty terrain or

grasping over a wall.

To be able to detect and attenuate these faults, the following Sections present both a

change detection framework and a recovery method that include the detection infor-

mation to attenuate the faults.

6.1: Change detection

Recapitulating from Chapter 2, a change detection takes a set of measured data

from a system, subject to noise/disturbances as well as faults and filters it attempting

to detect a change introduced by a fault. It is subdivided in different tasks:

Figure 6.2: Change detection scheme.
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• Residual generator: a filter that given a set of measured data provides a residual

ε(k), a quantity that should be sensible to faults but not noise/disturbances.

• Distance measure: is a metric of the changes occurring in the residual, outputs

s(k).

• Stopping rule: a decision making filter that generates alarms in case its input has

exceeded a certain criteria.

We elucidate each of those subtasks in our framework.

6.1.1: Residual generation

This is probably the most important task in a fault detection scheme and is usu-

ally the one that require more design efforts. As shown in Chapter 2, there are different

manners to define a residual generator, our focus here is observer-based residual gen-

eration. We suppose two localization methods (pose providers) are available, odometry

and laser scan matching.

Odometry, podo, is very commonly used as a pose provider. As explained in

the previous Chapter, its pose estimation error grows with the traveled distance in a

non-linear manner. It is successfully used however, if it is possible to reset the errors,

keeping it bounded under a certain region of operation or for short range tasks.

Scan matching, psm, is achieved from a laser range finder installed in the robot.

The algorithm used mixes the rotation estimation in the Hough domain and Iterative

Closest Point, as explained in the previous Chapter.

Since the robot heading φ estimate is the hardest, it is first estimated in the

Hough domain by looking for local maxima in the spectra correlation. This provides

a set of hypotheses for φ which are selected by checking the one that provides the

smallest ∆T in the ICP algorithm (output of function getTransform), check Algorithm

(1). The main advantage of this approach is that we always find a reasonable estimate

of φ, the accuracy of the estimate is related to the resolution of the transform.

Finally, the translation displacements (∆x ∆y) are estimated with the ICP di-

rectly, since we have a good initial guess of φ, we use a 0.5◦ resolution Hough trans-

form, the estimates converge in a couple of iterations of the ICP.
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Figure 6.3 shows the pose estimations for both scan matching and odometry.

Notice the larger variance from the laser estimates and the difference in the x esti-

mation caused by odometry model errors, easily seem in this example due to a badly

calibrated tire. With the pose providers described, we can introduce the different resid-

Figure 6.3: Output from odometry and laser scan matching.

uals that we will use for comparison reasons here.

6.1.1.1: ε0 - difference between poses

The first one is the usual residual taken as the direct difference between the

redundant sensors. In our case it is defined as

ε0(k) = podo(k)− psm(k)

6.1.1.2: ε̆ - observer with unknown sensor structure

The second residual is based on the tracker filter presented in Section 4.2.3.

In this case, we neglect the sensor dynamics and directly apply an observer/Kalman
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filter to provide a redundancy. The model we consider for the observer is the relation

between the robots directional velocities [uf uw] and its poses [x y θ], this model

was already described in the previous Chapter and is recapitulated here



x

y

θ



k+1

=




x

y

θ



k

+




T cos(θ) 0

T sin(θ) 0

0 T



k

[
uf

uw

]

k

Notice that such model is nonlinear, and therefore, we use an extended Kalman filter

(see Section 3.2.2).

In order to be possible to use this filter to provide the redundant output, we

need the directional velocities [uf uw]. For this purpose we use the velocity estimates[
ẋ ẏ θ̇

]
available directly from odometry (it is quite common that the odometry pose

provider gives information on the derivative of the pose also) and solve [uf uw] in

Equation 6.1.

The resulting residual generator filter scheme is as shown in Figure 6.4. Note

Figure 6.4: Redundant output generated through an EKF.

that we could have estimated [uf uw] from psm (the scan matching pose) however,

this would require differentiation of the signals which would yield in a high variance

estimate while odometry directly measures the velocity and therefore, no differentiation

is needed. The residual is then

ε̆(k) = psm(k)− p̆sm(uodo, k)

where p̆sm(uodo, k) is the output of the tracker observer.

Tuning

Since a Kalman filter, as any stable observer, will adapt to the measurements, a

fault will only be visible if the observer/Kalman filter counteractions to the data change

(its speed) is slower than the change itself. Moreover, after a fault occurs, it will only be

visible in the residual for a certain time until the observer reaches the measurements

again. These reasonings are related to what has already been presented in Part I, that

a fault effect in the residual is greater as slower the observer is. We cannot totally trust
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the model (simulator case) though, since then the residual would also be consider-

ably vulnerable to noise/disturbances. The observer tuning is then a tradeoff between

noise/disturbance attenuation and sensitivity to faults.

To tune the EKF we need the measurement and process noise covariance ma-

trices. As depicted in the previous Chapter the advantage of scan matching is that its

errors can be kept bounded within a region. Using fault free data, we could depict our

scan matching variance as

R =

[
0.032 0.052

(
0.5 ∗ π

180

)2
]

that is, a 3cm standard deviation for the x estimates, 5cm for y and 0.5◦ in θ. The

higher variance for y is due to the fact that estimates in the perpendicular direction of

movement are more difficult.

The estimate of the process noise covariance matrix might be difficult, it is re-

lated, amongst other factors, to the robot structure, travel speed, etc. However, since

we would like our filter not to be so fast (giving more relevance to the model estimates

rather than the measurements), we simply consider the process noise as a tenth of our

measurement noise

Q =

[
0.0032 0.0052

(
0.05 ∗ π

180

)2
]

With Q and R set this way, the filter is set and we can use the residual ε̆(k) to perform

the detection.

6.1.1.3: ε̄ - augmented observer

As discussed in Chapter 4 Section 4.2, another possible approach to achieve

fault detection with integrated/encapsulated sensors is to suppose sensors are inte-

grated with an observer/kalman filter and build a model augmenting the internal sensor

states x̄ =
[
xT x̂T

]T with the augmented system matrices

Ā =

[
A 0

LC (A− LC)

]
B̄u =

[
Bu

Bu

]
C̄ =

[
0 C

]

and use for example an extended Kalman filter with such augmented model to provide

the redundancy. The final structure, shown in Figure 6.5, is similar to the tracker pre-

sented earlier with the difference that we use the augmented states model in the filter.
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Figure 6.5: Redundant output generated through an augmented observer.

The residual is then

ε̄(k) = psm(k)− p̄sm(uodo, k)

where p̄sm(uodo, k) is the output of the augmented states observer.

Tunning

The EKF tuning in this case is a bit more comprehensive since the covariance

matrice Q is now doubled in size and we also need to consider the internal sensor

structure, which with our approximation that sensors are integrated with observers, is

actually the sensor gain L.

Here, we are simply going to choose an L that yields an stable observer, that is

λ(A−LC) < 1, ∀ λ

and that has faster dynamics then the system

λ(A−LC) < λA, ∀ λ

notice that since our model is nonlinear, L needs to be solved at each time step with

the linearized model of the system. Since a slower sensor and consequently smaller L

would yield a residual more sensible to a fault we choose an L that makes the observer

speed to be 10% faster than the system

λ(A−LC) = 0.9× λA, ∀ λ

It is expected that the internal sensor states have a greater variance than the

systems’, the matrix Q is so that the sensor states are 2 times larger standard deviation

than the ones available as output

Q =

[
0.0032 0.0052

(
0.05 ∗ π

180

)2

0.00152 0.00252

(
0.025 ∗ π

180

)2
]

Since, as previously, we use measurements from the scan matching, R is con-
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sidered the same as in the tracker case

R =

[
0.032 0.052

(
0.5 ∗ π

180

)2
]

and the filter is now defined and its output can be used to produce the residual ε̄(k)

6.1.2: Distance measure

Several distance measures can be used (see Section 2.3). Here we are inter-

ested to changes in the mean and therefore, the direct residual is a good choice, that

is

s(k) = ε(k)

since we assumed constant covariances matrices to tune the observers, noise/disturbances

might influence too much on the residual, leading to false alarms. To improve the ro-

bustness of our framework we use a moving average filter, defined below.

s(k) = (1− γ) s(k − 1) + γ ε(k) (6.1)

For γ > 0.5, the result of the average gives more relevance for the last samples (the

present estimations are more important). For γ < 0.5, the result of the average gives

more relevance for the past samples (the past estimations are more important). For

γ = 0.5, the moving average becomes the general mean. Of course we are more

interested in the present measures so we take γ = 0.8.

6.1.3: Stopping rule

There are also several stopping rules available, a classical approach is to ap-

ply a test in the distance measure using a threshold as an estimate of the stan-

dard deviation at each time, such that |s(k)| < 3σ(k), this is also known as the 3σ

test. For more robustness, the variance using the non faulty data can be included as

|s(k)| < 3
√
σ(k)2 + σo(k)2 where the subscript σo denotes the fault free value.

However, for signals with too high variance or for incipient faults, this approach

can generate too many false and/or missed alarms. The CUSUM, defined below, is a

test used to improve the robustness of the stopping rule.

The CUSUM test statistic, [17], is formulated by the following algorithm: The test
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Algorithm 3 CUSUM test

g(k) = g(k + 1) + s(k)− v
g(k) = 0, and k̂ = k if g(k) < 0
g(k) = 0, and ka = k and alarm if g(k) > thold > 0

statistics g(k) sums up its input s(k), with the idea to generate an alarm when the sum

exceeds a threshold. The drift variable v is set to compensate for the variation of the

parameter caused by noise and errors in the estimation, while the threshold choice

is related to the trade off between false alarms and detection time. As presented in

[17], the CUSUM can also be used to estimate the time a fault occurred as the last k̂

before an alarm. Note that the test as defined in Algorithm (3) is a one-sided test, if the

residual can be negative (as in our case), another CUSUM must be run in parallel.

It is usual to set v as a standard deviation of s(k) in a fault free case, this is the

approach also used here. The threshold is then defined as thold = 3v.

Our change detection scheme is now set, recapitulating Figure 6.2 in the intro-

duction of this Chapter, we have our detection translated as presented in Figure 6.6.

Figure 6.6: Change detection scheme used.

6.1.4: Case studies

In this Section the change detection framework is evaluated within some case

studies. The cases are generated with real data. The same detection algorithm is used

for all cases, with the parameters and structures as described earlier.

6.1.4.1: Case 1: Normal case

Objective

Check the behavior of the detection method in the case where there is no fault in

the system, but with a badly calibrated odometry, showing how it behaves under model

disturbances.
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Experiment

The robot is moved in the room following a sinusoid trajectory, stops and return.

The experiments were realized with the robot’s tires calibrated with a lower pressure

than the nominal. In this case, the positions calculated for odometry bias considerably

from the robots real position causing a deviation between the poses.

Figure 6.7 shows the results of the residuals for the case. From Figure 6.7, it

Figure 6.7: Residuals when there is no fault present in the robot. Notice the increase on the
residual ε0 caused by the bias in odometry.

is easy to realize that the residual ε0(k) is very sensible to noise/disturbances, espe-

cially in the x direction which would be expected to be most affected by this kind of

disturbance.

The other two residuals though, could handle the disturbances much better. It

can be seem that ε̄(k) has a slightly smaller variance than ε̆(k). Figure 6.8 shows the

detection result from the CUSUM test for the three different residuals. Notice that while

ε̆(k) and ε̄(k) remain close to zero, ε0(k) generates some false alarms.

Conclusions

The example showed us that ε0(k) is too sensible to undesired disturbances. As
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Figure 6.8: Detection result, g(k) and thresholds, for all three residuals when there is no fault
(two sided CUSUM test). Notice the alarms, marked as circles, generated for ε0.

the other two residuals, ε̆(k) and ε̄(k), behave similarly, with a slight improve for ε̄(k).

6.1.4.2: Case 2: Hard fault

Objective

Check the behavior of the detection method in case of a large fault, caused by

an external force, such as someone pushing the robot.

Experiment

The robot moves with the same trajectory as in the first case, when no fault was

present, and it is pushed away, forcing a rotation and translation of the robot.

Figure 6.9 shows the residuals for ε̆(k) and ε̄(k), ε0(k) was omitted because, as

it was shown in the previous example, it generates too many false alarms, so we will

focus on the other two. Figure 6.10 shows the detection result, when both residuals

are able to detect the faults correctly.

6.1.4.3: Case 3: Slippage fault

Objective

Check the behavior of the detection method when a slippage fault occurs, a
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Figure 6.9: Residuals when there robot is hardly pushed away, forcing both translations and
rotation. Notice that the residuals behave similarly.

Figure 6.10: Detection result, g(k) and thresholds, when the robot is hardly pushed away,
forcing both translations and rotation. The circles marks when alarms were triggered.
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smaller and slower position bias than in the previous case, caused for example when

a robot is grasping an object or a wheel slippage. Experiment

The robot is held when it is moving forward, so that a fault appears in x, while

the robot is held its heading is also slightly changed, approximately, 2◦. This case is

similar to a wheel slippage, when the robot wheels rotates but no or less displacement

occurs.

Figures 6.11 and 6.12 presents the results for the residuals and detection.

Figure 6.11: Residuals when the robot is held when moving forward, simulating a wheel
slippage.

6.1.4.4: Conclusions

As seem from the results, both residuals were able to detect the faults, even the

small change that occurred in the robot headings θ. It is also interesting to notice that

though y varied around ±3cm, these changes were not detected, which is due to the

fact that its normal variance as seen in Figure 6.7 are already inside this region.
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Figure 6.12: Detection result when the robot is held when moving forward, simulating a wheel
slippage.

6.2: Fault isolation and recovery

We are interested in decreasing the influence of faults on the robots odometry

localization, to do so, we need first to detect the faults (this was the subject of the

previous Section) then, we need to estimate the fault time and its size to compensate

for it in our pose. The task, as shown in Figure 6.13, can be divided in two subtasks

Figure 6.13: General recovery scheme.

• Fault isolation: estimate when, where and the size of the fault.

• Recovery: uses the fault isolation information to properly counteract its effects on

the system.

The following Sections present an algorithm to first, estimate the fault time and size

on-line (isolation), secondly, these informations are used to compensate the pose esti-

mations given by odometry (recovery).



CHAPTER 6. FAULT DETECTION AND RECOVERY 85

6.2.1: Fault isolation

As pointed earlier, we are interested in detecting and handle faults that affect our

localization system. From our change detection framework as described earlier, it is

easy to depict which direction is under the effect of a fault providing us the information

of where a fault occurred is then, easy.

A useful method to indicate the kind of a fault that occurred is the use of hy-

pothesis test and decision structure as described by Nyberg in [20]. In this approach,

several test quantities Ti (any quantity sensible to a fault) are estimated and compared

in a hypothesis test to determine which kind of fault occurred.

A hypothesis test can be defined as the decision between the two states possible

for a fault (present or not). The hypothesis test here can be seem as a matrix where

the rows represent the hypotheses and the columns the test quantities, the elements

of such matrix are the result of the test quantity for each hypothesis (each monitored

behavioral mode of the system), a 0 value means that the test quantity does not relate

to the hypothesis and an X that it can relate. The illustration presents an example where

T0 T1 T2

F1 X 0 X
F2 X X 0
NF 0 0 0

T0 can affect F1 and F2 and T1 can affect F2. NF stands for the non-fault hypothesis,

where none of the test quantities affect it.

In our case such Table will look like

εx εy εθ

Fx X 0 X
Fy 0 X X
Fθ 0 0 X
NF 0 0 0

Table 6.1: Hypothesis test for localization faults.

where εi is the residual in the direction i and Fi is the fault in the direction i.

Notice that a fault affecting the robot headings θ can affect as well both translational

hypothesis Fx,y.

To estimate the time and size of the fault is a bit more comprehensive. We can
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notice that the behavior of our residual under a fault will look like Figure 6.14 which is

Figure 6.14: Residual under a fault affecting the system from kf until kf .

a step response from fault to residual from time kf until kf . If we can correctly estimate

kf and kf , it is possible to look at the pose deviations at these times to estimate the

size of the fault.

Estimating the fault initial time

As we have pointed out earlier, the CUSUM test already gives an estimate of the

size of the fault. In the CUSUM test, Algorithm (3), the parameter k̂ is the last time in

which the residual was set to zero. If our drift parameter v is well set, when no fault is

present the test statistic will be zero. After a fault occurred, g(k) will start to grow and

will not be reset until an alarm, so k̂ closest to the alarm time is related to the fault time

(when the residual started growing).

Estimating the fault end time

Considering there is no overshoot on the response from fault to residual, as

illustrated in Figure 6.14, the residual will grow under a fault until its steady-state value,

which will be its maximum. We can use this reasoning to estimate kf .

When under a fault, the change detector will generate alarms, the basic idea is

to track the largest value of the residual when consecutive alarms have been generated

to update kf . This is illustrated in Figure 6.15 where the crosses and triangles mark

when an alarm has been generated. At each time step under a fault the largest residual

value is compared to actual one, whether it is greater or equal to current value stored,

we update kf , these are marked as crosses in the illustration. When the fault halts, the

residual starts to decrease but we still generate alarms, these are marked as triangles.
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Figure 6.15: Residual under a fault affecting the system from kf until kf . The crosses
depict alarms with and increasing-equal residual while triangles depict alarms with a decreasing
residual.

Notice that we cannot predict when the fault will end (the actual kf ), we suppose

that, when an alarm occurred, kf is directly related to the current largest residual, at

instant k.

Estimating the fault size

Finally, we can use the information of when a fault started and when it ended

to estimate the size of the fault. Only the pose estimated from scan matching will be

sensible to the faults since the odometry estimates are based on the integration of the

wheels speeds translated to linear displacements.

We compute the size of the fault by checking the deviations of the pose in each

direction that generated an alarm from the current estimates of kf till kf . For example,

Figure 6.16 presents the x estimations of a robot pose when it is moving forward with

constant speed, in a certain moment, the robot is held, introducing a localization fault.

Every time an alarm marked as a cross (whose residual is greater than the one when

a previous alarm occurred) is generated, we look at the displacement that occurred in

the time interval from kf to ka and estimate the size of the fault, which is taken as the

difference between the scan matching pose at the time kf and ka.

Algorithm 4 presents the method for x, it should be repeated for the three param-

eters [x y θ], also notice that the CUSUM test is a one directional test, and therefore,

it should also be repeated for the other direction with CUSUM(−ε).
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Figure 6.16: Fault size estimation illustration for x. The robot starts moving forward with a
constant speed when it is held, introducing a localization fault. The fault size is estimated at
each time step according to the estimated kf and kf

Algorithm 4 Estimate fault size.
Let x be the monitored parameter,

ka = −1 {alarm time initialization.}
kε = −1 {time when largest residual occurred initialization.}
while k do

(k̂, alarm) = CUSUM(εx|1:k)
if alarm then
kε = max

k
(‖εx(k)‖ , ‖εx(kε)× [kε > 0]‖) {get time when largest residual occurred.}

if kε == k then

kf = max
(
k̂, ka

)
{update fault initial time.}

ka = k {update alarm time.}
∆x = x(ka)− x(kf ) {estimate fault size.}

end if
end if

end while
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6.2.2: Recovery

At last, given our detection and isolation framework, we can use the fault size

and time of occurrence to define a recovery method. The objective is to use the fault

estimate to update the odometry pose, the basic idea used here is to update the pose

using an Extended Kalman Filter. Figure 6.17 illustrates the filter inputs and outputs.

Figure 6.17: Fault recovery scheme.

Every time a fault is detected, we included its effect, ∆p(k), in the odometry pose

to update the filter output, since the measurement variances from odometry and scan

matching are different, we change also the measurement covariance matrix to consider

its different values for odometry and scan matching.

Algorithm 5 Fault recovery.

Let alarm|k be a boolean diagonal matrix with its diagonal elements relating to a
fault occurrence at each state at time k. And Q the process noise covariance ma-
trix.

p̀(0) = podo(0) {set filter initial condition.}
while k do
p∗(k) = podo(k) + alarm|k ×∆p(k) {actual measurement with fault correction.}
R = Rodo + alarm|k ×Rsm {measurement noise covariance matrix with correction.}
p̀(k) = EKF (u(k), p̀(k − 1), p∗(k), Q, R)

end while

6.2.3: Case studies

Finally, with our recovery method defined, we can show some results achieved

with the recovery. We take the same cases as in Section 6.1.4 so that we can follow

with the conclusions already depicted about the detection for those cases. For sim-

plicity reasons, we will only show the result of the recovery for the residual ε̄(k), which

uses the augmented states observer.
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Case 1 - Normal case

There is not much to discuss when no alarm is generated since the filter will

simply track the odometry measurements so we follow and discuss the next cases.

Case 2: Hard faults

As seen in Figure 6.18, the corrected odometry pose p̀(k) could compensate

Figure 6.18: Residuals when there robot is hardly pushed away, forcing both translations and
rotation. Notice that the residuals behave similarly.

quite well the faults helping to decrease its effects on the pose. The improvements are

easily relevant to the robot headings estimate and consequently y, since rotation faults

affects it more significantly.

Case 3: Slippage faults

Our last example, shown in Figure 6.19, depicts that, again, the recovery was

successful. Even the small 2◦ fault in the robot headings was detected and handled,

improving the whole localization performance
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Figure 6.19: Residuals when the robot is held when moving forward, simulating a wheel
slippage.

6.3: Concluding remarks

In this Chapter a fault detection, isolation and recovery scheme has been pre-

sented and evaluated within some scenarios for localization faults in mobile robots.

With the knowledge support from Part I and the previous Chapter, we first de-

fined an observer-based fault detection scheme comparing the different approaches

to the problem with the analyses taken on the residuals ε0(k), ε̄(k) and ε̆(k). Different

case scenarios were taken to sudy these residuals performance, the conclusion of the

analyses can be summarized as:

• The residual ε0(k), the direct difference of the poses, is too sensible to model

disturbances. This was clear during our tests when the robot was moved with a

badly calibrated tire.

• The residuals ε̄(k), using the augmented states observer, and ε̆(k), using the

simplified model, both behaved well for the excited faults, with a slight improve in

ε̄(k).

• Tuning the filter to generate ε̆(k) is easier than for ε̄(k). In the tuning procedure
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we considered constants Q and R, process and measurement variances, this is

of course a simplification and it is expected that using more refined models for

these covariances would improve the residual performances even more.

With the definition of a fault detector, we have then presented a fault isolation and

recovery method. The detection, isolation and recovery method has been evaluated

within some case scenarios to comprove its efficacy in compensating localization faults

in the odometric pose.



7 Conclusions

This Chapter summarizes the thesis report and leave comments on future work.

7.1: Summary

The first part of this work dealt mostly with providing theoritical background/results

in fault detection, with focus to observer-integrated sensors fault detection, analyzing

several structures for observers data only fault detection.

Chapter 2 and 3 discussed standard approaches for fault detection and some

background in state observers/estimators; Chapter 4 presented ideas and addressed

some basic questions for the problem, including a discussion over fault observabil-

ity, knowledge on observer structure and residual performance measures through the

analysis of the fault sensitivity functions.

Part II, illustrated the problem through a practical example, localization fault de-

tection in mobile robots. Chapter 5 presented briefly the mobile robots field with special

attention to modeling and understanding two common localization methods in mobile

robots, odometry and laser scan matching. Chapter 6 finally accomplishes the main

objective of this works defining a localization fault detection method through integrated

sensors. It presented a framework that copes with the tasks of fault detection, isola-

tion and recovery. Such framework is relevant to the community since the localization

task is crucial for many mobile robots application, and detecting faults affecting it can

decrease its influence.

7.2: Future work

There are yet some open problems such as methods to support the choice of

the observer gains, analysis under model uncertainties, etc. We detail some of the

93
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remaining challenges:

• Analysis on the internal sensor gain knowledge L: it would be interesting to an-

alyze how uncertainties in the sensor structure, through L, affects the residual

performance in terms of detection.

• Methods to support the choice of the observer gains (tuning): the detection

method presented in Chapter 4 and 6 requires tuning which is not yet fully under-

stood and/or there is no direct method to support it that does not require some

hard constraints.

• More precise performance evaluation methods of the residuals: though we have

given some indications in Chapter 4 of which residual would perform better through

the analysis of the fault sensitivity functions they are not closed forms and more

study in this area is welcome.

• Use more refined sensor models: the covariances matrices Q and R used in the

extended Kalman filter as presented in Chapter 6 are considered constant. The

results are supposed to improve if we would consider a more complete sensor

model, using, for example a model for the error covariance in odometry and scan

matching.

• Extensive evaluation of the method: it would be interesting to check the perfor-

mance of the method presented in Chapter 6 in many cases as possible, specially

in field applications, to testify its validity as a suitable tool for system monitoring.
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Abstract: Most fault detection algorithms are based on residuals, i.e. the difference between
a measured signal and the corresponding model based prediction. However, in many more
advanced sensors the raw measurements are internally processed before refined information
is provided to the user. The contribution of this paper is to study the problem of fault detection
when only the state estimate from an observer/Kalman filter is available and not the direct
measured quantities. The idea is to look at an extended state space model where the true states
and the observer states are combined. This extended model is then used to generate residuals
viewing the observer outputs as measurements. Results for fault observability of such extended
models are given. The approach is rather straightforward in case the internal structure of the
observer is exactly known. For the Kalman filter this corresponds to knowing the observer gain.
If this is not the case certain model approximations can be done to generate a simplified model
to be used for standard fault detection. The corresponding methods are evaluated on a DC
motor example. The next step is a real data robotics demonstrator.

1. INTRODUCTION

Sensors and observers/estimators are often closely inte-
grated in intelligent sensor systems. This is common in
distributed sensor processing applications. It may be very
difficult or even impossible to access the raw sensor data
since the sensor and state estimator/observer often are
integrated and encapsulated. An important application
of sensor based systems is model based fault detection,
where the sensor information is used to detect abnormal
behavior. The typical approach is to study the size of
certain residuals, that should be small in case of no fault,
and large in case of faults. Most of these methods rely on
the direct sensor measurements. The problem when only
state estimates are available is less studied. In Sundvall
[2006a] and Sundvall [2006b] the problem of fault detection
for such a system in mobile robotics is discussed from
mainly an experimental point of view. The objective of
this paper is to investigate the theoretical foundation of
observer data only fault detection, where it is not possible
to directly access the raw measured data.

Study the system state space description

x(t+ 1) = Ax(t) +Buu(t) +Bvv(t) +Bff(t).

Here x(t) denotes the state vector, u(t) is a known input
signal, v(t) is process disturbances and f(t) is the unknown
fault input. It is common to assume that f(t) is either
zero (no fault) or proportional to the the i:th unit vector
f(t) = fiei in case of fault number i. Hence Bf is a matrix
that determines how different faults affect the state. This
covers, for example, faults in actuators.

? This work was partially supported by the Swedish Research
Council and the Linnaeus Center ACCESS at KTH.

The behavior of the system can be observed from different
sensors j. To simplify the analysis we assume that sensors
are integrated with standard observers/Kalman filters.

yj(t) =Cjx(t) + ej(t)

x̂j(t+ 1) =Ax̂j(t) +Buu(t) +Kj (yj(t)− Cj x̂j(t))

The input to observer j is the measured output signal yj(t)
and the input u(t). The term ej(t) represents measurement
noise. The output from the observer is x̂j(t), i.e., an
estimate of the state. If for example the Kalman filter is
used this could come with a corresponding error covariance
matrix

Cov(x̂j(t)− x(t)) = Pj

Problem: We will study the problem when it is only pos-
sible to obtain x̂j(t), and not the raw data yj(t). This
seems to be a severe restriction, but from a practical point
of view the measurement process could be integrated in
the sensor system. One common example is standard GPS,
where the measurement is based on satellite tracking and
triangularization based techniques. In many applications
the state estimate is obtained by more sophisticated meth-
ods then a simple linear observer. We will however use
this structure for analysis and design purposes, so that the
problem can be approached through well studied/standard
FDI techniques.

Sofar we have not taken the fault contribution f(t) into
account. One possibility is to also estimate f(t) by for
example extending the state vector to x̄(t) = [x(t) f(t)]T
and apply the Kalman filter or another observer method
to estimate the extended state vector x̄(t). Recently, there
has been quite a lot of progress in the area of input
estimation using Kalman filtering, see Gillijns et al. [2007].



2. RESIDUAL BASED FAULT DETECTION

There are in principle two paradigms for residual based
fault detection. We will start with the standard problem
formulation, with a direct measurable output.

x(t+ 1) =Ax(t) +Buu(t) +Bvv(t) +Bff(t)

y(t) =Cx(t) + e(t) +Dff(t) (1)
Here we also have the possibility to model and detect
sensor faults via Df . The dimension of x(t) is nx and the
dimension of y(t) is ny.

The so-called parity space approach, recently reviewed in
Gustafsson [2007], is based on a sliding window formula-
tion of the state space equations
Y (t) = Ox(t−L+ 1) +HuU(t) +HvV (t) +HfF (t) +E(t)

where Y (t) =
[
yT (t− L+ 1) . . . yT (t)

]T and similar for
the other signal vectors. The matrices are given by

O =




C
CA

...
CAL−1


 , Hf =




Df 0 . . . 0
CBf Df . . . 0

...
. . .

...
CAL−2Bf . . . CBf Df




and Hv and Hu are constructed in the same way as Hf ,
i.e. from the corresponding impulse response coefficients.
The residual is then defined by

R(t) = WT (Y (t)−HuU(t))
where W is an L×nr projection matrix such that WTO =
0. The dimension nr = Lny − nx, where ny is the
dimension of the output vector y(t) and nx is the state
dimension. This still leaves freedom in the choice of W ,
which can be used to obtain more structured residuals. In
Gustafsson [2007] gives detailed insights of the design and
analysis of parity space based methods in case of stochastic
disturbances and noise.

An alternative approach is to use an observer or a Kalman
filter to estimate x(t) and then study the size of the
residuals

R(t) = (Y (t)−Ox̂(t− L+ 1)−HuU(t))
The choice L = 1 just gives the standard innovation
process r(t) = y(t) − Cx̂(t) used in the observer and in
the Kalman filter to update the state estimate.

It is most important that the effects of the faults are
visible in the residual vector. A fault is detectable if
the transfer function from fault to residual is non-zero,
this condition holds even for faults that disappear in the
residual after some transient and a stronger condition is
that this transfer function is non-zero also in steady-state.
Another way to check if certain faults are detectable is
to calculate if the extended state space model x̄(t) =
[x(t) f(t)]T is observable in classical state space sense.
It is also closely related to input estimation, for which
conditions are given in Gillijns et al. [2007].

It is also desirable different faults to be distinguishable
between each other through the residual. A classical ap-
proach is to define structured residual sets that are sen-
sitive to one fault and whilst remaining unsensitive to
others. An alternative is to design a directional residual

vector; with each fault corresponding to a direction, iso-
lation is achieved by deciding which direction the gener-
ated residual is closest to. The diagnosticability matrix as
presented in Gustafsson [2007], is an off-line method to
evaluate the isolation in a directional residual set, giving
the probabilities of generating alarms for fault i given fault
j occurred and also in case there is no fault.

3. RESIDUAL BASED FAULT DETECTION USING
OBSERVER DATA ONLY

Residual based techniques are all based on comparing
a predicted output ŷj(t), based on a model, with the
observed output yj(t) from a sensor. In case of a systematic
difference we will alarm. If only the observer states x̂j(t)
are available the first two ideas for fault detection ideas
would be:

• Try to reconstruct yj(t) using a model of the observer,
e.g.
Kjyj(t) = x̂j(t+ 1)− (A−KjCj)x̂j(t)−Buu(t)

Here we need a very accurate model and the internal
structure of the observer, e.g. the gain Kj , otherwise
the estimations will be easily biased. In many prac-
tical cases this would be difficult. Notice also that if
Kj is not full rank, it allows for multiple solutions.

• Assume that there are at least two observers provid-
ing x̂1(t) and x̂2(t). Define the residual vector

ε(t) = x̂1(t)− x̂2(t)
which should be sensible to fault that affects the
two observers in different ways, e.g. sensor faults.
This approach does not, however, make direct use of
the model of the system and requires at least one
redundant sensor.

We will start by analyzing the case with only one observer.

Idea: View x̂(t) as the output from the extended system

x(t+ 1) =Ax(t) +Buu(t) +Bff(t)

x̂(t+ 1) =Ax̂(t) +Buu(t)

+K (Cx(t) +Dff(t)− Cx̂(t))

ŷ(t) =C∗x̂(t) (2)
where C∗ depicts which estimates are available. By using
the extended state x̄(t) = [xT (t) x̂T (t)]T and the corre-
sponding state space matrices we can interpret this a stan-
dard fault detection problem, which could be approached
by a parity space method or a Kalman filter based method.
The problem when we have m different observers can
be approached by augmenting the state space with all
observer states x̂j(t), j = 1, . . .m.

There are some basic questions that need to be addressed

• Are the faults detectable using this model?
• What to do if the observer gain K is unknown?
• How to compare/validate the performance of different

methods?

3.1 Fault Observability

As described in Kalata et al. [1995], stochastic biases
in linear time invariant systems can be identified by



augmenting the system state with a bias and implement
a Kalman filter. The author utilizes this technique to
identify biases in noisy measurements. In Chapter 3 in
Tornqvist [2006] these results are extended to check the
observability of additive faults with the constrain that
f(t + 1) = f(t). An important characteristic explored by
both authors is the observability issue.

Considering a system as in Equation (2), where only esti-
mated states x̂(t) are available but not x(t), we can aug-
ment the faults in the states as x̄(t) = [x(t) x̂(t) f(t)]
and analyze the observability with the pair

C̄ = [ 0 C∗ 0 ] , Ā =

[
A 0 Bf
KC (A−KC) KDf

0 0 I

]
(3)

Observability conditions: With a similar approach as
in Tornqvist [2006] Appendix A shows that if the original
system is observable (pair (A,C) observable) and if

• All state estimates are directly available at the output
(i.e. C∗ = I).
• K is full column rank, such that

Kz = 0 ⇒ z = 0

then the extended system will be observable under the
same conditions for sensor and process faults as when the
actual output y(t) is available. In other words, we will have
the same information as when y(t) is directly accessible.
The conditions can be summarized as:

• For measurement faults only, if the system has no
integrator dynamics (modes with eigenvalue equals to
1), the faults will be observable as long as Df is full
rank. If there is an integrator, then the faults are not
observable if Df is full rank and the states through
which the fault propagates should be orthogonal to
the measured integrating part of the system.
• For process faults only, the faults should be orthog-

onal to the contribution of the non-measured part of
the system.

3.2 Unknown Observer Structure

If the observer structure is not given, for example if K is
unknown, we cannot directly use the extended state space
model for fault detection. To overcome this problem, let us
make two approximations. The first one is to approximate

K (Cxf (t) +Dff(t)) ≈ F̄f f̄(t)
Here

xf (t+ 1) = Axf (t) +Bff(t) (4)

and xf (t) is the fault contribution in x(t). Since f(t) is
zero or a constant vector it is most important that this
approximation holds stationary i.e. after transients.

The second approximation is
K (y(t)− Cx̂(t)) ≈ v̄(t)

where v̄(t) is a white noise process with a certain covari-
ance matrix. This makes sense from a Kalman filter point
of view where the innovations can be viewed as process
noise, v̄(t) = Kε(t) where ε(t) = y(t) − Cx̂(t) is a white
innovation process.

This leads to the simplified model

x̂(t+ 1) =Ax̂(t) +Buu(t) + F̄f f̄(t) + v̄(t)

ȳ(t) = x̂(t) + ē(t) (5)
With such structure, actuator and sensor faults are mixed
and the fault isolation step could be more difficult in this
setting.

The artificial measurement noise ē(t) can be used to
cope with unmodeled characteristics of the system. For
example, for sensors over a network or with a weak real-
time performance, one can use ē(t) to include jitter,
missed samples, delays, etc. or to cope with sensor/system
unknown dynamics.

After defining ē(t), it can be used to tune a Kalman filter
observer for the system as in Equation (5) and a standard
parity space method or Kalman filter based method can
be used to design a fault detection algorithm. It is easy
to extend this approach to several observers by combining
the observer states as


x̂1(t+ 1)
x̂2(t+ 1)

...
x̂j(t+ 1)


 = A




x̂1(t)
x̂2(t)

...
x̂j(t)


+ Buu(t) + F̄f f̄(t) + v̄(t)

where A, F̄f and Bu are diagonal matrices relating
observers and fault states and actuator dynamics, and
u(t),f̄(t) and v(t) are the extended control, fault and noise
inputs.

3.3 Performance evaluation methods

We are interested in analyzing the quality of the residu-
als generated by the different methods rather than for a
full detection scheme. Different factors influence a resid-
ual success in terms of detection, including noise/model
disturbances decoupling and sensitivity to faults. These
qualities are often in contradiction and can be seem as
an optimization problem. Some recent results for optimal
residual generation can be found in Liu [2008], where the
author shows closed-form solutions for some sets of the
problem, the solutions however, require that the faults
are directly visible at the output (full column rank Df ),
which will never be the case for sensors integrated with
observer/Kalman filters since the faults travel through the
observer dynamics before they appear in the output.

For the analysis of our proposed methods, we will use
a definition of a good residual as one that resembles to
white gaussian noise with no peaks or abrupt changes in a
fault-free case (possibly decreasing the false-alarm rates)
and that bias under a fault as great as possible (possibly
increasing the detection rate). We depict two empirical
quantities to relate these qualities.

The kurtosis statistic is a measure of the peakedness of
a signal, we can use it to analyze the resemblance of the
residuals over a fault-free scenario (NF ) to a gaussian
distribution. It is defined as

κ =
E
[
ε(t)|NF − µε(t)|NF

]4

σ4
ε(t)|NF

− 3

where µε(t)|NF
and σε(t)|NF

are the mean and standard
deviation of the residual under no-fault while E[z] is



the expected value of z. For a gaussian residual the test
approximates to zero, and it is usually used to detect
abrupt variations over a gaussian signal. In Hadjileontiadis
et al. [2005], for instance, it is used for crack detection
over a beam with vibration analysis. Basically, a κ close
to 0 will relate to a white gaussian distribution while
higher κ means more of the variance is due to big sporadic
deviations or biases.

The fault-to-noise ratio as defined in Gustafsson [2001] is
a measure of a fault sensitivity relative to noise and is
defined as a ratio between the expected value of a fault
influence in the system output and the noise variance, it
is, in fact, a similar concept as the signal-to-noise-ratio
(SNR) but applied to a fault. For a known FNR, we can
define the measure

δ =
∣∣∣∣
[ε(t)|F ]/σε(t)|F

FNR

∣∣∣∣
where E[ε(t)|F ] and σε(t)|F are the expected value and
standard deviation of the residual under a fault hypothesis
(F ). In this manner, δ will vary from 0 to 1 (best possible
residual, which will have the same quality as the direct
fault influence to the output, only possible if we use a per-
fect simulator of the system to generate the redundancy).

4. ILLUSTRATIVE EXAMPLE

In order to explore the different configurations presented,
we consider a simple linear DC motor, as shown in Figure
1. Non-linearities such as flexibilities and friction are
simplified. The applied voltage in the motor terminals is
the controlled input to the system Vapp while angular speed
is taken as output. The states are current and angular

Fig. 1. DC motor model.

speed x(t) = [i(t) ω(t)]T and the governing matrices

A =



−R
L
−kb
L

km
J

−kf
J


 , B =

[
1
L

0
]T

C = [ 0 1 ] , D = [ 0 ]

(6)

where km, kb and kf are armature, emf and friction
constants. Process noise with variance Q, is considered to
affect the system as random oscillations in the current i(t).
While measurement noise with variance R, appears in the
angular speed measurements. So that Bw = [ 1 0 ]T and
Dv = [1].

Integrated sensor model. We are interested in study-
ing the residuals when only the state estimate from an
observer/Kalman filter is available and not the direct
measured quantity. For this purpose we use a sensor model

integrated with an observer as in Equation (2). Taking
C∗ = C and the observer gain K as the stationary Kalman
filter gain for the given process and noise covariances, Q
and R. During our example, this model should be referred
to whenever we use the notation ŷ(t).

Faults. Two step faults with FNR = 10 (that produces a
10 times greater amplitude in the sensor output y(t) than
the present noise) are considered: process faults, fp(t),
appearing as a step torque opposing to the system; sensor
faults, fs(t), an offset measurement deviation. So that

Bf =
[

0 − 1
J

]T
and Df = [1].

In the following Sections we discuss the performance of
different methods to generate the residual considering the
output of such integrated sensors.

4.1 Augmented system observer

When K is known, a possible approach to generate a
residual is to augment system and sensor states x̄(t) =
[x(t) x̄(t)] and use the augmented model

Ā =
[
A 0
KC (A−KC)

]
, B̄u =

[
Bu
Bu

]
, C̄ =

[
0
C

]T

to design an observer/Kalman filter. With the redundant
output ȳ(t) from this model we can set a residual as ε̄(t) =
ŷ(t) − ȳ(t) to detect faults. Considering our DC motor
example, when we configure our observer as a Kalman
filter with gain L̄, we have for process and sensor faults
a response as shown in Figure 2 from which is easy to

Fig. 2. Residual ȳ(t) for process and sensor fault (solid line)
together with direct fault contribution to the sensor
output yf (t).

depict that the residual performance is good. In fact, for
process faults we had (δ, κ) = (0.88, ≈ 0) and sensor
faults (0.85, ≈ 0).

Is is important to analyze how robust this method is to
model errors introduced through errors in the sensor gain
K. We analyze the sensitivity of the residual to K by
varying it with a scaling factor as K × α while L̄ remains
constant. The pair (δ, κ) is computed for α varying within
[10−1, 105]. The result is a pair (δ, κ) = (0.85, 0.30) in
the worst case showing the robustness of the approach in
this example.



4.2 Simplified system observer

As discussed in Section 3.2, we can simplify the sensor
dynamics yielding a model as in Equation (5), with faults
and internal observer dynamics appearing in the terms
F̄f f̄(t) and v̄(t). With this simplification, we can design
an observer to generate a redundancy y̆(t) and a residual
ε̆(t) = ŷ(t)− y̆(t) sensible to faults.

In our example, we set the observer gain equal to the sensor
gain, L̆ = K. In this setting, the observer has similar
dynamics to the sensor, in fact, if we could use the direct
measured output y(t) as input to our observer, sensor and
observer would be equivalent. For a process fault, we have
(δ, κ) = (0.87, ≈ 0) and sensor fault (0.84, ≈ 0) which is
a slightly worsened result when compared to the results in
the earlier Section, with the augmented system observer.

To analyze the robustness on the gain selection, L̆, we
again, vary it with a scaling factor as L̆ = K ×α and plot
the pair (δ, κ). The result, shown in Figure 3, indicates

Fig. 3. δ and κ versus scaling factor α for process and
sensor faults. The circle depicts the case when L̆ = K.

that the residual is worsened with the overestimation of K.
This result is to be expected since, the larger the gain, the
more relevance is given to the measurements and therefore,
the residual will be less sensitive to faults (δ decrease).
As well, it also increases the observer speed, with the
observer trying to reach the signal faster and consequently
increasing transient errors (κ increase).

4.3 Multiple sensors

A common approach to fault detection is to take a residual
as the direct difference between two redundant sensors
ε(t) = yi(t) − yj(t). We study this case for our example
comparing its performance with model-based generated
residuals.

So far, our sensor estimates the states through angular
speed measurements, ŷω(t). To provide a redundancy, we
depict a sensor that estimates the states through position
measurements θ(t), ŷθ(t). Notice that the subscript in
ŷθ(t) and ŷω(t) denotes directly what is the measured
quantity. For such redundant sensor, we have the states
[i(t) ω(t) θ(t)] and model,

A =




−R
L
−kb
L

0
km
J

−kf
J

0
0 1 0


 , B =




1
L
0
0


 , C =

[ 0
0
1

]T
(7)

we suppose this sensor is also integrated with a Kalman
filter and outputs an estimate of ω(t). The sensor noise
variance is set to produce the same error order in the
output as for the first sensor so that both have similar
qualities. We would like to compare the classical approach,
ε0(t) = ŷω(t) − ŷθ(t), with model based generated resid-
uals. We consider one augmented states observer for each
available sensor, ȳω(t) and ȳθ(t) with the residuals as

ε̄ω(t) = ŷω(t)− ȳω(t)

ε̄θ(t) = ŷθ(t)− ȳθ(t)
ε̄ω, θ(t) = ȳω(t)− ȳθ(t) (8)

Because the sensors are different, the same fault may
cause different influences in the output for each sensor, but
since we are interested in showing the relative performance
between model-based generated residuals and ε0(t), we
compute a relative measure as

∆ =
∣∣∣∣
E[εi(t)|F ]/σεi(t)|F
E[ε0(t)|F ]/σε0(t)|F

∣∣∣∣
where εi(t) is one of the residuals from Equation 8. ∆ >
1 will depict a residual with a larger fault sensitivity
than the one generated by ε0(t). Table 1 shows ∆ for
process and sensor faults. The results show that taking

Residual ∆ for process fault ∆ for sensor ŷω(t) fault

ε̄ω(t) 0.1498 1.6059
ε̄θ(t) 1.3890 ≈ 0.00

ε̄ω, θ(t) 3.0104 0.02

Table 1. ∆ for different faults. In all cases
κ ≈ 0.

the residual as the direct difference between sensors, ε0(t),
may not provide the best residual. It is expected this
would be even more significant in case the noise variances
differed considerably for each sensor, since the observers
also attenuate noise.

4.4 Example summary

Different aspects have been analyzed trough our illustra-
tive examples, some important remarks:

• Though this was not fully explored in the example,
different tuning configurations have been used and
it was noticed that the use of an augmented states
observer is likely to improve the fault sensitivity when
compared to the observer using a simplified sensor
model as presented in Section 4.2.

• The analysis on the observer gain choice in Section
4.2 indicates that the fault sensitivity is improved as
smaller we choose the gain. Such result is motivated
by the fact that lower gains will thrust more on the
model and therefore, the resulting residual will be
more sensitive to unmodeled influences, such as faults.
Nevertheless, the choice of the gain should actually be
seem as a compromise between model uncertainties
and the fault sensitivity.

• Finally, the example with multiple sensors depicted
that using a model-based residual can improve the
fault sensitivity.



5. CONCLUSIONS

The paper analyzed several structures for observers data
only fault detection. Section 2 discussed standard ap-
proaches for fault detection; Section 3 presented ideas and
addressed some basic questions for the problem, including
a discussion over fault observability, knowledge on observer
structure and residual performance measures. Finally, Sec-
tion 4 illustrated the problem through a simulated ex-
ample, covering the approaches for fault detection using
redundant sensors and Kalman filter based methods with
known and unknown sensor structure. Most of the meth-
ods have shown to be useful, with slight improvements
when one consider both system and sensor states in the
estimation.

There are yet some open problems such as more general
observability conditions for faults, methods to support
the choice of the observer gains, analysis under model
uncertainties, etc. which shall be presented in future work,
together with example from a real robotics application.
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Appendix A. FAULT OBSERVABILITY

The Popov- Belevitch-Hautus test on the augmented ex-
tended systems depicts a pair (A,C) to be observable if(

C
A− sI

)

has full column rank for all s (see Franklin et al. [2006] for
more). The faults modes are s = 1, therefore the analysis
is separated for s 6= 1 and s = 1.

Given that our original system is observable (pair (A,C)
observable), we analyze the observability for the aug-
mented system as in Equation (3). First, when s 6= 1 the
observability is given by:




0 C∗ 0
(A− sI) 0 Bf
KC ((A−KC)− sI) KDf

0 0 (1− s)I




The last two columns are full column rank for s 6= 1 and
C∗ = I, and the analysis can be simplified to

(
(A− sI)
KC

)
(A.1)

Given that for a pair (A,C) to be observable, they should
have non-intersecting null-spaces (NA−sI ∩ NC = 0), the
condition above is translated to NA−sI ∩NKC = 0. Using
Theorem 1, it is rewritten as NA−sI ∩ NC = 0 which is
actually the observability condition on the original system,
which holds and the condition for s 6= 1 is checked.
Theorem 1. Given K is full column rank, for any B we
have:

NKB = NB
Proof: Suppose NK = ∅. Such that

Kv = 0 → v = 0
Now, let us check the null space of KB
(KB)w = 0, K(Bw) = 0 → Bw = r ∈ NK → Bw = 0
finally, the solution for Bw = 0 is the null-space of B and
therefore,

NKB = NB

When s = 1 and C∗ = I, it is equivalent to analyze(
(A− I) Bf
KC KDf

)

For measurement faults (Bf = 0) and considering that full
column rank of a matrix A is equivalent to

Av = 0 ⇔ v = 0
we have (

(A− I) 0
KC KDf

)(
x
y

)

and x ∈ NA−I , KCx+KDfy = 0. Notice that if A has no
integrators, then the condition is achieved if Df is rank. If
A has integrators, then Df should not be full rank and we
analyze that the first condition is only true when x is zero
or an eigenvector of A with eigenvalue equals to 1. Hence,
it is sufficient to analyze such x.

Take U as a basis formed by the eigenvectors of A with
eigenvalues 1 and rewrite the last condition as K(CUr +
Dfy) = 0 where r is any vector. For full column rank
K, this condition can only be true if CU and Df share
image spaces and the condition on the observability can be
rewritten as RCU ∩RDf

= ∅ Which means that the faults
should be orthogonal to the measured integrating part of
the system.

For process faults (Df = 0) only we can analyze(
(A− I) Bf
KC 0

)(
x
y

)

and we have x ∈ NC (Theorem 1) and (A−I)x+Bfy = 0.
Taking W as a basis for the null-space of C the final
condition is R(A−I)W ∩RBf

= ∅.
Which means that the faults must be orthogonal to the
contribution of the non-measured part of the system.


